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y-ray induced radiolysis of [C,mim][NTTf,] and its effects on Dy3+ extraction*
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The water-soluble radiolytic products of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide
ionic liquid ([C,mim][NTf,]) under y-radiation, such as CF;SOOH, CF;SO,NH,, HF, and H,SO;, were
identified by using '"H NMR, '°F NMR, and ion chromatography. The extraction behavior of Dy** using ir-
radiated [C,mim][NTf,] in combination with 2,6-di(5,6-diisobutyl-1,2,4-triazin-3-yl)pyridine (isobutyl-BTP)
was studied and the abnormal increase of Dy>" partitioning after irradiation is mainly attributed to the pre-
cipitation formed between Dy** and radiolytic products of [C,mim][NTf,] (F~ and SO3"). Washing irradiated
[C,mim][NTTf,] with water provides a simple method for ionic liquid recycling.
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I. INTRODUCTION

Minor actinides-lanthanides (MA-Ln) separation is a huge
challenge due to their similar chemical properties [1-3].
Bistriazinylpyridines (BTPs), such as heterocyclic nitrogen
donor ligands, presents attractive selectivity for MA, com-
pared to Ln that could make them excellent candidates
for separating minor actinides [4-6]. Kolarik et al. re-
ported that 2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine in
kerosene/2-etylhexanol extracted Am®" with a distribution ra-
tio of 23 from an aqueous phase [7]. Trumm et al. re-
ported that a solution of 50 mmol/L BTPs in kerosene/1-
octanol extracted Am** from 1 mol/L HNO; with SFam/g, at
ca. 100 [8]. However, the BTPs in combination with a tradi-
tional solvent caused a new problem relating to radiation re-
sistance. For example, a solution of 0.005 mmol/L C5-BTBP
in cyclohexanone exhibited about an 80% decrease in the dis-
tribution ratio of Am** at 17kGy [9]. It was also reported
that an absorbed dose of 100 kGy resulted in 80% decom-
position of BTPs in n-octanol [10]. It was thought that the
reaction between BTPs and the radicals of diluents resulted
in subsequent degradation, which was mainly responsible for
the decrease in metal ion partitioning.

Due to a number of unique properties, such as non-
volatility, good solubility, and chemical stability [11-13],
room temperature ionic liquids (RTILs) have been highly
studied for their potential application in the reprocessing
of spent nuclear fuel [14—17]. Dai et al. first reported that
the solvation environment offered by RTILs could enhance
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the extraction efficiency of metal ions from an aqueous
solution [18]. Moreover, RTILs have demonstrated a notable
radiation resistance under vy-radiation [19-24]. Berthon
et al. noted that less than 1% underwent radiolysis when
RTILs were exposed to a dose of 1200kGy [25]. The
main radiolytic products of 1-butyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide ([C,mim][NTf,]) were
identified definitely through various spectroscopic methods
in our previous work, which greatly improved the radiolysis
research on ionic liquids [26, 27]. The overall concen-
tration of non-volatile acidic radiolysis products was less
than 1% for [C,mim][NTf,], even at 500kGy. However,
[C,mim][NTf,] was considered as a better solvent rather
than [C,mim][NTf,] in the separation of MA-Ln due to
its larger dissolving capacity and its liquidity [28, 29].
Accordingly, it is necessary to access the radiation stability
of [C,mim][NTf,] and extraction ability of extractant in
combination with [C,mim][NTf,] under y-radiation.
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Fig. 1. The chemical structure of isobutyl-BTP.

In this paper, an extraction system consisted of isobutyl-
BTP (Fig. 1) as extractant and [C,mim][NTf,] as diluents is
designed in our lab. The radiation effect on extraction behav-
ior of the diluent [C,mim][NTf,] is mainly investigated. Dy3+
is a non-redox-active trivalent ion and has similar properties
to the trivalent actinides, thus Dy3+ is chosen for assessing
the extractability and the radiation stability of the isobutyl-
BTP/[C,mim][NTf,] system.
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II. EXPERIMENTAL SECTION

A. Materials

[C,mim][NTf,] (with a purity > 99%) was purchased from
Lanzhou Greenchem ILs, LICP, CAS, China (Lanzhou, Chi-
na). No impurities were detected by 'H NMR spectrome-
try. The isobutyl-BTP(> 95%) was synthesized according
to [30]. All other solvents were analytical-grade reagent and
used without further purification.

B. Irradiation

The irradiation of [C,mim][NTf,] was carried out in air
(298 + 4)K) using a %°Co source, with an average dose
rate of ca. 240 Gy/min (Institute of Applied Chemistry of
Peking University). The absorbed dose was traced by a Fricke
dosimeter.

C. Extraction of Dy**

The organic phase (0.5mL) contained 20 mmol/L of
isobutyl-BTP dissolved in [C,mim][NTf,], and the aqueous
phase (0.5 mL) contained 8 mmol/L of Dy3+. The extraction
experiments were oscillated in a constant temperature incu-
bator shaker, which maintained a thermo-stated water bath at
25 °C with a rotating speed of 120 rpm, then were centrifuged
for 2 min to ensure that the two phases were completely sep-
arated. After phase separation, the aqueous solution was di-
luted with deionized water and the concentration of Dy>" in
the diluted aqueous solution was measured by the Prodigy
high dispersion inductively coupled plasma atomic emission
spectrometer (ICPS-7510, SHIMADZU, JPN). The distribu-
tion ratios (Dpy) were calculated by Dpy = (C; — Cf)/Cy and
the calculation of extraction efficiencies (Epy) was based on
Dpy = (C; — C¥) /i, where C;j and C} designate the initial and
final concentrations of Dy>" in the diluted aqueous solution,
respectively.

D. Characterization

Micro-FTIR. The Micro Fourier transform infrared spec-
troscopies (Micro-FTIR) were recorded on a Thermo
Scientific Micro Fourier transform infrared spectrometry.

'H and '®F NMR. NMR experiments were carried out
with a Bruker AV-500. The chemical shift scale was calibrat-
ed with tetramethylsilane at 0 ppm and NTf, at —78.87 ppm
for '"H NMR and '°F NMR, respectively.

lon chromatography analysis. The water-soluble prod-
ucts from the irradiated samples were analyzed using a MIC
ion chromatography (IC) System (Metrohm Swiss). A Met-
rosep A SUPP 5-250 column (4 mm X 250 mm) was used
to provide a quantitative study on the radiolytic products of
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Fig. 2. (Color online) Micro-FTIR spectra of [C,mim][NTf,] in D,O
before (a) and after irradiation at 500 kGy (b).

[C,mim][NTf,] ionic liquids. The 819 IC conductivity detec-
tor was applied and the injection volume was set at 10 uL.. The
eluent was 3.2 mmol/L Na,CO;/1.0 mmol/L. NaHCO; solu-
tion at a constant flow rate of 0.7 mL/min. The operating back
pressure was 11.6 MPa.

XPS analysis. The X-ray photoelectron spectra (XPS) of
the samples were recorded by an AXIS-Ultra instrument from
Kratos Analytical using monochromatic Al K, radiation and
low energy electron flooding for charge compensation.

III. RESULTS AND DISCUSSION

A. Identification of water-soluble radiolytic products of
[C,mim][NTf,] under y-radiation

The water-washed sample of irradiated [C,mim][NTf,]
was analyzed by Micro-FTIR based on previous work [26].
As illustrated in Fig. 2, the Micro-FTIR spectrum of irradi-
ated sample changes obviously in comparison with that of
unirradiated sample. The absorption is band at 1136 cm™!
(1350cm~1), corresponding to the vibration of the C—F
bonds (S=0) of NTf,, dropping obviously after y-radiation.
This indicated that C—F and S=O bonds were broken dur-
ing irradiation. In addition, OH groups (NH, groups) are ob-
served at 1655 cm™! and 3450 cm™! (960 cm™!) in Fig. 2b.
These results indicate that the radiolytic products containing
OH and NH, groups were formed after irradiation. These
results are similar to that of [C,mim][NTf,] during irradia-
tion [26] because [C,mim][NTf,] has analogous anion ions
(NTf,) with [C,mim][NTf,]. Hence, the observed results in
Micro-FTIR are mainly attributed to the radiolysis of [NTf,]
anions.

"H NMR and 'FNMR were employed to identify the radi-
olytic products of [C,mim][NTf,] after irradiation. As shown
in Fig. 3, no discernible changes was observed in 'H NMR at
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Fig. 3. (Color online) '"H NMR spectra of [C,mim][NTf,] before (a)
and after irradiation at 500 kGy (b).

500kGy, suggesting that the nonvolatile radiolysis products
of [C,mim][NTf,] do not exceed 1%. However, the peak of
water broadened and shifted toward the low field after irradi-
ation. This is consistent with information reported by Yuan
et al., who found that the change of water peak shape was
attributed to the acidic radiolytic products [28]. Therefore,
acidic radiolytic products were formed during the irradiation
of [C,mim][NTf,].

The '"F NMR spectra of [C,mim][NTf,] before and after
irradiation are shown in Fig. 4. A single peak at —78.78 ppm,
which is assigned to NTf, was observed. Similar to the radiol-
ysis of [C,mim][NTTf,] [26], several fluorine-containing com-
pounds in irradiated [C,mim][NTf,] have been identified as
CF;SOONH, (—79.33 ppm), CF;SOOH (—87.08 ppm), HF
(—164.55 ppm), and SiFé‘ (—129.56 ppm) [26]. However, a
new radiolytic product, which was not observed in irradiated
[C,mim][NTf,], is shown at —76.75 ppm. The difference in
alkyl chain between C,mim* and C,mim" leads to the forma-
tion of different radiolytic products.

B. A quantitative analysis of trace water-soluble radiolytic
products of [C,mim][NTf,] under y-irradiation

Ton chromatography was employed to provide a quantita-
tive analysis of these water-soluble radiolytic products (H-
F, CF;SOO0OH, and H,S0O;) and the experimental details are
given in a previous paper [26]. As indicated in Fig. 5, the
amounts of radiolytic products increased obviously with the
increase of each dose. For instance, the concentration of
F~ increased from 0.030 mol/L at 100 kGy to 0.087 mol/L at
500kGy. The G value of HF, CF;SOOH, and H,SO; was
calculated at 0.22 umol/L, 0.035 umol/L, and 0.029 umol/L,
respectively. Compared with the G value of acidic radiolytic
products of [C,mim][NTf,] (Table 1), the radiolysis of
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Fig. 4. (Color online) '°F NMR spectra of [C,mim][NTf,] in DoO
before (a) and after irradiation at 500 kGy (b).
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Fig. 5. (Color online) The relationship between the concentration of
main radiolytic products and doses.

[C,mim][NTf,] is close to that of [C,mim][NTf,]. The quan-
titative study using ion chromatography indicated that the
overall concentration of nonvolatile acidic radiolysis products
was less than 1% for [C,mim][NTf,] even at 500kGy, in
which the results show that [C,mim][NTTf,] still has excellent
radiation stability under y-irradiation.

TABLE 1. Radiation chemical yields of acidic radiolytic products of
[C,mim][NTf,] and [C,mim][NTf,]

‘ G(IF) G(CF,S00") G(SO7)
RTILs (umol/J) (umol/J) (umol/J)
[C,mim][NTE, ] 0.22 0.035 0.029
[C,mim][NTf, " 0.20 0.010 0.031

4 Data was obtained from Ref. [26].
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Fig. 6. Influence of dose on Dy*" extraction from aqueous solu-
tion by irradiated [C,mim][NTf,] in combination with isobutyl-BTP.
*The irradiated sample was washed by water for 3 times before ex-
traction experiment.

F1s

CPS

n 1 " " 1 L
750 600 450 300 150

Binding Energy (eV)

Fig. 7. (Color online) XPS spectra of the precipitate (a), DyF; (b),
and Dy, (S0;); (¢).

C. The influence of acidic radiolytic products of
[C,mim][NTf,] on the extraction of Dy**

The influence of dose on Dy** extraction was shown in
Fig. 6. An abnormal increase of Dy’* partitioning is ob-
tained when irradiated [C,mim][NTf,] is used as extracting
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solvent. Some water-insoluble compounds were observed
at the interface between irradiated [C,mim][NTf,] and the
aqueous solution. After the irradiated [C,mim][NTf,] was
washed by deionized water 3 times, Dy>" partitioning recov-
ered to the unirradiated level. These results suggest that the
abnormal increase of Dpy in irradiated [C,mim][NTf,] is as-
cribed to the influence of water-soluble radiolytic product-
s. Based on our previous work [27], Dy*" is precipitated
with the radiolytic products generated from ionic liquid (F,
SO%‘), resulting in the increase of Dy>* partitioning in irradi-
ated [C,mim][NTf,].

After centrifuging and washing and drying, the white sed-
iment was obtained and analyzed by XPS. The binding en-
ergies were calibrated using the Cls hydrocarbon peak at
284.80eV. The composition of sediment was determined to
consist of F, O, S and Dy elements according to the XPS
record (Fig. 7), indicating the main components of the sed-
iment are DyF; and Dy,(SO;);. Similar results have been
reported in the x-radiolysis of [C,mim][NTf,] ionic liquid ir-
radiated with the helium ion beam [27]. Consequently, the
increase of Dy3+ partitioning in irradiated [C,mim][NTf,] is
due to the precipitation between the water-soluble radiolytic
products of [C,mim][NTf,] with Dy3+.

IV. CONCLUSION

The main water-soluble radiolytic products of
[C,mim][NTf,] (CF;SOOH, CF;SO,NH,, HF and H,SO;)
under y-irradiation were systematically investigated by using
micro-FTIR, 'H NMR, 'F NMR, and ion chromatography.
The radiolytic products of [C,mim][NTf,] are similar to
that of [C,mim][NTf,], because the two ionic liquids have
a similar chemical structure and the same anion ions. The
radiolytic behavior of [C,mim][NTf,] changes slightly
compared to [C,mim][NTf,] as the difference of the alkyl
chain length. The extracting behavior of Dy** using irra-
diated [C,mim][NTf,] in combination with isobutyl-BTP
showed an abnormal increase of Dy>" partitioning due to the
precipitation between the acidic radiolytic products of the
anion with Dy>*. The water-washing is a very effective and
easy method to avoid the influence of radiolytic products of
[C,mim][NTf,]. This work provides an assessment about the
feasibility of [C,mim][NTf,] as alternative medium for the
separations of MA-Ln from spent nuclear fuel.
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