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Abstract Grating-based X-ray imaging can make use of

conventional tube sources to provide absorption, refraction

and scattering contrast images from a single set of pro-

jection images efficiently. In this paper, a fresh cherry

tomato and a dried umeboshi are imaged by using X-ray

Talbot–Lau interferometer. The seed distribution in the

scattering image of the cherry tomato, and the wrinkles of

epicarp in the refraction image of the umeboshi, are shown

distinctly. The refraction and scattering images provide

more information on subtle features than the absorption

image. Also, the contrast-to-noise ratio values show dis-

tinguishing capacity of the three kinds of imaging tech-

niques. The results confirm that grating-based X-ray

imaging is of great potential in non-destructive fruit

testing.
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1 Introduction

Non-destructive food testing plays an important role

in food sieving and to guarantee high quality of food

production. Most of the existing X-ray sieving machines

[1] for vegetables and fruits use high X-ray absorption

contrast to distinguish the foods and foreign matters,

like stones and metals. However, X-ray sieving

machines cannot function if foreign matters and foods

have similar X-ray attenuation [2]. Owing to high

evolution in X-ray imaging techniques during the past

decade, as an X-ray grating-based imaging technique

[3–8], Talbot interferometry and Talbot–Lau interfer-

ometry offer refraction and scattering signals to provide

useful information on internal structures for under-

standing characteristics of the samples, becoming an

important technique for food science [9]. Furthermore,

with the use of source grating, this method can be

operated with conventional X-ray source, instead of

relying on brilliant synchrotron X-ray source. Thus, it is

quite suitable for medical imaging and industrial non-

destructive testing [10–15].

In this paper, we use a Talbot–Lau interferometer to

obtain absorption, refraction and scattering contrast images

of a fresh cherry tomato and a dry umeboshi. As for some

other non-destructive methods, like VIS/NIR spectroscopy

[16] and hyperspectral imaging [17], they mainly focused

on fruit quality assessment using surface layer information

but internal structure information of the fruits. Using

penetration power of X-rays, the three complementary

images provide internal structures information of the

samples, hence the capability of this method for non-de-

structive fruit testing.
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2 Experiment and methods

Experiments were carried out at the Institute of Mul-

tidisciplinary Research for Advanced Materials, Tohoku

University, Japan, using a rotating anode X-ray tube in

Talbot–Lau interferometer configuration, which is shown

schematically in Fig. 1 [18]. A micro-focus X-ray gener-

ator with source grating (G0) is used for partially coherent

illumination, in its acceleration voltage of 40 kV, the fil-

ament current of 45 mA and the X-ray spot size of

0.3 mm 9 0.3 mm. The G0 grating was in 22.7-lm peri-

ods, the p/2 phase shift grating (G1) was in 4.36-lm
periods and analyzer grating (G2) was in 5.4-lm periods.

For the Talbot interferometer [19], the G0–G1 and G1–G2

distances were 106.9 and 25.6 cm, respectively. The grat-

ings were optimized at the design photon energy of

27 keV. The projection images were recorded by a CCD

detector (Special Instrument Inc.) with an effective

receiving area of 68.4 mm 9 68.4 mm in pixel size of

18 lm 9 18 lm.

A fresh cherry tomato and a dried umeboshi were placed

in a sample stage at upstream side of the phase grating G1.

The measurements were carried out with air as a reference.

Phase stepping [4] was used in this setup. The absorption

grating G2 was scanned along the transverse direction

X (Fig. 1) over one period of the grating. Five phase steps

were used in both sample and reference measurements. At

each phase step, an image was taken with an exposure time

of 10 s. For the two samples, the experimental parameters

were the same, at similar temperature and air humidity.

The shifting curve visibility of V = 29.9% was calcu-

lated using the mean intensity in the five steps in Fig. 2a. A

Moire fringe always formed as two reasons, one is the

superposition between the self-image of G1 and G2 pattern

in the plane of the X-ray detector, and another is the

mechanical errors of the gratings. The Moire fringe in

Fig. 2b tends to be caused by mechanical errors of the

gratings, and this problem can be solved through

background subtraction in the data post-processing. The

absorption A(x, y), refraction h(x, y) and scattering V(x, y)

signals of the sample were retrieved by Eqs. (1)–(3) [20]:

A x; yð Þ ¼ �ln
X

Isk x; yð Þ=
X

Ibk x; yð Þ
h i

ðk ¼ 1; 2; 3; 4; 5Þ;
ð1Þ

h x; yð Þ ¼ ðd2=2pZÞarg
X

Isk x; yð Þe2pk=5=
X

Ibk x; yð Þe2pk=5
h i

ðk ¼ 1; 2; 3; 4; 5Þ;
ð2Þ

V x; yð Þ ¼
X

Ibk x; yð Þ=
X

Isk x; yð Þ
h i

rem
X

Isk x; yð Þe2pk=5
h i

=rem
X

Ibk x; yð Þe2pk=5
h i

ðk ¼ 1; 2; 3; 4; 5Þ;

ð3Þ

where k is the number of steps during the phase stepping

scan in one period of G2; Isk x; yð Þ and Ibk x; yð Þ are the gray

value of pixels at each step of the scan with and without the

specimen, respectively; d2 is the period of grating G2; and

Z is the distance between grating G1 and G2.

3 Results and discussion

Figure 3 shows the photograph and grating-based X-ray

images of the fresh cherry tomato. Structures of the cherry

tomato, from the outer to the inner, are epicarp, mesocarp,

endocarp and seeds. Epicarp is a botanical term for the

outermost layer of the fruit, endocarp is an interior layer

which directly surrounds the seeds and mesocarp is the

fleshy middle layer between epicarp and endocarp. In the

absorption image (Fig. 3b), along with the indistinct ped-

icel, the steady thickness increase from epicarp to the

sample inner replies to the increase in X-ray absorption,

with the gray values taking on degressive tendency. In the

refraction image (Fig. 3c), the outer part of fruit stem,

epicarp and some of the inner seeds can be distinguished,

although the shape and the distribution of the seeds are not

clear. Remarkably, not only the outer part of fruit stem but

also inner part of stem can be observed clearly. Thanks to

Fig. 1 Schematics of the X-ray grating interferometer (Talbot–Lau

interferometer). A micro-focus X-ray generator is used with source

grating (G0). G1 is for phase grating and G2 is for amplitude grating

Fig. 2 Matched phase-step curve (a) with mean intensity value (the

red dots) in five steps, and intensity image of Step 1 (b). (Color
figure online)
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the large difference of gray value between mesocarp/en-

docarp and seeds, the size, position and direction of each

seed can be distinguished, and the overlap place among

seeds helps to understand stratification distribution of seeds

in the scattering image (Fig. 3d).

Figure 4 provides the photograph and grating-based

X-ray images of the umeboshi, one kind of dried fruit.

Structures of umeboshi, from the outer to the inner, are

epicarp, mesocarp, endocarp and seed. The boundary of

endocarp and seed can be distinguished from the sample in

absorption image (Fig. 4b), because the lignified endocarp

is of lower density than mesocarp and the endocarp-seed

interspace produces a low gray value. By contrast, wrinkles

on epicarp and section thickness of endocarp can be

observed clearly in Fig. 4c for the refraction contrast. It is

worth noting that in the scattering image (Fig. 4d), the hard

lignified endocarp becomes fuzzy as low scattering signals,

which exaggerate the seed obviously. Also, scattering

signals from the endocarp are a little higher than those from

the mesocarp, and this helps to find its position. It is

exciting to find that the refraction image reveals details of

the lignified endocarp, while the scattering image high-

lights characteristics of the seed, including the shape, size,

and some other details. Therefore, the three X-ray images

of different contrast provide complementary structure

information of the dried umeboshi.

The traditional X-ray non-destructive imaging can only

obtain the absorption information, which is strongly related

to the sample thickness and density. The absorption value is

larger with a thicker sample, and the inner signal is drown in

the whole signal group if the internal structures are of similar

density. That is why seed structures of the cherry tomato are

not shown in Fig. 3b, but the umeboshi endocarp and seed

with density difference are observed in Fig. 4b.

Using the grating-based X-ray imaging, refraction and

scattering images can be retrieved from the same set of

projection data. They reproduce abundant information of

surface and internal structures (Figs. 3c, d, 4c, d). The

refraction image is sensitive to the density and refraction

angles. This helps to reveal the seeds in the fresh cherry

tomato and wrinkles on epicarp and the details of lignified

endocarp in the dried umeboshi. The scattering signal is

sensitive to the density and the reflection at the internal or

external interfaces [21], which shows the seeds clearly in

both fresh and dried fruits. Thus, all the internal structures

that reflect the quality of fruits (fresh or dry) can be retrieved

distinctly. It demonstrates that the grating-based X-ray

imaging has high potential for non-destructive food testing.

Furthermore, the contrast-to-noise ratio (CNR) [22] can

quantify the contrast of the three kinds of images as

follows:

CNR ¼ l1 � l2j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1r21 þ x2r22

p ; ð4Þ

where l is the mean value and r2 is the variance of selected
region of interest (ROI) in the absorption, refraction, and

scattering images. The variances are weighted with the

factor x which is given by the ratio of the number of pixels

in the matrix. The subscripts 1 and 2 mean the area of

boxes by the white dotted lines and the yellow lines,

respectively, as given in Figs. 3 and 4. A high CNR value

means a high contrast to noise, whereas a low value rep-

resents a low contrast. As shown in Table 1, the scattering

images of the fresh cherry tomato and dried umeboshi have

Fig. 3 A fresh cherry to (a) and its X-ray images of absorption (b),
refraction (c), and scattering (d). Scale bar 3 mm

Fig. 4 A dried umeboshi (a) and its X-ray images of absorption (b),
refraction (c), and scattering (d). Scale bar 2 mm
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the largest CNR value, hence the highest contrast of the

three kinds of images. Therefore, scattering imaging helps

to distinguish different structures and materials more

clearly than absorption and refraction imaging.

4 Conclusion

In this work, the grating-based X-ray imaging by Tal-

bot–Lau interferometer was used to investigate the internal

structures of fresh and dried fruits non-destructively.

Together with the traditional absorption image, the

refraction and scattering images reproduce abundant

information of the surface and interface. The refraction

information is always clear at the boundary of different

structures as the existence of refraction angle. The scat-

tering signals are clearly sensitive to status of a fruit, with

the highest contrast-to-noise ratio of the three kinds of

images. The information in scattering images reflects the

quality of fruits on the morphology, indicating the high

potential of this imaging technique to conduct non-de-

structive testing on fruits. Moreover, the 3D tomography of

fruit research can be operated when scattering images in a

series of different angles are taken. However, grating-based

X-ray imaging is time-consuming now. Further work on

grating interferometry scanning system with a number of

line detectors, and sample-maneuvering mechanism, will

make this non-destructive technique to be a practical

implementation in the near future.
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