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Abstract
The phenomenology involved in severe accidents in nuclear reactors is highly complex. Currently, integrated analysis 
programs used for severe accident analysis heavily rely on custom empirical parameters, which introduce considerable 
uncertainty. Therefore, in recent years, the field of severe accidents has shifted its focus toward applying uncertainty analysis 
methods to quantify uncertainty in safety assessment programs, known as “best estimate plus uncertainty (BEPU).” This 
approach aids in enhancing our comprehension of these programs and their further development and improvement. This 
study concentrates on a third-generation pressurized water reactor equipped with advanced active and passive mitigation 
strategies. Through an Integrated Severe Accident Analysis Program (ISAA), numerical modeling and uncertainty analysis 
were conducted on severe accidents resulting from large break loss of coolant accidents. Seventeen uncertainty parameters 
of the ISAA program were meticulously screened. Using Wilks' formula, the developed uncertainty program code, SAUP, 
was employed to carry out Latin hypercube sampling, while ISAA was employed to execute batch calculations. Statistical 
analysis was then conducted on two figures of merit, namely hydrogen generation and the release of fission products within 
the pressure vessel. Uncertainty calculations revealed that hydrogen production and the fraction of fission product released 
exhibited a normal distribution, ranging from 182.784 to 330.664 kg and from 15.6 to 84.3%, respectively. The ratio of 
hydrogen production to reactor thermal power fell within the range of 0.0578–0.105. A sensitivity analysis was performed 
for uncertain input parameters, revealing significant correlations between the failure temperature of the cladding oxide layer, 
maximum melt flow rate, size of the particulate debris, and porosity of the debris with both hydrogen generation and the 
release of fission products.

Keywords  Gen-III PWR · Severe accident mitigation · Wilks’ formula · Hydrogen · Fission products · Uncertainty and 
sensitivity analysis

1  Introduction

In traditional accident analysis, deterministic methods are 
commonly employed. However, due to cognitive limitations 
and other factors, the understanding of mathematical mod-
els is not perfect [1]. Therefore, when predicting thermal 
hydraulics and severe accident phenomena, mathematical 
models with varying degrees of accuracy and reliability 
inevitably introduce uncertainty [2]. The Best Estimate 
Plus Uncertainty (BEPU) method, which combines the best 
estimation program with uncertainty analysis, helps avoid 
excessive subjective assumptions. Since the 1990s, the use 
of best-estimate codes and the BEPU safety analysis method 
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has become the preferred approach to meet increasing tech-
nical and regulatory requirements [3].

In the realm of uncertainty analysis for severe accidents, 
the primary focus is on employing severe accident analysis 
programs such as MELCOR, MAAP and ASTEC [4–6] to 
assess the effects of fission product releases and hydrogen 
production. In 2019, a collaborative research project named 
MUSA [7] involved organizations from 16 different coun-
tries, aiming to enhance the practical application of uncer-
tainty and sensitivity methods for severe accident analysis in 
water-cooled reactors. The MUSA project's objective was to 
use uncertainty analysis methods to evaluate the predictive 
capability of severe accident codes for GEN II, GEN III, and 
GEN III + reactors. In recent years, researchers from vari-
ous countries have conducted numerous uncertainty analy-
ses of severe accidents in light-water reactors. Yousefpour 
[2] analyzed the probability of creep fracture failure in a 
two-loop PWR using MATLAB and MELCOR programs. 
Chevalier-Jabet et al. [8] assessed the source term conse-
quences for a French 1300 MWe PWR using the ASTEC 
code and the uncertainty propagation tool SUNSET. Ahn 
et al. [9, 10] conducted uncertainty analyses on the main 
phenomena occurring during a short-term Station Blackout 
(SBO) accident in the advanced pressurized water reactor 
(APWR) OPR1000 in Korea. Sensitivity analysis was per-
formed using the MAAP5 and MELCOR programs to iden-
tify important sensitivity parameters of the program models. 
Gharari [11] conducted a statistical analysis of hydrogen 
production during SBO-LBLOCA, SBO-SBLOCA, and 
various SBO accidents in the VVER1000 reactor using the 
LHS method and MELCOR program. Malicki [12], Dar-
nowski [13], and Tiborcz [14] carried out studies on aerosol 
behavior, fission product release, and hydrogen production 
in PHEBUS experiments using MELCOR and ATHLET, 
respectively. Ma [15] used traditional uncertainty analysis 
methods combined with the MELCOR program to analyze a 
Nordic boiling water reactor and summarized the advantages 
and disadvantages of the different methods. Due to the limi-
tations of traditional methods in severe accident analysis, Ma 
[16] further conducted research using a bootstrap artificial 
neural network (ANN) model. In fact, there is still relatively 
limited research on uncertainty analysis for severe accidents. 
Given the extreme complexity and uncertainty of severe 
accidents themselves, conducting related work holds great 
significance for the safety design of nuclear power plants and 
the development of physical models for severe accidents.

A double-ended cold leg (DECL) break refers to a spe-
cific type of large LOCA, characterized by a total guillo-
tine-type break in the cold leg pipe [17]. Without mitiga-
tion measures, this accident could result in the release of 
high-temperature coolant into the containment (Design Basis 
Accident, DBA), hydrogen production within the Reactor 
Pressure Vessel (RPV) (Beyond Design Basis Accident, 

BDBA), core meltdown, and hydrogen production outside 
the vessel (Severe Accident, SA), ultimately leading to the 
occurrence of a hydrogen explosion, loss of containment 
integrity, and large-scale radioactive leakage [18]. Currently, 
advanced PWRs worldwide have implemented various acci-
dent mitigation measures to reduce the consequences of 
accidents and prevent the spread of fission products [17, 
18]. Therefore, assessing the quantities of hydrogen and 
radioactive materials released during accident mitigation 
is a central focus of severe accident analysis. This paper 
focuses on a Gen-III PWR that employs advanced active and 
passive mitigation strategies. A numerical model of a severe 
accident caused by an LBLOCA was developed using the 
integrated severe accident analysis ISAA program [19–21]. 
Relevant work has been conducted by combining uncertainty 
and sensitivity analyses. The research presented in this paper 
can offer support for the design and optimization of severe 
accident mitigation measures for Gen-III PWR, as well as 
the improvement and development of severe accident analy-
sis programs.

2 � APWR numerical model

The ISAA was employed for the numerical modeling of a 
double-ended cold-leg guillotine break LOCA in a 1000 
MWe advanced PWR. The system model node diagram is 
shown in Fig. 1, which encompasses the primary reactor 
primary system, a portion of the secondary system, as well 
as the active and passive safety equipment.

Previously, safety analyses were conducted to assess the 
impact of various safety equipment types in an APWR under 
an LBLOCA, as reported by Li [22]. The results demon-
strated that relying on primary passive equipment such as 
a Core Makeup Tank (CMT) and Cavity Injection Systems 
(CIS) could effectively delay the core degradation process 
in an LBLOCA accident, thereby preventing the failure of 
the pressure vessel's lower head and significantly reducing 
the release of radioactive nuclides from the reactor. Given 
the complexity of phenomena inside the reactor and the high 
uncertainty associated with the generation of hydrogen gas 
and the release of fission products during severe accident 
mitigation, it is imperative to conduct accident analysis and 
safety assessment based on corresponding accident miti-
gation scenarios. The primary objective of this paper is to 
investigate the impact of physical models on the source term 
release inside the RPV during the core degradation process. 
Hence, the third condition was selected, involving the utili-
zation of CMT, CIS, and Containment SPray system (CSP) 
passive equipment, along with active Low-Head Safety 
Injections (LHSI), while the other equipment experienced 
failures.
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3 � Methodology

3.1 � Overview of ISAA‑SAUP

Consistent with the approach commonly employed in most 
current BEPU methods, the uncertainty analysis code SAUP 
developed in this paper adheres to the fundamental concept 
of "propagation based on input uncertainty" [23]. Input-
based uncertainty analysis involves the introduction of sta-
tistical variations in uncertain input parameters, and their 
uncertainty is propagated throughout the code, as illustrated 
in Fig. 2. This program, as depicted in Fig. 2, typically com-
prises the following steps: (1) identification of the Figures 

of Merit (FOMs) and confirmation of the input parameters, 
including their distributions and ranges; (2) utilization of 
the LHS statistical method for random sampling to generate 
N sets of input cards; (3) invocation of the ISAA program 
for parallel computation; (4) extraction of program calcula-
tion results and utilization of different methods to estimate 
percentiles with confidence intervals; (5) derivation of the 
empirical cumulative distribution function (CDF) and the 
95/95 estimated statistical values through statistical analysis; 
and (6) execution of parameter sensitivity analysis based on 
sampling calculations.

ISAA [19–21] is an integrated system-level computer 
code primarily used to describe the progression of severe 
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Fig. 1   (Color online) numerical modeling of APWR
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nuclear reactor accidents. It incorporates advanced and vali-
dated physical models capable of representing a wide array 
of severe accident phenomena, including thermal–hydraulic 
behaviors, heat-up, degradation, and relocation of the reac-
tor core, generation of combustible gases, and the release 
and transport of radionuclides. ISAA employs a modular 
approach, integrating various modules to model different 
physical phenomena during severe accidents. The calling 
relationships and functions of the main modules are illus-
trated in Fig. 3.

3.2 � Nonparametric statistical method

Nonparametric statistical methods [24] are primarily used to 
determine the minimum required number of computational 
cases, N, for given values of γ and β. The most widely used 
nonparametric statistical method in BEPU analysis is Wilks' 
method [25]. It offers the advantage of a sample size that 
is independent of the number of input parameters. Wilks' 
formula establishes a relationship between the confidence 
level β, the probability level γ, and the number of samples 
N, effectively reducing the number of calculated samples 
and improving computational efficiency. During its appli-
cation, this method directly derives a one-sided tolerance 

limit through the permutation of output parameters without 
the need for additional calculations. The one-sided Wilks' 
formula is presented as follows (Table 1):

3.3 � Latin hypercube sampling

The fundamental concept of Latin Hypercube Sampling 
(LHS) is as follows: It employs stratified sampling to 
address the challenge of generating a large number of sam-
pling points efficiently, especially when compared to simple 
Monte Carlo methods [26]. LHS divides the sampling range 
into N non-overlapping intervals of equal probability based 
on the distribution function and value range of each input 
parameter. Random sampling is then conducted within each 
interval [27], as shown in Fig. 4. This approach prevents 
duplication and omission of data, ensuring comprehensive 
coverage of the entire sampling area, thereby enhancing 
sampling efficiency and accuracy [28].

(1)� =

N−p
∑

j=0

N!

(N − j)!j!
� j(1 − �)N−j

Fig. 2   (Color online) the computational framework of SAUP
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3.4 � Sensitivity analysis methods

Sensitivity analysis [29] focuses on the influence of input 
parameters on output parameters. Its objective is to identify 
key parameters that significantly affect the target parameter 
while screening out less influential ones. The performance 
of a sensitivity analysis between uncertain input variables 
and the response parameters provides guidance on how to 
effectively refine the model to reduce output uncertainty. 
Stochastic sampling of uncertain parameters was performed, 
and the analysis of their impact on the output was conducted 
by running the program N times using the LHS method. 
Various methods, such as correlation analysis and regres-
sion analysis, were employed to quantify the impact of the 
selected input parameters on the results [29–33].

3.4.1 � The Pearson correlation coefficient

The Pearson correlation coefficient [30] measures the linear 
correlation between input X and output Y and is represented 
by "r." It ranges between − 1 and 1, with − 1 indicating a 
perfect negative correlation, 0 indicating no correlation, 
and 1 indicating a perfect positive correlation. The Pearson 
correlation coefficient is used to determine the strength and 
direction of the relationship between two variables and is 
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widely employed in statistical analysis to assess the associa-
tion between two numerical variables. However, it is sen-
sitive to outliers and does not account for the possibility 
of one parameter being related to another. The formula for 
calculating the Pearson correlation coefficient is as follows:

where

where N is the sample size; �X , �Y , �X and �Y represent the 
mean and standard deviation of variables X and Y, respec-
tively; xi,k and yi,k represent the corresponding values of 
input and output parameters for the i-th parameter in the 
k-th sampling; x and y represent the sample means.

3.4.2 � The Spearman rank correlation coefficient

The Spearman rank correlation coefficient [31] is based on 
the ranks of the inputs and outputs, rather than their actual 
values, to calculate the correlation between them. Therefore, 
even if there are large differences in the magnitudes between 
the inputs and outputs, the Spearman rank correlation coef-
ficient is still effective, thus overcoming the limitations of 
the Pearson correlation coefficient.

where R(X
i
) and R(Y

i
) represent the rankings of the i-th vari-

able among all samples, and N represents the total sample 
size.

3.4.3 � The partial rank correlation coefficient (PRCC)

The Spearman rank correlation coefficient [31] calculates 
the correlation between two variables based on the ranks of 
their inputs and outputs, rather than their actual values. This 
approach allows it to remain effective even when there are 

(2)rPearson =
cov(X, Y)
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significant differences in magnitude between the inputs and 
outputs, overcoming the limitations of the Pearson correla-
tion coefficient. The Partial Rank correlation coefficient [9] 
measures the degree of the linear relationship between inputs 
and outputs while accounting for the linear effects of other 

parameters. In situations where we want to assess the corre-
lation between two variables while considering the potential 
influence of other variables on their relationship, the partial 
correlation coefficient helps us determine the independent 
relationship between them by removing the influence of other 
variables.

Because the PRCC isolates relationships between variables 
from the influence of other variables, it provides a more accu-
rate analysis and prediction of each variable's behavior and 
helps in better understanding the causal relationships between 
them [32]. In cases where multicollinearity exists among the 
parameters, the PRCC outperforms the Pearson correlation 
coefficient.

where �PCC
YX1X2

 represents the partial correlation coefficient 
between X1 and Y after removing the influence of X2 varia-
ble, and r

YX1
, r

YX2
and r

X2X1
 represent the linear correlation 

coefficient between two variables.

(5)�PCCYX1X2

=
rYX1

− rYX2
rX2X1

√

1 − r2
X2X1

√

1 − r2
YX2

3.4.4 � The standardized regression coefficient (SRC)

The standardized regression coefficient [33] is a commonly 
used statistic in multiple linear regressions. It quantifies the 
average change in the dependent variable when the independ-
ent variable changes by one unit of standard deviation. Using 
Xj and Y to represent the inputs and outputs, respectively, we 
can establish a multiple linear regression model:
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The absolute range of the standardized regression coef-
ficients falls between 0.0 and 1.0, and their sign signifies 
whether there is a positive or negative correlation between 
Xj and Y. The formula for calculating SRC is as:

where bj represents the regression coefficient of Xj on Y 
and Var(Xj) and Var(Y) represent the variances of Xj and Y, 
respectively.

Another crucial coefficient for assessing a regression 
model's capacity to fit the data is the model determination 
coefficient R2. It assumes values between 0 and 1, where a 
value approaching 0 indicates a suboptimal fit to the data, 
while a value nearing 1 signifies a strong fit.

4 � Results and discussion

4.1 � FOMs and uncertain parameters

After the Fukushima accident, researchers have exten-
sively investigated the issue of hydrogen production dur-
ing the accident processes of light-water reactors. The 

(6)ŷ = b0 +

J
∑

j=1

bjXj.

(7)�SRCj
= bj

√

Var
(

Xj

)

Var(y)
,

zirconium–water reaction can release hydrogen gas and gen-
erate heat, and the generation of hydrogen gas poses the risk 
of a hydrogen explosion. Consequently, within an integrated 
severe accident analysis program, the zirconium-water reac-
tion and the release of fission products have become essen-
tial phenomena to consider.

This study focuses on the generation of hydrogen gas 
and the release of fission products during the progression of 
severe accidents. Drawing on the relevant physics models 
within the ISAA program and insights gained from ongo-
ing uncertainty analyses of severe accidents [9–16, 31], 
we selected 17 key uncertain input parameters for analysis, 
as listed in Table 2. These parameters encompass models 
associated with material heat transfer, oxidation collapse, 
material relocation, and debris behavior within the reactor 
core, potentially exerting varying degrees of influence on the 
accident phenomena inside the vessel.

In this study, LHS was used to perform stratified sampling 
on 17 uncertain input parameters, and the sampling results 
for the different distribution functions are provided below 
(Fig. 5).

4.2 � Uncertainty analysis

4.2.1 � Hydrogen production

Figure 6a shows the transient change curve of hydrogen mass 
under various operating conditions, while Fig. 6b shows a 
scatter plot of total hydrogen production. As apparent from 
the figures, hydrogen was primarily generated during the 

Table 2   Uncertain input parameters

No Sampling parameters Default Distribution Range

1 Sensitivity coefficient of radiation heat transfer (HTC-R) 0.1 Normal 0.02 ~ 0.30
2 Heat transfer coefficient of Zircaloy during the candling (HTC-ZrC) (W/m2K) 7500.0 Lognormal 2000.0 ~ 22,000.0
3 Heat transfer coefficient of Steel during the candling (HTC-SteelC) (W/m2K) 2500.0 Lognormal 1000.0 ~ 5000.0
4 Heat transfer coefficient of UO2 during the candling (HTC-UO2C) (W/m2K) 1000.0 Lognormal 2000.0 ~ 22,000.0
5 Heat transfer coefficient of ZRO2 during the candling (HTC-ZRO2C) (W/m2K) 1000.0 Lognormal 2000.0 ~ 22,000.0
6 Heat transfer coefficient of steel oxide during the candling (HTC-SOC) (W/m2K) 1000.0 Lognormal 1000.0 ~ 5000.0
7 Critical minimum thickness of cladding collapse (CMT-CL) (m) 0.0001 Normal 0.0 ~ 3.0 ×10–4

8 Rupture temperature of zirconia oxide layer (RT-ZrO2) (K) 2400.0 Triangular 2100.0 ~ 2550.0
9 Fuel rod collapse temperature (CT-FR) (K) 2500.0 Normal 2442.0 ~ 2516
10 Maximum flow rate of molten material after oxide layer rupture (MaxFR-Mat) (kg/(m s)) 1.0 Triangular 0.1 ~ 2.0
11 Transport parameter for UO2 in molten zircaloy

(TPU-Zr)
0.2 Normal 0.0 ~ 0.5

12 Transport parameter for steel oxide in molten steel (TPSO-MS) 1.0 Normal 0.6 ~ 1.0
13 Heat transfer coefficient from debris to water (HTC-DBH2O) (W/m2K) 100.0 Triangular 100.0 ~ 2000.0
14 Velocity of falling debris (FV-DB) (m/s) 0.1 Uniform 0.01–1.0
15 Porosity of debris (POR-DB) 0.4 Normal 0.1 ~ 0.5
16 Equivalent diameter of particulate debris (PD) in core (EDPD-CORE) (m) 0.002 Lognormal 0.002 ~ 0.05
17 Equivalent diameter of PD in lower plenum (EDPD-LP) (m) 0.02 Lognormal 0.01–0.06
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initial stages of large-break loss of coolant accidents. This 
is because, immediately after the accident was triggered at 
0.0 s, a substantial amount of coolant was expelled, leading 
to a rapid decrease in the core water level, coupled with 
an increase in fuel temperature. Simultaneously, the CMT 
and LHSI systems promptly initiated water injection into the 
high-temperature-exposed core, resulting in the generation 
of a significant amount of steam. Zirconium alloys undergo 
a vigorous oxidation reaction with water vapor when tem-
peratures exceed 1500 K, leading to the early production 
of a substantial amount of hydrogen. Thanks to the timely 
activation of safety systems and core cooling, further hydro-
gen production through oxidation was averted. By the time 
1000 s had elapsed, hydrogen production had reached a 
steady state.

As the accident developed, the uncertainty band for 
hydrogen production gradually widened. Through calcula-
tions, it is evident that the total mass of hydrogen generated 
falls within the range of 182.784–330.664 kg. Darnowski 
[13] calculated that hydrogen production from zirconium 

oxidation accounted for approximately 97% of the total 
hydrogen mass in a double-ended break LOCA accident in 
a PWR reactor. According to the design parameters of a mil-
lion-kilowatt nuclear power plant, hydrogen production from 
100% zirconium–water reaction is approximately 1010.1 kg. 
Based on the calculations in this article, it can be inferred 
that approximately 18.10–32.736% of zirconium reacts with 
water to produce hydrogen within the reactor core.

Examining the various percentile curves in Fig. 6a, it is 
evident that the calculated result of 278.348 kg for the ref-
erence operating conditions closely aligns with the median 
value of 253.242 kg. Figure 6c illustrates the probability 
density distributions (PDF) of hydrogen production under 
all operating conditions. After data processing, the overall 
sample calculation results fit a normal distribution with an 
R2 value of 0.8968, and the one-sided upper limit of the 
hydrogen mass associated with a 95% cumulative probability 
density is 306.621 kg.

Thermal power is directly linked to the size of the reac-
tor core and, to some extent, is proportionate to the mass of 
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Fig. 5   (Color online) LHS sampling results. a Triangular distribution; b normal distribution; c lognormal distribution
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zirconium. Due to variations in reactor design parameters 
and calculation programs, a metric (the ratio of hydrogen 

production to thermal power within the reactor core) was 
introduced for comparative analysis, as outlined in Table 3. 
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Table 3   Hydrogen production 
data calculated for different 
reactors

Reactor type Code Accident Power (MWth) Hydrogen production (kg) Hydrogen/power ratio

PWR-APR1400 M1.8.4 LBLOCA 4000 420 0.11
PWR Surry M1.8.5 LBLOCA 2546 100 0.04
PWR Zion M1.8.5 LBLOCA 3250 265 0.08
PWR Beznau M1.8.6 LBLOCA 1130 128 0.11
PWR M2.1.5 LBLOCA 4590 490 0.1
PWR W-3 M2.2 LBLOCA 3152 234/328 0.07/0.10
PWR M2.2.18 LBLOCA 4500 BE 286

Min 220/max 495
0.06
0.05/0.11

PWR M2.2.18 LBLOCA 4500 BE 232
Min 225/max 392

0.05
0.05/0.09

GEN-III PWR
This paper

ISAA LBLOCA 3160 BE 278.348
Min 182.784/max 330.664

0.0881
0.0578/0.105
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According to the table, the MELCOR simulation results 
for LBLOCA in different reactor types project hydrogen-
to-thermal power ratios ranging from 0.04 to 0.11 kg H2/
MWth. Zhao [34] and colleagues [34] conducted a sensi-
tivity analysis of the COR node in a Westinghouse three-
loop nuclear power plant during an LBLOCA, predicting 
similar values within the range of 0.07–0.1 kg H2/MWth. 
In this study, the best estimates and uncertainty analysis 
of the hydrogen-to-thermal power ratio obtained through 
ISAA were 0.0881 and 0.0578–0.105, respectively, which 
align with other simulation results.

4.2.2 � Fission product release fraction

Figure 7a displays the curve representing the release fraction 
of fission products during the accident. Cs and I symbol-
ize the release behaviors of highly volatile fission products, 
with their behaviors being relatively similar. The primary 

factor influencing their release from the fuel is the fuel tem-
perature [22]. Shortly after the PCS pipeline experienced 
shear rupture, the rapid loss of coolant resulted in a swift 
decline in the core water level and a rapid increase in fuel 
temperature. During this phase, fission products were rapidly 
released at a high rate as the fuel temperature increased. 
Subsequently, the release rate of fission products decreased 
as the safety injection system consistently injected water to 
cool the core materials. Ultimately, further progression of 
the accident was arrested by the continuous cooling provided 
by the Low-Head Safety Injection (LHSI) system, resulting 
in the cessation of fission product release, which stabilized 
at a certain mass level.

Analyzing the data from Figs. 7a and b, it becomes evi-
dent that the range of the proportion of nuclide release to the 
initial reactor inventory is quite extensive, spanning from 
15.6 to 84.3%. In comparison to the release fraction (less 
than 35%) obtained by Ahn et al. [9] in their uncertainty 
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Fig. 7   (Color online) Uncertainty analysis of FP release fraction. a Release fraction of Cs/I from fuel; b scatter plots for Cs/I fraction; c prob-
ability density distribution of Cs/I release fraction
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calculation for the Station Blackout (SBO) accident in the 
OPR1000 advanced reactor, the LBLOCA results in con-
siderably more severe radioactive consequences. This paper 
primarily focuses on the fraction of fission products released 
after the core has been cooled. The instantaneous data distri-
bution function at 15,000 s is shown in Fig. 7c. The fraction 
of fission products released from the fuel follows a normal 
distribution (R2 = 0.94), with the calculated value (43.956%) 
closely aligning with the median value (48.1%), indicating a 
high degree of consistency with the reference case.

4.2.3 � The influence of Wilks order

Non parametric statistical methods, employing Wilks' for-
mula, were used to calculate one-sided tolerance upper lim-
its for hydrogen production and fission product release frac-
tions at a 95% confidence level and 95% probability levels. 
The upper limits obtained through resampling are listed in 
Table 4.

The results reveal that non-parametric statistical meth-
ods inherently exhibit conservatism when calculating one-
sided tolerance limits at lower orders. Calculations using 
the higher-order Wilks' formula yield more stable results. 
Studies have shown that the one-sided tolerance upper limits 

calculated with Wilks' formula gradually converge after the 
third order [24, 35]. Figure 8 underscores this consistent 
trend. Mean values calculated using Wilks' formula with 
third-order or higher sampling have already converged, 
and increasing the order has relatively minor effects on the 
results.

4.3 � Sensitivity/importance analysis

This section summarizes the results of various sensitivity 
analyses and interprets them in conjunction with the data 
distribution graph. To assess the credibility of the sensitivity 
analysis results, P values were calculated for each parameter. 
When P < 0.05, the correlation calculation was considered to 
be statistically [13–15]. Generally, high ρ and low P values 
indicate a strong correlation. Furthermore, in some scatter 
plots in the following text, there are noticeable dispersions 
in the results. This could be due to the random combinations 
after LHS, introducing some dispersion into the results [36]. 
However, the dispersion resulting from other factors reduces 
the overall influence of the analyzed model parameters on 
the output. Nonetheless, correlations between the parameters 
can still be observed through correlation analysis and data 
graphs.

4.3.1 � Sensitivity analysis of hydrogen production

Various sensitivity analysis methods were employed to 
assess the degree of influence of each uncertain input param-
eter on hydrogen production. The calculation results are pre-
sented in Table 5 and Fig. 9a. According to the results, the 
rupture temperature of the zirconia oxide layer (RT-ZrO2) 
exhibits a strong positive correlation with hydrogen produc-
tion, while the maximum flow rate of molten material after 
the oxide layer rupture (MaxFR-Mat) and the equivalent 
diameter of the particulate debris in the core (EDPD-CORE) 

Table 4   The 95/95 estimates by nonparametric methods

Oder Sample size Tolerance lim-
its of hydrogen 
production(kg)

Tolerance limits 
of FP fraction(%)

1 59 324.159 81.310
2 93 319.464 79.397
3 124 316.751 78.680
4 153 313.937 77.757
5 181 312.311 77.577
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Fig. 8   Wilks’ method analysis. a The 95/95 upper limit of hydrogen production; b the 95/95 upper limit of the FP release fraction
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show weak negative correlations with hydrogen production. 
Other parameters did not display significant correlations.

Zirconium alloy forms an oxide shell layer on the exterior 
of the cladding due to the oxidation reaction, which prevents 
the molten material from undergoing relocation. It ruptures 
and relocates only when the oxide shell layer reaches its fail-
ure temperature. The failure temperature of the oxide shell 
layer determines when the molten material is released and 
impacts the reaction between water vapor and the zirconium 
alloy, subsequently affecting hydrogen production. A higher 
failure temperature results in a higher material temperature 
when the fuel rod collapses into particle debris, leading to a 
faster zirconium-steam oxidation rate and a greater amount 
of hydrogen production. To visually represent the linear 
relationship between this parameter and hydrogen produc-
tion, Fig. 9b shows a scatter plot of temperature values and 
hydrogen production for each operating condition and con-
ducts a linear fitting (R2 = 0.593). The linear fitting outcome 
is consistent with the correlation coefficient calculations, 
indicating a significant positive correlation between the two. 
Wang et al. [15] conducted a sensitivity analysis of a Nordic 
boiling water reactor and obtained results that align with the 
conclusions of this study.

As shown in Fig.  9a, there is a negative correlation 
between EDPD-CORE and hydrogen production, consistent 

with the overall trend observed in the linear fitting shown 
in Fig. 9c. Smaller particulate debris likely have a larger 
contact area with water vapor, making oxidation reactions 
more likely to occur and produce more hydrogen, resulting 
in a negative correlation.

There is a weak negative correlation (ρ≈0.20) between 
the maximum flow rate of molten material after oxide 
layer rupture (MaxFR-Mat) and hydrogen production, as 
shown in Fig. 9d. This parameter partially determines the 
amount of molten zirconium exposed to oxidation outside 
the core. The analysis results in this study are consistent 
with the sensitivity analysis results of Choi et al. [10] for 
the OPR1000 reactor mitigation strategies. This could be 
attributed to the safety injection system rapidly injecting 
water into the reactor, with higher flow rates enhancing the 
heat exchange between the molten material and water, rap-
idly cooling it and resulting in less hydrogen generation.

4.3.2 � Sensitivity analysis of FP release fraction

Table 6 and Fig. 10a show the sensitivity analysis results 
for the 17 model parameters concerning the total fission 
product release from the fuel. Similar to hydrogen pro-
duction, a correlation was observed between RT-ZrO2, 
MaxFR-Mat, and EDPD-CORE and the fission product 
release fraction. However, the porosity of the debris 
(POR-DB) exhibited a significant negative correlation 
(− 0.853, − 0.632) with the release of fission products, dis-
tinct from the sensitivity analysis of hydrogen production. 
Other model parameters did not exhibit clear relationships 
in this study.

As previously discussed, RT-ZrO2 and MaxFR-Mat can 
influence the release of molten materials from the rod and 
the heat exchange process with water. A higher failure tem-
perature of the oxide layer results in higher debris tempera-
tures, delaying their cooling, and thus a more evident posi-
tive correlation between RT-ZrO2 and the fission product 
release. After reaching the failure value of RT-ZrO2, molten 
material is ejected from the oxide layer. At this point, due 
to the activation of the safety system and external water 
injection, a larger MaxFR-Mat enhances the heat exchange 
and cooling of the fragments, affecting the release of fission 
products.

A higher porosity of the fragments increases the heat 
transfer surface area within the core debris bed, enabling 
more effective cooling by the injected water. This, in turn, 
is closely related to the temperature, with lower fragment 
temperatures leading to reduced fission product release. Fig-
ure 10d illustrates a strong negative correlation. The PRCC 
calculation results, corrected for the effects of other param-
eters, exceed 0.8, further indicating a strong correlation 
between porosity and fission product release. Additionally, 

Table 5   Sensitivity analysis of hydrogen production

No Uncer-
tain input 
parameters

Pearson Spearman PRCC​ SRC

1 HTC-R 0.12307 0.1236 0.02016 0.01762
2 HTC-ZrC − 0.00446 − 0.0109 − 0.05249 − 0.03692
3 HTC-

SteelC
0.01095 0.01332 0.01115 0.01652

4 HTC-UO2C 0.03657 0.06478 0.02834 0.02522
5 HTC-

ZRO2C
0.0468 0.04814 0.08601 0.06513

6 HTC-SOC 0.04433 0.01261 0.04597 0.05782
7 CMT-CL − 0.0316 − 0.03607 − 0.0199 8.65983 × 10–4

8 RT-ZrO2 0.76978 0.79726 0.7712 0.77528
9 CT-FR − 0.01857 − 0.02338 − 0.01725 − 0.02539
10 MaxFR-

Mat
− 0.19983 − 0.20941 − 0.21203 − 0.2239

11 TPU-Zr − 0.00851 − 0.0046 − 0.08557 − 0.07384
12 TPSO-MS 0.01397 0.02012 0.02889 0.02356
13 HTC-

DBH2O
− 0.03835 − 0.02915 0.03919 0.03429

14 FV-DB 0.00914 0.00375 0.03869 0.0313
15 POR-DB 0.02593 0.01155 0.02031 0.0275
16 EDPD-

CORE
− 0.26376 − 0.23977 − 0.24719 − 0.25362

17 EDPD-LP − 0.02416 − 0.03895 − 0.05246 − 0.03802
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there is a weak negative correlation between the equiva-
lent diameter of the PD in the core (EDPD-CORE) and the 
release of fission products, as shown in Fig. 10e. In general, 
a smaller equivalent diameter of the PD allows for better 
contact with the surrounding water or steam, enabling more 
effective heat exchange and cooling, ultimately reducing fis-
sion product release.

4.3.3 � Important parameters for FOMs

Through uncertainty and sensitivity analysis of LBLOCA 
with severe accident mitigation measures in a 1000 MWe 
APWR, several parameters significantly impacting the target 
output have been identified and organized in Table 7. Nota-
bly, RT-ZrO2, MaxFR-Mat, EDPD-CORE, and POR-DB 
play more prominent roles among the selected 17 param-
eters. Importantly, these parameters are all user-defined 
empirical values. To minimize uncertainties in numerical 
simulations, further improvements are necessary in future 
research.
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Fig. 9   (Color online) Sensitivity analysis of hydrogen production. a Importance of input parameters; b scatter plot of RT-ZrO2 and hydrogen 
production; c scatter plot of EDPD-CORE and hydrogen production; d scatter plot of MaxFR-Mat and hydrogen production

Table 6   Sensitivity analysis of FP release fraction

No Uncertain 
input param-
eters

Pearson Spearman PRCC​ SRC

1 HTC-R 0.05841 0.06243 0.00982 0.04254
2 HTC-ZrC 0.06564 0.05286 − 0.08336 − 0.04984
3 HTC-SteelC − 0.01578 − 0.0258 0.07013 0.05779
4 HTC-UO2C − 0.01379 0.03353 0.03651 0.04288
5 HTC-ZRO2C − 0.06104 − 0.04538 − 0.0908 − 0.09067
6 HTC-SOC 0.07768 0.05485 − 0.0197 0.01132
7 CMT-CL 0.04816 0.05291 − 0.03133 − 0.01028
8 RT-ZrO2 0.29871 0.33824 0.28965 0.27704
9 CT-FR − 0.01511 − 0.02803 0.03163 − 0.00433
10 MaxFR-Mat − 0.14611 − 0.1435 − 0.15195 − 0.15469
11 TPU-Zr 0.06893 0.07549 0.01364 0.01908
12 TPSO-MS − 0.02215 − 0.02719 0.02206 0.03874
13 HTC-DBH2O − 0.05526 − 0.02657 − 0.00305 − 0.00951
14 FV-DB 0.05814 0.05104 0.03095 0.03189
15 POR-DB − 0.64036 − 0.63202 − 0.85278 − 0.67931
16 EDPD-CORE − 0.16962 − 0.24551 − 0.18165 − 0.18776
17 EDPD-LP 0.03052 0.06278 − 0.02084 − 0.0154
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Fig. 10   (Color online) Sensitivity analysis of FP release fraction. 
a Importance of input parameters; b scatter plot of RT-ZrO2 and 
release fraction; c scatter plot of MaxFR-Mat and release fraction; d 

scatter plot of POR-DB and release fraction; e scatter plot of EDPD-
CORE and release fraction
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5 � Summary and conclusion

This study used the Integrated Severe Accident Analysis code 
(ISAA) and the Sensitivity Analysis and Uncertainty Propa-
gation (SAUP) program to conduct uncertainty and sensitiv-
ity analyses of in-vessel phenomena in an Advanced Pressur-
ized Water Reactor (APWR) under severe accident mitigation 
strategies. Based on surveys and program development expe-
rience, 17 uncertain model parameters were selected. Using 
the Latin Hypercube Sampling (LHS) method and Wilks’ 
sampling theory, the SAUP program, within ISAA, was used 
to perform uncertainty calculations. Uncertainty and sensitiv-
ity analyses were performed on hydrogen production and the 
release of fission products. The main conclusions obtained 
from the calculation analysis are as follows:

(1)	 In a Large-Break Loss of Coolant Accident (LBLOCA) 
with a double-ended cold leg break of a GEN-III PWR, 
the total in-vessel hydrogen and the release fraction of 
fission products are both normally distributed, with val-
ues ranging from 182.784 to 330.664 kg and from 15.6 
to 84.3%, respectively. The calculation results indicate 
that the source term has a higher degree of uncertainty 
compared to hydrogen production.

(2)	 The hydrogen production-to-reactor thermal power 
ratios obtained from the reference case and uncer-
tainty analysis are 0.0881 and 0.0578–0.105, respec-
tively. These values are comparable to data obtained 
from numerical simulations of PWR LBLOCA by other 
researchers.

(3)	 In the uncertainty analysis, a nonparametric statistical 
method was used to evaluate the tolerance limits of 
Figures of Merit (FOMs). It was observed that conver-
gence gradually occurred after applying the 3rd order 
Wilks’ method, and increasing the order had little effect 
on the results.

(4)	 Among the selected uncertainty parameters, the rup-
ture temperature of the zirconia oxide layer (RT-ZrO2), 
maximum flow rate of the molten material after oxide 
layer rupture (MaxFR-Mat), equivalent diameter of the 
PD in the core region (EDPD-CORE), and porosity of 
debris (POR-DB) in the ISAA program were signifi-
cantly correlated with the outputs of interest.

The calculations revealed significant uncertainty in both 
hydrogen production and the release fractions of fission prod-
ucts. This uncertainty can be attributed to the complexity of 
the phenomena associated with severe accidents. Nevertheless, 
it also underscores the importance of future efforts aimed at 
refining and enhancing the numerical models within integrated 
analysis programs to mitigate this uncertainty. For instance, 
certain parameters examined in this study, such as RT-ZrO2, 
MaxFR-Mat, and POR-DB, have demonstrated substantial 
influence on the results. However, they are currently repre-
sented by basic empirical constants in the ISAA program. Pres-
ently, numerous severe accident analysis programs rely on sim-
ilar empirical values. Therefore, in the future, it is imperative 
to leverage uncertainty and sensitivity analyses to effectively 
identify parameters with significant impact and subsequently 
develop relevant models to address these uncertainties.
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