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Abstract Phase space is one of the most important

parameters used to describe beam properties. Computer

tomography, as a method for reconstructing phase space

and measuring beam emittance, has been used in many

accelerators over the past few decades. In this paper, we

demonstrate a transverse phase space reconstruction study

in the Shanghai soft X-ray free electron laser facility. First,

we discuss the basic principles of phase space reconstruc-

tion and the advantage of reconstructing beam distribution

in normalized phase space. Then, the phase space recon-

struction results by different computer tomography meth-

ods based on the maximum entropy (MENT) algorithm and

the filtered back projection algorithm in normalized phase

space are presented. The simulation results indicate that,

with proper configuration of the phase advance between

adjacent screens, the MENT algorithm is feasible and has

good efficiency. The beam emittance and Twiss parameters

are also calculated using the reconstructed phase space.

Keywords Emittance � Phase space reconstruction �
MENT algorithm � SXFEL

1 Introduction

Over the past few decades, the computer tomography

method has been used in accelerators to characterize the

phase space of the particle beam. The tomography section

of the Deutsches Elektronen Synchrotron’s Photo Injector

Test Facility at Zeuthen (PITZ) [1, 2] consists of three

FODO structures and four screens for measuring the

transverse profile of the beam. In this process, the maxi-

mum entropy (MENT) [3–5] algorithm was used to

reconstruct the phase space of the beam. In the Accelera-

tors and Lasers in Combined Experiments (ALICE)

accelerator [6], three screens with FODO cells have been

used. The Paul Scherrer Institute (PSI) and the Spallation

Neutron Source (SNS) [7] also use three to five screens to

achieve phase space reconstruction using the MENT

algorithm. In the accelerator in TRIUMF [8], a wire

scanner with a quadrupole is used instead of screens. Three

wires, fixed at three angles, are used to measure the pro-

jections in the transverse space, and MENT is used for the

reconstructions. In the University of Maryland Electron

Ring (UMER) [9], the strengths of a few quadrupoles are

adjusted to obtain the full 180� range of angles. The

reconstruction is carried out using a filtered back projection

(FBP) algorithm. In ALICE, the FBP algorithm [9–11] is

also used to reconstruct the phase space of the beam.

The preliminary construction of the Shanghai soft X-ray

free electron laser (SXFEL) facility has been completed,

and it is currently under commissioning. The main linear

accelerator (LINAC) accelerates the beam to an energy of

840 MeV. The local energy spread is 0.1–0.15%, the peak

current is * 600 A, the bunch charge is 0.5 nC, and the

normalized emittance is about 2 mm mrad [12]. In order to

verify the phase space reconstruction scheme, we use the
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ELEGANT code [13] to simulate the proposed procedures.

During the simulation, both the FBP algorithm and the

MENT algorithm are used to reconstruct the phase space at

the BI1 segment of the SXFEL facility. In addition, the

beam emittance and Twiss parameters are calculated as

well.

2 Basic principles

2.1 Computer tomography

Briefly, the concept of computer tomography is to use

the projections of an object at different angles to calculate

the two-dimensional density distribution of the object. The

image reconstruction algorithm is divided into two cate-

gories: one is an analysis reconstruction algorithm, which

is based on the Radon transform, and the other is an iter-

ative reconstruction algorithm mainly used to solve

equations.

The FBP algorithm is a type of analysis reconstruction

algorithm, and it has been widely used in image recon-

struction. This algorithm is based on the Fourier slice

theorem and it applies the inverse Radon transformation for

image reconstruction. Considering the axes ðs; tÞ rotated by

angle h in Fig. 1, the coordinates are related to ðx; yÞ by
s ¼ x cos hþ y sin h
t ¼ �x sin hþ y cos h

�
: ð1Þ

Assuming that the density function of the object is

f ðx; yÞ, the projection of the object at an angle h is phðsÞ, as
shown in Fig. 1.

The projection of the object at angle h is

PhðsÞ ¼
Z 1

�1
f ðx; yÞdt: ð2Þ

The one-dimensional Fourier transform of the projection

is

ShðxÞ ¼
Z 1

�1
PhðsÞe�i2pxsds; ð3Þ

where x is the angular frequency in the frequency domain.

By substituting Eq. (2) into Eq. (3) and applying the two-

dimensional Fourier transform, the density distribution

function of the object can be obtained as

f ðx; yÞ ¼
Z p

0

Z 1

�1
ShðxÞ xj jei2pxsdx

� �
dh: ð4Þ

Therefore, as long as the projections of the object at

different angles are obtained, the density function can be

calculated.

The MENT algorithm is a type of iterative reconstruc-

tion algorithm. The main purpose of the algorithm is to

determine the unknown function hnðsnðxA; yAÞÞ. This

function is defined by the conditions for the stationary

solution of the Lagrange equation related to the density

distribution of the particles. Variable s denotes the distance

from point A to axis t, as shown in Fig. 1, and n represents

the nth projection. The density function can be represented

by the following unknown function:

f x; yð Þ ¼
YN
n¼1

hn sn xA; yAð Þð Þ: ð5Þ

By substituting Eq. (5) into Eq. (2), we obtain:

pn sð Þ ¼ hn sð Þ
Z YN

k 6¼n

hk sk xA; yAð Þð Þdt: ð6Þ

Equation (6) can be solved for the unknown hnðsÞ by

using a technique known as Gauss–Seidel iteration; thus,

the density distribution function f ðx; yÞ [5] can be obtained.

The specific steps are as follows:

1. For all n, set the initial value of hnðsÞ to the constant

value of 1.

2. For each n, use Eq. (6) and the measured pnðsÞ to

calculate hnðsÞ.
3. Projection pnðsÞ can be calculated by Eqs. (5) and (2)

using hnðsÞ in step 2.

4. Compare this calculated pnðsÞ with the measured pnðsÞ.
5. Repeat the above steps (except for the step 1) until the

difference between the two values in step 4 is very

small.

After several iterations, the error reduces to the per-

mitted range, and the objective function is obtained. For the

Fig. 1 Projection of the object at projection angle h
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MENT algorithm, usually only three to five projections are

required to reconstruct the phase space.

2.2 Principle of phase space reconstruction

When the electron beam passes through the quadrupole,

the drift space, or other components, the bunch is rotated,

stretched, and sheared. The transverse projected image of

the beam can be obtained by the yttrium aluminum garnet

(YAG) or optical transition radiation (OTR) screen after

the quadrupole, and the projections of the phase space can

be obtained by integrating the image along the x-axis. By

changing the strength of the quadrupole, the projections of

the beam at different angles can be obtained, or other

methods can be used (such as varying the length of the drift

space) to obtain the projections at different angles, which

are used for the phase space reconstruction.

Assuming that the electron beam is transformed from

reconstruction location A to observation location B, the

transfer matrix is

xB
x0B

� �
¼ R11 R12

R21 R22

� �
xA
x0A

� �
: ð7Þ

The effect of this mapping is a geometrical transfor-

mation, as shown in Fig. 2. The two parallel lines 1 and 2

in Fig. 2a correspond to lines 1 and 2 in Fig. 2b.

The image obtained at B denotes the particle density

distribution on the xy-plane; however, the distribution

function needs to be on the xx0-plane. If the image intensity

is integrated along the y-direction at each x-value, the result

is the same as the projection in the phase space, as in each

case we are effectively counting the number of particles

within a narrow range of x-coordinate values. Then, the

transfer matrix in Eq. (7) is used to obtain the projection at

reconstruction point A [14] as

PA sð Þ ¼ qPB xBð Þ; ð8Þ

where q is the scaling factor and using

tan h ¼ R12

R11

: ð9Þ

It can be expressed as

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
11 þ R2

12

q
; ð10Þ

s ¼ xB

q
; ð11Þ

where s is the distance from line 1 to the origin, as shown

in Fig. 2a. With the projections of phase space known at

different angles at point A, the phase space can be recon-

structed using the algorithms described above.

2.3 Normalized phase space

In general, the shape of the phase space distribution is

long and narrow, as in the case when the beam passes

through the long drift space, since it stretches and shears

the transverse phase space distribution of the bunch.

According to Liouville’s theorem, in order to keep the area

of the phase space unchanged, the phase space of the beam

has to be narrowed. As a result, most particles would lie

along a particular direction. Sampling in this distribution at

a uniform interval of angles can lead to a distortion in

reconstruction.

However, in normalized phase space, the distribution of

the phase space is a circle (unless the electron beam is

‘‘distorted’’ by certain effects). The reason is that in nor-

malized phase space, the Twiss parameters b = 1 and

a = 0. This corresponds to a distribution, where the cor-

relation xN ; xN 0h i ¼ 0. However, the correlation of a long

and a narrow distribution cannot be zero, as its shape

indicates a strong dependency on a certain direction. This

means that the distribution can be apparently circular. If the

particles are distributed symmetrically along two perpen-

dicular straight lines, the correlation of this distribution is

also zero. However, for the particle beam, the distribution

may spread over all 360�. Sampling over angles uniformly

in a circular distribution is more accurate. Therefore,

reconstructing in the normalized phase space is better [15].

The relationship between normalized phase space and

real phase space is:

x

x0

� �
¼

ffiffiffi
b

p
0

� affiffiffi
b

p 1ffiffiffi
b

p

0
@

1
A xN

x
0
N

� �
; ð12Þ

where a and b are the Twiss parameters and subscript N

denotes the normalized phase space. By adding Eq. (12) to

the right-hand side of Eq. (7), the transfer matrix ~R

required for the reconstruction in normalized phase space

can be obtained as

Fig. 2 Phase space distribution at a reconstruction location and

b measurement location
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~R ¼ R11 R12

R21 R22

� � ffiffiffiffiffi
bA

p
0

� aAffiffiffiffiffi
bA

p 1ffiffiffiffiffi
bA

p
0
@

1
A: ð13Þ

With further calculation the transfer matrix can be

rewritten as follows:

~R ¼

ffiffiffiffiffi
bB

p
0

� aBffiffiffiffiffi
bB

p 1ffiffiffiffiffi
bB

p
0
@

1
A cos l sinl

� sin l cos l

� �
: ð14Þ

Here, the subscript B denotes the Twiss parameters

corresponding to position B, and l is the phase advance.

According to the formula in Eq. (14), the formulas in

Eqs. (9) and (10) can be used to obtain the projection angle

and q in normalized phase space:

tan h ¼
~R12

~R11

¼ tan l

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~R2
11 þ ~R2

12

q
¼

ffiffiffiffiffi
bB

p
8><
>: : ð15Þ

It can be seen that in normalized phase space, the pro-

jection angle is equal to the phase advance. The projections

can be obtained using the formulas in Eqs. (8) and (11).

Therefore, reconstruction in the normalized phase space is

possible.

3 Simulation and analysis

3.1 Design of the program

The schematic of the BI1 section of the SXFEL facility

is shown in Fig. 3. The entrance of Q8 was chosen as the

reconstruction location. Quadrupoles Q10–Q14 were used

to match the following four FODO cells.

The beam energy of this section was 256 MeV in the

simulation. With the appropriate quadrupole strength from

Q15 to Q22, the phase advance from one screen to the next

was set to 45�. From Eq. (14), the projection angle in

normalized phase space is known to be 45�. Thus, the

projections obtained from the four screens could cover the

entire 180� range. We used the MENT algorithm and the

FBP algorithm to reconstruct the normalized phase space.

Table 1 lists the positions and phase advance values of

the profile (PRF) 06–09. It can be seen in Table 1 that the

interval of phase advances between each screen is almost

45�. Figure 4 shows the b function and phase advance in

the x-direction in the BI1 section. The phase advance in the

x-direction is denoted by wx.

3.2 Simulation and reconstruction

Combined with the parameters of the SXFEL facility,

we used the ELEGANT code to simulate the propagation

of the electron beam and then performed phase space

reconstruction. According to the principles in Sect. 2, the

phase space reconstruction process is as follows:

1. Generating the original electron beam based on the

design and parameters of the SXFEL.

Fig. 3 (Color online) Schematic of a part of the structure of the BI1 section in the SXFEL facility

Table 1 Positions and phase advances of PRF06–09

PRF06 PRF07 PRF08 PRF09

Position (m) 8.515 10.315 12.115 13.915

Phase advance (�) 100.018 145.019 190.023 235.023
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2. Obtaining beam images on screens 6–9.

3. Calculating the projections of the beam image along

the x-direction at the four screens.

4. Reconstructing the normalized phase space of the

beam at the entrance of Q8.

5. Transforming the image obtained from step 4 to the

real phase space.

6. Calculating the emittance and Twiss parameters of the

beam from the reconstructed phase space data.

Figure 5 shows the original phase space and the recon-

structed phase space. The number of iterations and the

reduction in errors by using the MENT algorithm are

shown in Table 2. The errors refer to the relative errors

between calculated pnðsÞ and measured pnðsÞ.
In Fig. 5, the reconstructed phase space distribution

obtained by the MENT algorithm (Fig. 5f) is very similar

Fig. 4 (Color online) b Function and phase advance in the x-

direction in the BI1 section

Fig. 5 (Color online) Original

and reconstructed phase space.

a Original phase space,

b projections at different angles.

Reconstructed normalized phase

space (c) and real phase space

(d) by the FBP algorithm.

Reconstructed normalized phase

space (e) and real phase space

(f) by the MENT algorithm
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to the original phase space distribution. However, there are

severe artifacts of the reconstructed phase space distribu-

tion obtained by FBP algorithm (Fig. 5d). According to the

theory of the FBP algorithm, the object function f ðx; yÞ is
the cumulative result of the filtered projections in the range

of * 0�–180�. In the simulation, we only use four pro-

jections of different angles; thus, the artifacts of Fig. 5d are

very severe due to the insufficient projection data. The

ideal condition for the FBP algorithm is to use enough

projections, covering the full 180�. Furthermore, the top

and bottom parts of Fig. 5d are significantly different from

the middle part, which is due to the transformation of

coordinates from the normalized phase space to the real

phase space. Figure 5f shows that the MENT algorithm

requires only a small number of projections (usually 3–5)

to give an acceptable reconstruction result. Therefore, the

FBP algorithm is applicable when there are more projec-

tions available, while the MENT algorithm can complete

the reconstruction with a small amount of projections.

4 Results and discussion

The Twiss parameters and the emittance of the beam can

be calculated by the following formulas [6]:

x2
� 	

¼ be; ð16Þ

x02
� 	

¼ ce; ð17Þ

xx0h i ¼ �ae; ð18Þ

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2h i x02h i � xx0h i2

q
; ð19Þ

where h i denotes averaging and e is the beam emittance.

Table 3 shows the original values and the measured values

calculated from the image data of Fig. 5f.

The values of a and b vary in the range of approximately

- 9.007 to 5.410 and * 0.11–28.18, respectively, in the

BI1 section. It can be seen that the measured values of the

beam are very close to the original values.

The error mainly comes from the following issues: (1) in

the simulation, the Twiss parameters of the beam did not

accurately match with the Twiss parameters of the lattice

structure. Particles did not travel along the ideal trajectory.

(2) The interpolation method used to transform from the

normalized phase to real phase space inevitably leads to an

interpolation error. (3) The interpolation method was also

used to calculate hnðsÞ by using Eq. (6). Furthermore, more

projections can improve accuracy.

5 Conclusion

This paper describes the principles of beam phase space

reconstruction. The FBP algorithm and the MENT algo-

rithm are used to reconstruct the phase space of the beam

by simulation. The reconstructed results show a good

agreement with the input values. The results also show the

feasibility and reliability of the reconstruction of the beam

phase space in the SXFEL facility using the MENT algo-

rithm. With the commissioning of the SXFEL facility, the

relevant reconstruction experiment will be completed. The

phase space reconstruction technique provides a new and

more effective method for measuring the beam phase space

of the SXFEL facility.
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