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Abstract
The optical potential ambiguity is a long-standing problem in the analysis of elastic scattering data. For a specific collid-
ing system, ambiguous potential families can lead to different behaviors in the nearside and farside scattering components. 
By contrast, the envelope method can decompose the experimental data into two components with negative and positive 
deflection angles, respectively. Hence, a question arises as to whether the comparison between the calculated nearside (or 
farside) component and the derived positive-deflection-angle (or negative-deflection-angle) component can help analyze the 
potential ambiguity problem. In this study, we conducted a trial application of the envelope method to the potential ambiguity 
problem. The envelope method was improved by including uncertainties in the experimental data. The colliding systems of 
16O+28 Si at 215.2 MeV and 12C+12 C at 1016 MeV were considered in the analyses. For each colliding system, the angular 
distribution experimental data were described nearly equally well by two potential sets, one of which is “surface transpar-
ent” and the other is refractive. The calculated angular distributions were decomposed into nearside and farside scattering 
components. Using the improved envelope method, the experimental data were decomposed into the positive-deflection-angle 
and negative-deflection-angle components, which were then compared with the calculated nearside and farside components. 
The capability of the envelope method to analyze the potential ambiguities was also discussed.
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1  Introduction

Optical potential represents the interaction between two col-
liding nuclei and plays an important role in the analyses of 
nuclear reactions [1]. The parameters of empirical optical 
potentials are typically obtained by fitting the experimental 
data of elastic scattering angular distributions (e.g., Refs. 

[2–5]). However, the ambiguity problem usually exists in 
the obtained potential parameters, which implies that the 
experimental data can be fitted equally well by using differ-
ent sets of potential parameters [1]. Potential ambiguities 
can be classified into several different types, including con-
tinuous, discrete, refractive or diffractive, and shallow- or 
deep-W ones, which have been investigated in many studies 
(e.g., Refs. [6–10]). Clearly, the ambiguity introduces prob-
lems in analyzing the reaction mechanisms [11–15]. There-
fore, proper treatment is required to resolve the ambiguity 
problem and obtain more physical optical potentials. One 
approach is to use global energy-dependent optical potentials 
(such as those in Refs. [16–26]) to constrain the potential 
parameters. In addition, for the elastic scattering of two light 
heavy-ion systems, it was found that the refractive farside 
scattering data can help eliminate the discrete and shallow- 
or deep-W ambiguities [1].

In Ref. [10], Hussein and McVoy highlighted that at ener-
gies well above the Coulomb barrier, the nearside and farside 
scattering components exhibit different behaviors for the 
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refractive and diffractive optical potentials. For the refractive 
potential, the nearside scattering component shows a larger 
slope than the farside component (when using ln(d�∕d�) as 
the vertical coordinate). Consequently, the two components 
can construct the localized Fraunhofer crossover point, and 
a deep minimum appears near the corresponding scattering 
angle in the total differential cross sections. However, for 
the diffractive potential, the nearside and farside compo-
nents are nearly parallel. In this case, rather than the local-
ized Fraunhofer crossover point, a much wider Fraunhofer 
oscillation structure exists. The authors of Ref. [10] have 
taken the elastic scattering of 16O+28 Si at 215.2 MeV as an 
example to show the differences between the nearside/far-
side decompositions calculated with the refractive potential 
and the diffractive one. For this colliding system, both the 
refractive deep-V potential called “A-type” potential and the 
diffractive shallow-V potential called “E18” potential (which 
is also known as “surface transparent”) can effectively repro-
duce the existing experimental data of the angular distribu-
tion [9]. However, the nearside and farside scattering com-
ponents calculated using the two types of optical potentials 
exhibit different behaviors. For the nearside components, the 
difference in slopes is significantly small at angles smaller 
than those at which the nearside and farside components 
are close to each other. However, at larger angles, the near-
side component calculated with the “E18” potential shows 
a relatively smaller slope than the one calculated with the 
“A-type” potential. For the farside scattering, different from 
the nearside case, the calculated cross sections with the 
“A-type” potential show a smaller slope than that calculated 
with the “E18” potential in the whole angular range. These 
results indicate that a comparison between the nearside and/
or farside components can be used to demonstrate the differ-
ences between the ambiguous potential families.

In Ref. [27], da Silveira and Leclercq-Willain proposed 
an envelope method to decompose the experimental data of 
the elastic scattering angular distribution into two scattering 
components with negative and positive deflection angles, 
respectively. In this method, two envelopes were drawn for 
the experimental data with the well-defined maxima and 
minima in the data. Moreover, “experimental” data points 
corresponding to the negative- and positive-deflection-angle 
components can be derived. In Ref. [27], this method was 
applied to the elastic scattering data of �+40 Ca at 104 MeV 
and �+58 Ni at 140 MeV without considering the uncertainties 
introduced by the experimental data. In addition, this method 
has been extended to investigate the refractive phase relation-
ship between elastic and inelastic scattering and the decom-
position of the farside scattering angular distribution [28, 29]. 
In Ref. [30], the experimental dataset of �+40 Ca at 104 MeV 
was further analyzed using the envelope method. The obtained 
differential cross-section data of the positive- and negative-
deflection-angle components agree well with the nearside and 

farside scattering components, respectively. Combined with 
the behaviors of nearside and farside scattering mentioned 
above, our observations inspired us to consider the envelope 
method as a potential solution to address the ambiguity prob-
lem. This could be achieved by comparing the “experimental” 
positive- and negative-deflection-angle components with the 
theoretical nearside and farside components, respectively.

In this study, a trial application of the envelope method 
to the potential ambiguity problem was performed. The 
experimental data of the elastic scattering angular distribu-
tions of 16O+28 Si at 215.2 MeV and 12C+12 C at 1016 MeV 
were selected, and the optical potential ambiguity between the 
“surface transparent” and refractive potentials were studied. 
Optical model calculations and corresponding nearside/far-
side decompositions were performed for each dataset. Using 
the envelope method, the experimental data points within the 
angular range covered by the well-defined maxima and min-
ima were decomposed into positive- and negative-deflection-
angle cross-section components. To estimate the uncertainties 
of the two components, the errors of the experimental data 
points used in the construction of the envelopes were consid-
ered. The capability of the envelope method to analyze the 
potential ambiguity problem was discussed by comparing 
the obtained positive/negative-deflection-angle cross-section 
components with the calculated results of the nearside/farside 
decompositions.

2 � Method

The optical model, the nearside/farside decomposition and the 
envelope methods were utilized to analyze the experimental 
data. In this section, the latter two methods are briefly outlined; 
more details can be found in Ref. [27, 30–33].

In the envelope method, the starting point is a partial-wave 
expansion of the scattering amplitude [27]. Using the asymp-
totic expression of the Legendre polynomials, the scattering 
amplitude can be decomposed into the components corre-
sponding to the positive and negative deflection angles, which 
are denoted by f+(�) and f−(�) , respectively.

In the classical limit, f+(�) and f−(�) can be expressed as 
follows [30]:

where �l is the nuclear plus the Coulomb phase shift. The 
cross sections corresponding to the positive and negative 
deflection angles are denoted as �+(�) and �−(�) , respec-
tively, which are related to the scattering amplitudes as 
follows:

(1)f (�) = f+(�) + f−(�).
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It should be noted that the signs (“+ ” and “−”) used as sub-
script are similar to those used in Ref. [30] but in contrast to 
those used in Ref. [27]. The elastic scattering angular dis-
tribution �(�)=|f (�)|2 oscillates between the upper envelope 
Eu and lower envelope El defined by

and

According to Eqs. (4) and (5), the positive- and negative-
deflection-angle scattering cross sections can be obtained 
using two envelopes of the experimental elastic scattering 
angular distribution. The upper and lower envelopes are 
determined by the maxima and minima of the angular dis-
tribution, respectively. The envelopes can be drawn if the 
maxima and minima are well-defined in the experimental 
angular distribution. In the present study, the upper and 
lower envelopes were drawn by connecting these maxima 
and minima with broken lines, respectively. The broken lines 
were then smoothed using the TGraph class provided by the 
ROOT software [34].

Observing Eqs. (4) and (5), one can find that �+(�) and 
�−(�) follow the same relationship. Additional analysis is 
required to determine whether the solution obtained is �+(�) 
or �−(�) . This problem can be resolved by observing the 
trends of the ratio of �+(�) to the Rutherford scattering dif-
ferential cross section �R(�) because �+(�)∕�R(�) tends to 
unity as � approaches zero and decreases almost exponen-
tially as � becomes larger [27, 30].

In previous studies based on the envelope method, uncer-
tainties in the experimental data have not been considered 
quantitatively. For each maxima/minima data point, the 
mean value ( � ) was used to determine the envelope. In the 
present work, in the construction of the envelopes, the stand-
ard deviation (dev) of each maxima/minima data point was 
also considered. In addition to � , the envelopes were drawn 
for �+dev and �−dev to estimate their uncertainties. Hence, 
there were three upper and three lower envelopes. The mean 
values of �±(�) were obtained by combining the upper and 
lower � envelopes. The other combinations of upper and 
lower envelopes were used to limit �+(�) and �−(�) . Using 
this approach, the uncertainties can be propagated to the 
calculated �±(�) , which makes the envelope method more 
quantitative.

The nearside/farside decomposition of the scattering 
amplitude was performed using the method proposed by 
Fuller [31]. The scattering amplitude can be expressed as

(3)�±(�) = |f±(�)|2.

(4)Eu(�) =
(
�
1∕2
+ (�) + �1∕2

−
(�)

)2

,

(5)El(�) =
(
�
1∕2
+ (�) − �1∕2

−
(�)

)2

.

where fn(�) is the nearside scattering amplitude:

and ff(�) is the farside scattering amplitude:

In Eqs. (7) and (8), fC,n and fC,f are the nearside and farside 
Coulomb scattering amplitudes, respectively; k is the rela-
tive wave number; �l is the Coulomb phase shift; and the 
traveling wave functions Q(±)

l
(cos�) are expressed as

where Pl(cos� ) and Ql(cos� ) are the Legendre functions 
of the first and second kinds of degree l, respectively. The 
differential cross sections corresponding to the nearside 
and farside scattering amplitudes are denoted as �n and �f , 
respectively:

In Ref. [30], it was shown that when Q(±)

l
 is replaced with 

asymptotic forms, fn and ff are simply amplitudes f+ and 
f− , respectively.

In the present work, the comparisons between “experi-
mental” �±(�) and the theoretical �n/f(�) were performed to 
test the capability of the envelope method in treating the 
potential ambiguity problems. The optical model calcula-
tions were performed using FRESCO [35]. The nearside/far-
side decomposition was conducted according to the method 
described in Ref. [32].

3 � Results and discussion

Experimental data for the elastic scattering angular distri-
butions of 16O+28 Si at 215.2 MeV (Ref. [36]) and 12C+12 C 
at 1016 MeV (Ref. [37]) were analyzed using the optical 
model, the nearside/farside decomposition, and the envelope 
method, respectively.

Experimental data for 16O+28 Si at 215.2 MeV were 
obtained by digitizing the data points shown in “Fig. 6” in 
Ref. [38]. The digitizing software used in this study was 
GSYS (version 2.4.9) [39]. The experimental data for 12
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C+12 C at 1016 MeV were obtained from the NRV database 
[40].

The optical potential parameters used in the optical 
model and the nearside/farside decomposition calculations 
are listed in Table 1. For both the systems, the “standard” 
Woods-Saxon function was adopted for the nuclear optical 
potentials:

where V0 and W0 are the depths of the real (R) and imaginary 
(I) parts, respectively. Ri and ai ( i = R, I) are the radius and 
diffuseness parameters, respectively. The reduced radius ri 
(i=R, I) is defined as

where AT and AP are the atomic masses of the target and 
projectile, respectively. For the Coulomb potential, the 
potential between a point charge and a uniformly charged 
sphere was utilized. The optical potential parameters for 16
O+28 Si and 12C+12 C were obtained from Ref. [9] and Ref. 
[11], respectively.

3.1 � 16O+28 Si at 215.2 MeV

First, we revisited the refractive or diffractive potential 
ambiguity problem of 16O+28 Si at 215.2 MeV, as discussed 
in Ref. [9, 10]. In fact, the potential sets A1 and A2 are 
simply the diffractive shallow-V “E18” and refractive deep-
V “A-type” ones, respectively [9]. The A1 potential is also 
a “surface transparent” potential, whose characteristic is a 
larger value of RR than that of RI . Its real part is deeper than 
the imaginary part for r > RR [10]. The results of the optical 
model and nearside/farside decomposition calculations are 
shown in Fig. 1. It can be seen that both the potential sets 
A1 and A2 can effectively reproduce the experimental data, 
although the theoretical angular distributions show quite dif-
ferent patterns at angles beyond approximately 35◦ where 
no data exist. As reported in Ref. [10], within the angular 
range covered by the experimental data, although the near-
side components corresponding to A1 and A2 potentials are 

(11)U(r) = −
V0

1 + exp
(
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W0

1 + exp
(

r−RI
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) ,

(12)ri = Ri∕(A
1∕3

T
+ A

1∕3

P
), i = R, I

significantly close to each other, the farside components are 
evidently different.

The upper and lower envelopes of the experimental data 
are presented in Fig. 2a. For each envelope, the uncertain-
ties are represented by the region delimited by dotted lines. 
The positive- and the negative-deflection-angle components, 
�+(�) and �−(�) , are derived by using the envelopes and are 
shown in Fig. 2b. The envelope uncertainties are propagated 
to �±(�) . The uncertainties in �±(�) are also represented by 
the regions delimited by dotted lines. For comparison, the 
nearside and farside angular distributions, �n(�) and �f(�) , 
are also plotted. It can be observed that �+(�) matches �n(�) 
well with small uncertainties. Moreover, �−(�) is close to the 
magnitude of �f(�) . As the calculated �n(�) with potentials 
A1 and A2 are significantly close to each other, it is not fea-
sible to determine which is closer to the derived �+(�) . The 
calculated �f(�) with potentials A1 and A2 are evidently dif-
ferent. However, the relatively small values (less than 10−3 ) 
of �−(�) probably make its apparent structure meaningless 
[28]. In addition, the relative error of �−(�) is significantly 
larger than that of �+(�) , which is consistent with the results 
calculated in Ref. [30], in which the author found that slight 

Table 1   The nuclear optical 
potential parameters used 
in the optical model and 
nearside/farside decomposition 
calculations

The parameters for 16O+28 Si at 215.2 MeV and 12C+12 C at 1016 MeV are extracted from Ref. [9] and Ref. 
[11], respectively

Colliding system Potential set V
0
       (MeV) r

R
(fm) a

R
(fm) W

0
(MeV) r

I
(fm) a

I
(fm)

16O+28Si A1 10.00 1.350 0.618 23.40 1.230 0.552
A2 100.00 0.967 0.745 44.10 1.073 0.850

12C+12C B1 49.90 0.934 0.742 150.40 0.262 1.201
B2 129.4 0.681 0.913 47.90 0.918 0.622
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Fig. 1   (Color online) Elastic scattering angular distribution of 16

O+28 Si at 215.2 MeV. The circles represent the experimental data. 
The curves are the results of the optical model and nearside/farside 
decomposition calculations with different potentials
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adjustments of envelopes visibly affect the smaller ones of 
�+(�) and �−(�) but have little effect on the larger one. These 
difficulties render it impractical to determine whether �f(�) 
is closer to �−(�) . Hence, the envelope method is unsuitable 
for resolving the refractive or diffractive potential ambiguity 
problem of 16O+28 Si at 215.2 MeV.

3.2 � 12C+12 C at 1016 MeV

For the elastic scattering of 12C+12 C at 1016 MeV, the cal-
culated total, nearside and farside angular distributions with 
the B1 and B2 potentials are plotted in Fig. 3 in comparison 
with the experimental data. For the B1 potential, although 
the depth of the real part is smaller than that of the imagi-
nary part, it is not a diffractive potential because it produces 
a Fraunhofer crossover [10]. Similar to the A1 potential, the 
B1 potential is a “surface transparent” one with RR > RI . 
The strength of the real part is greater than that of the imagi-
nary part for r ≥ 2 fm, and there is a strongly absorbing core 
at small radii [11]. The B2 potential is a refractive deep-V 
potential, similar to the A2 potential. In these calculations, 
following the procedure described in Ref. [11], the relativ-
istic effects were considered by using an effective center-of-
mass energy of 496.84 MeV and an effective mass of 12.27 
u for 12 C. Observing Fig. 3, both the B1 and B2 potentials 
effectively reproduce the experimental data. The farside 
components �f(�) are significantly close to each other in 
the angular range of the experimental data. However, the 
nearside components �n(�) exhibit an evident difference in 
slope after approximately 5 ◦ in the center-of-mass system, 
in which �n(�) corresponding to the B1 potential becomes 
smaller than that corresponding to B2.

The upper and lower envelopes are drawn for the experi-
mental data in Fig. 4a, and the corresponding derived �±(�) 

are drawn in Fig. 4b in comparison with �n/f(�) . As in the 
case of 16O+28Si, the envelope uncertainties are also con-
sidered and propagated into �±(�) . It can be observed that 
�−(�) matches �f(�) , and �+(�) is close to �n(�) for both 
B1 and B2 potentials. In this case, because the farside scat-
tering components �f(�) corresponding to the two potential 
sets are close to each other, it is not feasible to determine 
which one is closer to the derived �−(�) . However, the evi-
dent difference between the calculated �n(�) with the two 
potential sets enables the selection of the physical potential. 
As for the obtained �+(�) , its magnitude is larger than 10−3 at 
almost all the scattering angles covered by the envelopes. In 
addition, the relative error increases as the scattering angle 
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Fig. 2   (Color online) Elastic scattering of 16O+28 Si at 215.2 MeV: a envelopes of the experimental data; b the derived positive/negative-deflec-
tion-angle components in comparison with the theoretical nearside/farside components
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Fig. 3   (Color online) Elastic scattering of 12C+12 C at 1016 MeV. The 
circles represent the experimental data. The curves are the results of 
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with different potentials
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increases. Clearly, �+(�) matches better with the B2 nearside 
component than with the B1 component. This reveals that 
the B2 potential is more physical, which is consistent with 
the results of the combined analyses of elastic scattering and 
the transfer reaction of 12C+12 C at 1016 MeV in Ref. [11].

3.3 � Factors influencing the application 
of the envelope method

The calculated results for 12C+12 C at 1016 MeV prelimi-
narily indicate the possibility of using the envelope method 
to address the potential ambiguity problem. Several factors 
influencing the application of the envelope method to poten-
tial ambiguity problems were identified.

The primary factor is the difference between the calcu-
lated �n/f(�) corresponding to different potential families. If 
they show evident differences in �n(�) and/or �f(�) , there is a 
possibility of selecting a physical potential. However, when 
the calculated �n/f(�) values are nearly identical for different 
potential families, applying this method is not feasible.

The second factor is the magnitude of the smaller part of 
�±(�) . When the calculated �n/f(�) exhibits evident differ-
ences from the smaller values, as in the cases of 16O+28 Si 
at 251.2 MeV and 12C+12 C at 1016 MeV, the magnitudes 
should not be significantly small. The present calculations 
show that when the magnitudes are smaller than approxi-
mately 10−3 , a comparison between the smaller parts of �±(�) 
and �n/f(�) can provide limited information. In this case, 
although the derived �±(�) matches the calculated �n/f(�) 
well on the order of magnitude, the details of the structure 
become meaningless. This phenomenon was observed in the 
positive-/negative-deflection-angle decomposition of the 
inelastic scattering angular distributions using the envelope 
method in Ref. [28].

Furthermore, the data quality also influences the appli-
cation of the envelope method. The plot of the envelopes 
requires well-defined maxima and minima; in other words, 
it requires good angular resolution. The errors of the differ-
ential cross sections should be small as they are propagated 
to the derived �±(�).

Apart from the factors encountered and mentioned above, 
it should be noted that the Fraunhofer crossover can also 
influence the application. In fact, at the Fraunhofer crossover 
angle, the values of �+(�) and �−(�) should equal with each 
other in principle, which implies that the value of the lower 
envelope should be zero (cf. Eq. 5). However, the lower 
envelope does not have zero points. Therefore, as indicated 
in Ref. [30], the data near the Fraunhofer crossover are 
unsuitable for use in the envelope method.

4 � Summary

In this study, a trial application of the envelope method to 
the optical potential ambiguity problem is presented. The 
colliding systems of 16O+28 Si at 215.2 MeV and 12C+12 C at 
1016 MeV were used as examples in the application. Based 
on the envelope method, the experimental data of the elastic 
scattering angular distributions were decomposed into posi-
tive- and negative-deflection-angle components (denoted as 
�+(�) and �−(�) , respectively). Although the original ver-
sion of the envelope method does not quantitatively consider 
uncertainties, the present work propagates the uncertainties 
of the experimental data points that determine the envelopes 
into the derived �±(�) . For each colliding system, the optical 
model and the nearside/farside decomposition calculations 
are performed with two potential sets, of which one is “sur-
face transparent” and another is refractive. For each potential 
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tion-angle components in comparison with the theoretical nearside/farside components
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set, the corresponding nearside and farside scattering com-
ponents (denoted as �n(�) and �f(�) , respectively) were com-
pared with the derived �+(�) and �−(�) , respectively.

For 16O+28 Si at 215.2 MeV, the envelope method pro-
vides good estimations of �n/f(�) on the order of magni-
tude. The nearside components �n(�) corresponding to two 
potential sets are nearly identical in the angular region 
of the envelopes. Therefore, although the derived �+(�) 
matches them well, it is not feasible to select a physical 
potential by comparing �+(�) with �n(�) . By contrast, the 
farside components �f(�) corresponding to two potential 
sets exhibit evident differences in the angular region of the 
envelopes. However, the derived �−(�) has small magni-
tudes with large uncertainties, making its structure mean-
ingless. It is impractical to select the physical potential by 
comparing �−(�) with �f(�) quantitatively.

For 12C+12 C at 1016 MeV, the derived �+(�) and �−(�) 
match the calculated �n(�) and �f(�) well, respectively. In 
this case, the farside components �f(�) corresponding to 
two potential sets are significantly close to each other in 
the angular region of the envelopes. Although the derived 
�−(�) matches well with �f(�) , it is not feasible to select the 
physical potential by comparing �−(�) with �f(�) . For �n(�) , 
the two potential sets yield significantly different results. 
The calculated �n(�) corresponding to the “surface trans-
parent” potential B1 shows an evident smaller values after 
5 ◦ in comparison with that corresponding to the refractive 
potential B2. The derived �+(�) clearly matches much bet-
ter with �n(�) corresponding to B2. Hence, the refractive 
potential B2 was selected as the physical potential, which 
was consistent with the results given in Ref. [11].

Several factors that influence the application of the 
envelope method to the potential ambiguity problem were 
identified. We believe that one can try to use the enve-
lope method to analyze the potential ambiguity problem 
when the following conditions are met: (1) the calculated 
�n/f(�) of potential families exhibit evident differences; (2) 
the smaller part of �±(�) is not too small (e.g. larger than 
10−3 ); (3) the experimental data have good angular resolu-
tions and small errors of differential cross sections; (4) the 
main part of the envelopes is not close to the Fraunhofer 
crossover point. The envelope method has shown poten-
tial for analyzing the potential ambiguity problem. Further 
applications of the envelope method to the potential ambi-
guity problem are required to verify the method.
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