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Abstract Due to insufficiency of a platform based on

experimental results for numerical simulation validation

using computational fluid dynamic method (CFD) for dif-

ferent geometries and conditions, in this paper we propose

a modeling approach based on the artificial neural network

(ANN) to describe spatial distribution of the particles

concentration in an indoor environment. This study was

performed for a stationary flow regime. The database used

to build the ANN model was deducted from bibliography

literature and composed by 261 points of experimental

measurement. Multilayer perceptron-type neural network

(MLP-ANN) model was developed to map the relation

between the input variables and the outputs. Several

training algorithms were tested to give a choice of the

Fletcher conjugate gradient algorithm (TrainCgf). The

predictive ability of the results determined by simulation of

the ANN model was compared with the results simulated

by the CFD approach. The developed neural network was

beneficial and easy to predict the particle dispersion curves

compared to CFD model. The average absolute error given

by the ANN model does not reach 5% against 18% by the

Lagrangian model and 28% by the Euler drift-flux model of

the CFD approach.

Keywords Numerical simulation � Computational fluid

dynamic � Artificial neural network � Spatial distribution �
Particle concentration � Indoor environment

1 Introduction

Indoor air quality is a significant concern, because

people on average occupy most of their time in the built

environment, where they are regularly exposed to pollu-

tants in the interior atmosphere. Commonly, the contami-

nants diffuse into the ambient air around nuclear facilities

in the radioactive fine particles form or gases radioactive

form. Aerosols are considered as a primary factor for the

indoor air pollution. To better assess the risks of internal

contamination in ventilated areas, wherein the detailed

information on aerosols transfer and particles concentration

distribution is of great importance in the context of

improving the radiological system (zoning control and

classification). We think about improving the effectiveness

of air filtration systems (HEPA filters for particulate and

carbon filters for radioactive gas) in the ventilation systems

of nuclear facilities, to undertake a study of the aerosol

transfer in a ventilated room. We will continue along this

path of study to choose optimal conditions (flow regime)

that give minimum particles concentration in an ambient

environment. For example, this technique is used to design

the clean rooms for radioisotope production.

Generally, there are two approaches to simulate the

particle transfer: experimental simulation and numerical

simulation. As experimental simulation costs a lot,

numerical simulation is often adopted to analyze the par-

ticle dispersion phenomenon [1–3], and is playing an
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increasingly important role nowadays in predicting particle

behavior and air flow dynamics.

Most studies using computational fluid dynamic (CFD)

followed particle’s trajectory in the continuous phase (air)

according to the Lagrangian or Eulerian approaches. The

Eulerian particle tracking method considers the particle as

a continuous phase and treats it as two fluid phases (air-

particle). The momentum equations of the second phase

(particles) are developed in a similar form of the gas phase

(first phase: air). In the Lagrangian particle tracking

approach, the fluid phase is considered as a continuous

phase by solving the Reynolds-averaged Navier–Stokes

equations (or RANS equations), whereas the particle phase

is considered as a discontinue phase and the resultant

motion equation relating the various forces exercising on

an individual air-particle is resolved so as to get the single-

particle trajectories [4]. Several groups in numerical fluid

dynamics studied the condition effect over airflow (venti-

lation) and particle behavior [5–7], while others developed

drift-flux model derived from Eulerian approach to study

particle dispersion phenomenon in a closed environment

[1, 4, 8–10]. The mixture model is a sub-Eulerian model

for particles phase treatment [4], and the Lagrangian

model, for particle trajectory tracking [4, 11–14].

In order to attain the objective of building accurate

models in predicting behavior of indoor aerosol, we are

oriented to the artificial neural network (ANN) simulation

since it is successfully applied in other scientific fields.

This work was elaborated in this context to develop a

metamodel. Metamodeling enables a large analysis of the

input variables, improves the generated model under-

standing and allows new studies to optimize the solution of

systems [15, 16]. ANN is used widely in multidisciplinary

varieties such as calibration of water distribution systems

[17], modeling of nuclear chemistry applications [18],

thermodynamic transport properties of fluids [19] and

contamination of groundwater [20]. Recently, ANN has

been trained and tested to optimize the ventilation systems

in indoor environments [21, 22]. Being to replace con-

ventional regression models, ANN is expected to evolve

further in developing metamodel as it offers an alternative

path to complex systems modeling. Based on several inputs

and outputs, it is able to bring any nonlinear function to a

random degree with a single hidden layer [16, 23].

In this work, a metamodel based on ANN was developed

to describe the relationship between input variables gov-

erning the aerosols dispersion in a ventilated closed space.

The predictive ability of ANN model was compared with

experimental results and those given by CFD which are

inspired from Ref. [1, 4]. Several simulations were

designed to test and validate the metamodel. The predictive

ability of the ANN model was compared to that of CFD

approach (Lagrangian and Eulerian models) [4]. Graphical

visualization of the particles concentration distribution

along vertical direction at fixed axial position was done by

a program written in MATLAB software. In addition, a

second program for plotting the contours of normalized

iso-concentrations to the central plane of the room (x, y).

The best model for particle dispersion prediction is iden-

tified in a room for stationary flow regime.

2 Methodology

The most methodological way to develop an ANN

model was to follow the flowchart steps in Fig. 1. The last

two steps (training and test) mentioned in the proposed

organization are treated in Sect. 3 [16].

2.1 Problem description

The room environment, as a model for particle con-

centration analysis, is shown in Fig. 2. Nineteen variables

were selected to define the airflow and particle concentra-

tion. The air inlet is placed at the top opening on a wall and

the exit at the bottom opening on the opposite wall. L, H

and W are the room length, height and width, respectively.

Coordinates of the concentration measurement points at the

three directions (x, y, z) are, respectively, designated by x1,

y1 and z1. Coordinates of distance between the entrance and

the exit of area A are denoted by xAi-Ao, yAi-Ao and zAi-Ao

in three directions (x, y, z), and U is the inlet air velocity.

As for the other parameters, s is particle stay time in the

room. qf is density of air, l is dynamic viscosity of air, qp is
aerosol density, and dp is diameter of the aerosol particle.

All quantities are expressed in the international system of

units. The relation between the input parameters is

f
C

C0
; L;W ;H; x1; y1; z1;Ai;Ao; xAi�Ao; yAi�Ao; zAi�Ao;U; qf ; lf ;qp; dp; s

� �
¼ 0

ð1Þ

where C/C0 is the normalized concentration of the particles

in the indoor.

Fig. 1 Methodology flowchart
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The use of dimensional analysis provides thirteen vari-

ables developed from Eq. (1) and reordered to obtain

Eq. (2). The input variables were reduced to twelve: The

two variables qf and lf were simplified because the same

environment fluid (air) with a constant temperature was

considered, and three variables defining the study domain

(L, H, W) were included in the measurement points coor-

dinates to be dimensionless variables (x1/L, y1/H, z1/W).

C

C0

¼ b
x1

L
;
y1

H
;
z1

W
;Ai;Ao; xAi�Ao; yAi�Ao; zAi�Ao;U; qp; dp; s

� �

ð2Þ

2.2 Input parameters conception

The most important information regarding the relation

between the output(s) and the space of input design has to

be investigated effectively to reduce the experimentation

time, numerical or physical simulations. To define the

limits of numerical simulation domain, a minimal value

and a maximal value were attributed at each parameter in

Eq. (2) (Table 1). The database, defined by measured val-

ues deduced from Ref. [1–3], is constructed by 261 mea-

sured points of particles concentration, of which 80%

affected for training, 10% for validation and 10% for test

the ANN model.

2.3 Determination of the network model form

The neural network principle is similar to the nonlinear

regression method. There are various types of neural net-

works, among which the multilayer perceptron (MLP)

model is considered as the most popular network and

usually used in scientific applications. It includes different

layers at several levels: one input layer, one output layer

and one or more hidden layers. Each layer consists of a

number of neurons with an activation function between

layers (Fig. 3).

The ANN, mathematically represented by Eq. 3, has

three layers where n, m and p are, respectively, the num-

bers of neurons in the input, hidden and output layers [16].

C

C0

� �
k

¼ foutput
Xm
j¼1

wjkfhidden
Xn
i¼1

wijxi

 ! !
ð3Þ

where y = (C/C0)k is the output; xi is the input; wij is the

weights input layer/hidden layer; wjk is the weights hidden

layer/output layer; and f is the activation function, which

can be linear f(a) = a, sigmoid f að Þ ¼ 1= 1þ e�að Þð Þ or

hyperbolic tangent f að Þ ¼ ea�e�a

eaþe�a.

2.3.1 Normalization of the inputs and output values

The normalization of values is an important ANN

preparation step. The ANN input values may differ by

Fig. 2 Geometry of the model room

Fig. 3 ANN structure diagram

Table 1 Minimum and maximum values for the twelve groups

Parameters Unit Min Max

dp m 5 9 10-7 1 9 10-5

U m/s 0 1.5

x1/L – 0.17 0.83

y1/H – 0 0.9526

z1/W – 0.17 0.83

Ai m2 0.0016 0.06

Ao m2 0.0016 0.06

xAi-Ao – 0.83 1

yAi-Ao – 0 0.8

zAi-Ao – 0 0.5

qf kg/m3 1400 2100

1/s s-1 0 0.3
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several orders of magnitude, which may not reflect the

relative significance of the inputs predicting output particle

concentration in this work. So, input and output variables

data are normalized within the range limited between -1

and 1 using a mapminmax algorithm, given by Eq. (4), to

normalize the maximum and minimum values of each row

[24].

y ¼ ymax � yminð Þ x� xminð Þ
xmax � xminð Þ þ ymin ð4Þ

2.3.2 ANN performance

The differences between experimental and predicted

values are filtered across the network and used to adapt the

connections between the layers, so as to improve the per-

formance. The root mean square error (RMSE) coefficient

is the main criteria for evaluating the ANN performance,

which is defined by [24]

RSME ¼ 1

n

Xn
i¼1

yi � yti
� �2" #1=2

ð5Þ

To improve the ANN quality based from the statistical

point of view for the training, test and validation sets are

evaluated using the squared correlation coefficient R,

absolute error AE and average absolute error AAE,

R ¼ 1�
Pn

i¼1 yi � yti
� �2

P2
i¼1 yi � y0ð Þ2

ð6Þ

with

y0 ¼
Pn

i¼1 yi � yti
� �
n

ð7Þ

AEi ¼
yti
�� ��� yij j

ytij j

	 

� 100 ð8Þ

AAE ¼ 1

n

Xn
i¼1

AEi ð9Þ

where yi, y
t
i and n are the ith trained, test or validation

output value, the target value and the number of input

vectors, respectively.

3 Results and discussion

To provide the best credible, reliable and valid results,

the room geometry in Fig. 2 was selected as computational

domain. Measured data of particle concentration realized

by Chen et al. [1] using the Phase Doppler Anemometry

(PDA) instrument were selected as reference values. The

CFD simulation results, Lagrangian and drift-flux models,

obtained by Bin Zhao et al. [4] were selected to confront

the ANN model results. The room geometry was 0.8 m

(L) 9 0.4 m (W) 9 0.4 m (H). The two openings (inlet and

outlet) were sized at 0.04 m 9 0.04 m, being symmetrical

with the center plane at Y = 0.2 m. The aerosol density

was 1400 kg/m3. The inlet velocities were U = 0.225 and

0.45 m/s.

The parameters were evaluated to provide better con-

figuration offering a compromise between the ANN per-

formance and the best fit to describe the spatial distribution

of the normalized particle concentration (x, y, z) in a

workspace. To optimize the ANN model, the effect of

several parameters were evaluated for network conver-

gence, such as neuron number in the hidden layer, activa-

tion function between the layers (input layer, hidden layers

and output layer), network training algorithm and the

normalization function of input and output data.

Twenty-five neurons were chosen in the hidden layer

after a series of simulations by varying the number of

neurons and measuring the mean squared error (MSE).

Additionally, there were large numbers of training algo-

rithms producing an accurate network, fast and reliable. Six

algorithms were tested to find an algorithm which performs

better in our case, and the six networks established by their

training algorithms were named as Net1, Net2, Net3, Net4,

Net5 and Net6. The algorithms with their corresponding

codes are presented in Table 2. Table 3 shows the selected

ANN parameters.

The optimal configuration of the ANN has the following

performances: RMSE = 3.2518 9 10-4, R = 0.9994,

Y0 = 2.0128 9 10-5, and AE = 1.0661%. The best poly-

nomial fit is y = (C/C0)pred = 1.0 9 (C/C0)exper ?0.00089.

Regression ANN analysis was performed to compare

experimental and predicted data of particle concentration

(Fig. 4). Figure 5 shows the comparison of simulated

concentration by three numerical models: ANN model,

drift-flux and Lagrangian CFD models versus the experi-

mental data considered as reference values.

Modeling by ANN provides a better spatial distribution

profile of particle concentration in indoor ambient and

agree well with the experimental data almost in all calcu-

late domain: interior domain and interpolated part. Using

Eqs. (8) and (9), we compared the relative error and the

average of the results simulated by CFD approach and the

ANN model with the experimental values. The evaluated

relative error was less than 5% for all concentrations

obtained by ANN model as shown in Fig. 5, except the

point with coordinates (0.2, 0, 30, 0.2) where a value of

13.48% was observed at U = 0.225 m/s.

The Lagrangian model gives acceptable values com-

pared to the experimental data except the positions above

the height of 0.3 m from room floor (jet flow) are relatively

far from measured data.

5 Page 4 of 9 A. Gheziel et al.

123



The average and the largest relative errors are 15.9 and

42.2%, respectively, at the point (0.2, 0.379, 0.2) for

U = 0.225 m/s [4]. The drift-flux model gives fairly

acceptable values in positions of above 0.3 m from room

floor (jet flow) with 15% as average relative error. At room

height of\0.3 m, the results are less than the experimental

data and the largest relative error was 55.4% at coordinates

(0.2, 0.14, 0.2) for U = 0.225 m/s [4].

Figure 6 shows the concentration errors using the simu-

lations models of Lagrangian, drift-flux CFD and ANN,

for three axial positions and inlet velocities of 0.225 and

0.45 m/s. The ANN model, with maximum average error of

about 5%, performs the best, while the Lagrangian model

comes in the second position with an average error about

16%.

In Fig. 5, the ANN-calculated values (black lines)

coincide with the experimental points at x = 0.2, 0.4 and

0.6 m and at U = 0.225 and 0.45 m/s. The interpolation

part, inside domain, is limited in the axial direction

between x1 and x2, and the vertical direction between y1
and y2, as indicated in Figs. 7, 8, 9. To show better the

particle concentration decrease in a closed environment,

we graphically visualized the axial distribution of the jet

flow at y = 0.36 m (Fig. 7). However, this model inter-

polates even spatial distribution of the particles concen-

tration in other axial or vertical positions, indicating that

the ANN model interpolates finely the particle dispersion

phenomenon in a closed space.

The extrapolation values of particle concentration deter-

mined by the ANN in Fig. 7 indicate that they are tangible

and perceptible if we see the graph allures of axial spatial

distribution for inlet velocities of 0.225 and 0.45 m/s. From

the data measured outside the interest domain limits, and

from Fig. 7, the extrapolations values are acceptable. This

means that the ANNmodel is a good extrapolator especially

for positions near the computational boundary domain.

Figure 8 shows a graphical representation of the parti-

cles concentration distribution in a closed space in the

central plane of the room. One sees an acceptable and

reasonable shape of the concentration distribution with

large particle concentration at air inlet area (as a pollution

source in this case), decreasing gradually along the x-di-

rection due to particle deposition on room walls. Based on

these results for the iso-concentration contours at inlet

Fig. 4 Comparison of target and ANN predicted values for normal-

ized concentration of particles from confined milieu

Table 2 Training algorithms of

the ANN
Network name Training algorithms MATLAB code Acronym

Net1 Quasi-Newton/Levenberg–Marquardt Trainlm LM

Net2 Polak–Ribière Conjugate Gradient TrainCgp CGP

Net3 Fletcher–Powell Conjugate Gradient TrainCgf CFG

Net4 Quasi-Newton/One-Step Secant TrainOss OSS

Net5 BFGS Quasi-Newton TrainBfg BFG

Net6 Resilient Back-propagation TrainRp RP

Table 3 ANN parameters
Selected parameters Properties

Layer hidden number One hidden layer

Neurons number of hidden layer 25 neurons

Activation function

Input/hidden layer Log-sigmoid transfer function.

Hidden/output layer Linear function

Normalized function Premnmx (max and min) function

Training algorithm network TrainCgf (Fletcher conjugate gradient) algorithm
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velocities of 0.225 and 0.45 m/s (Fig. 8), we conclude that

simulation results of particles concentration using the ANN

were good on all over space of the domain and at different

regimes of airflow.

In addition, Fig. 9 shows a detailed visualization of

particles concentration distribution in the central plane of

the room, in the axial and vertical directions, at inlet

velocities of U = 0.225 and 0.45 m/s.

Fig. 5 Measured and predicted

particle concentration at three

different axial locations.

a U = 0.225 m/s,

b U = 0.45 m/s
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4 Conclusion

The aim of this paper was focused on numerical mod-

eling of particle dispersion in indoor environment and for

stationary flow regime, using artificial neural network. The

model was based on experimental data available in the

literatures for smoothing the particle concentration distri-

bution on all domain space and for different boundary

conditions. Network performance was compared with CFD

methods using the same assumptions and flow regime. The

results led to the following conclusions:

1. The ANN model has better accuracy for performing

smoothing particle concentration distribution in indoor

environment, compared to CFD approach Lagrangian

and drift-flux models. The ANN modeling gives an

average relative error of \5%, compared to the

experimental results.

2. The CFD methods give an average performance for the

particle trajectory tracking in an indoor environment.

For example, the Lagrangian model is acceptable for

low particles concentrations, near walls, with an

average relative error of around 18%; whereas the

particle tracking by drift-flux model is good just at the

core flow. So, unlike ANN modeling, the CFD

approaches are limited by utilization to tracking model

for smoothing of particles distribution in space.

As the ANN results are close to experimental data, it

will be encouraging to develop this approach and conse-

quently establish a platform for CFD simulation validation

of different design parameters, so as to improve CFD

Fig. 6 Graphic visualization of the average error at three axial

positions for two inlet velocity

Fig. 7 Axial distribution of normalized concentration at room height

of y = 0.36 m

Fig. 8 Simulation results for the distribution of particle concentration at the surface center. a U = 0.225 m/s, b U = 0.45 m/s
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methods and verify reliability of the simulation results.

This will facilitate the cartography determination of parti-

cle concentration for purposes of safety issues and pro-

tection of workers within nuclear installation:

• Classification of controlled areas (red, orange or green),

• Calibration of monitoring equipment,

• Determination of filtration barrier in ventilation

systems,

• Accumulation contaminants in the dead zones (bad

ventilated areas).
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