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Abstract The full-spectrum least-squares (FSLS) method

is introduced to perform quantitative energy-dispersive

X-ray fluorescence analysis for unknown solid samples.

Based on the conventional least-squares principle, this

spectrum evaluation method is able to obtain the back-

ground-corrected and interference-free net peaks, which is

significant for quantization analyses. A variety of analytical

parameters and functions to describe the features of the

fluorescence spectra of pure elements are used and estab-

lished, such as the mass absorption coefficient, the Gi

factor, and fundamental fluorescence formulas. The FSLS

iterative program was compiled in the C language. The

content of each component should reach the convergence

criterion at the end of the calculations. After a basic theory

analysis and experimental preparation, 13 national standard

soil samples were detected using a spectrometer to test the

feasibility of using the algorithm. The results show that the

calculated contents of Ti, Fe, Ni, Cu, and Zn have the same

changing tendency as the corresponding standard content

in the 13 reference samples. Accuracies of 0.35% and

14.03% are obtained, respectively, for Fe and Ti, whose

standard concentrations are 8.82% and 0.578%, respec-

tively. However, the calculated results of trace elements

(only tens of lg/g) deviate from the standard values. This

may be because of measurement accuracy and mutual

effects between the elements.

Keywords Energy-dispersive X-ray fluorescence

analysis � Full-spectrum least-squares method � Effective
atomic number � Mass attenuation coefficient �
Fundamental parameter method

1 Introduction

Energy-dispersive X-ray fluorescence (EDXRF) is an

analytical method for determining the concentration of

micro and major elements in different matrices. This

technology is widely used in pharmaceutical analysis,

antique authentication, and the exploration of mineral

resources because of its rapid and nondestructive analysis

process [1]. However, calibrating the efficiency of the

instrument and matrix effect correction are the most real-

istically difficult problems in EDXRF. Many studies

focusing on these two problems have been conducted.

Since the 1950s, the mutual impact coefficient method and

the fundamental parameter method (FPM) have been the

main methods used in X-ray fluorescence analyses. The

former consists in calibrating efficiency with standard

samples to solve the problem of overlapping-peak peeling,

but the X-ray fluorescence spectrometer has to be rescaled

when there are large matrix differences in the sample [2].

The FPM is a widely used method based on physical

parameters. It can effectively reduce the absorption and

enhancement effects. The major advantage of the FPM is

the minimum number of standard samples required for

efficiency calibration [3–5]. However, most measurements

This work was supported by the National Key R&D Project of China

(No. 2017YFC0602100), the National Natural Science Foundation of

China (No. 41774147) and Sichuan Science and Technology Support

Program (No. 2015GZ0272).

& Qing-Xian Zhang

Zhangqingxian06@cdut.cn

1 The College of Applied Nuclear Technology and Automation

Engineering, Chengdu University of Technology,

Chengdu 610059, China

123

NUCL SCI TECH (2019) 30:52(0123456789().,-volV)(0123456789().,-volV)

https://doi.org/10.1007/s41365-019-0564-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s41365-019-0564-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41365-019-0564-8&amp;domain=pdf
https://doi.org/10.1007/s41365-019-0564-8


based on the FPM are developed for wavelength-dispersive

X-ray fluorescence (WDXRF) analysis [6–9]. By compar-

ison, the ability to carry out in situ measurement works is

one of the major advantages of EDXRF. In conventional

EDXRF, elements with an atomic number below 19 are

commonly difficult to analyze in the field. Thus, a ‘‘dark

matrix’’ must exist in the sample. To correct for the vari-

ations caused by the matrix effect, the backscatter funda-

mental parameter method was proposed and developed

[10, 11]. In addition, several methods were developed for

EDXRF analysis, which can be referred to in a previous

review [12]. In recent years, using an effective atomic

number Zeff as a representative of the ‘‘dark matrix’’ has

become the prevailing approach, and this parameter has

also been studied in our previous works [13, 14].

Usually, the net characteristic X-ray intensity of each

element is derived once the EDXRF spectrum is taken, and

then, the element concentration is calculated via the FPM

[15]. This independent quantitative method has proven to

be workable. However, it remains a complex and time-

consuming process that requires a high degree of experi-

ence and knowledge from the instrument user [16]. The

full-spectrum least-squares (FSLS) method is a multivari-

ate calibration method that is able to, based on the con-

ventional least-squares principle, increase the selectivity of

matrix components and provide the possibility of detecting

samples as outliers. Theoretically, it can deal with con-

siderable peak overlaps owing to its lower dependence on

the shape of predefined peak lines [17]. However, this

multivariate calibration method is rarely applied in EDXRF

except for near-infrared and infrared spectroscopic ana-

lytical studies [16–19]. Therefore, this paper explores the

feasibility of using FSLS regression for the quantitative

EDXRF determination of the concentration of micro and

major elements, such as titanium (Ti), iron (Fe), nickel

(Ni), copper (Cu), and zinc (Zn), which are common

components in solid samples.

2 Theoretical descriptions

In EDXRF, the basic equations that relate the measured

X-ray fluorescence intensity and the corresponding element

composition were derived by Sherman and other authors

[16, 20, 21]. When an X-ray beam irradiates the surface of

the sample, the absorption and scattering of the original

irradiated beam will occur along the trajectory path. The

attenuation of the original irradiated beam caused by

absorption and scattering not only is proportional to the

incident X-ray intensity but also depends on the thickness,

density, and the number of encountered atoms per unit

cross section of the absorber. Based on this theory, the

absorption of the original irradiated beam can be divided

into three processes: I, II, and III, as shown in Fig. 1.

Process I represents the attenuation of the original X-ray

(whose wavelength is k and were produced by an X-ray

tube) in the sample. Process II indicates the absorption of

attenuated X-ray in the target element i in an infinitesimal

volume. t is the incident depth of the X-ray along the

surface normal. Element i, whose weight concentration is

Ci, emits characteristic X-ray after being excited, the

magnitude of which depends on the excitation factor ðEiÞ.
Ei is closely related to the jump ratio ðJiÞ for the absorption
edge, transition probability ðfiÞ, and fluorescence yield

ðwiÞ, which can be expressed as follows [21]:

Ei ¼ Jifiwi: ð1Þ

These characteristic X-rays are radiated evenly in all

directions and are then attenuated by being absorbed by

matter in process III. Only the X-ray with a spatial solid

angle of X=4p can enter the detector. Therefore, the pri-

mary fluorescence intensity ðSi;kÞ for a line of element i can

be expressed as follows [20]:

Si;k ¼ ðX=4pÞei cscu1CiEi r
kabs;i

kmin

ui;k

u0s þ u00s
Ikdk; ð2Þ

u0s ¼ us;kcosecu1; ð3Þ

u00s ¼ us;kicosecu2: ð4Þ

Here, u1 is the angle between the central beam of the

tube’s radiation and the surface of the sample. u2 is the

takeoff angle of the measured radiation from the sample. ei
is the intrinsic detection efficiency of the characteristicX-ray

Sample
Infinitesimal 
volume

φ1  φ2  

l1  l2  t+dtt

 

Fig. 1 (Color online) Measurement system structure for EDXRF
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of element i.li;k is themass absorption coefficient of element

i for the original wavelength k, and its unit is cm2/g. Simi-

larly, ls;k is themass absorption coefficient of the sample and

ls;ki is its mass absorption coefficient for the characteristic

X-ray wavelength ki. It should be noted that the original

X-ray spectrum produced by the X-ray tube includes the

continuous spectrum and the characteristic spectrum [2]. The

former is the main X-ray source that excites the sample. For

any given experimental conditions, there is no exact ana-

lytical expression to obtain the incident spectrum. Thus, the

continuous integral over k is divided into a number of

intervals Dkk, and in this way, the spectral distribution of the
original radiation can be obtained as follows:

r
kedge;i
kmin

Ikdk !
X

kedge;i
kmin

IkkDkk ¼ I0
X

Emax

Eabs;i
uðEÞ:

Here, uðEÞ is the original X-ray spectral distribution,

which can be simulated via Monte Carlo methods [22]. The

simulation results for electrons (B 30.3 keV) bombarding

rhodium (Rh) target atoms obtained with the MCNP pro-

gram are shown in Fig. 2.

In addition, I0 is the total intensity of the original inci-

dent X-ray, which can be categorized, much like X=4p, ei,
and cscu1, into a factor related to the structure of the

instrument. The synthetic effect of these four parameters is

taken as an important factor, Gi, which can be expressed as

follows [20, 21]:

Gi ¼ ðX=4pÞei cscu1I0: ð5Þ

Thus, Eq. (2) can be simplified as follows:

Si;E ¼ GiCiEi

X
Emax

Eabs;i

ui;E

u0s þ u00s
uðEÞ; ð6Þ

where Si;E , ui;E, us;E, and us;ka are equivalent to Si;k , li;k,
ls;k, and ls;ki , respectively. For multi-element samples,

when the excited wavelength of another interfering element

j (whose concentration is Cj) in the matrix is less than the

wavelength of the absorption edge of element i, secondary

fluorescence will happen. This process also includes pro-

cesses I, II, and III. The secondary fluorescence formula

can be expressed as follows [20, 23]:

Sij;E ¼ Si;Eeij;ECj; ð7Þ

where

eij;E¼0:5Ejui;Ej

uj;E

ui;E

� �
1

u0s
ln 1þ us0

us;Ej

� �
þ 1

u00s
ln 1þ us00

us;Ej

� �� �
:

ð8Þ

Here, ui;Ej
and us;Ej

are the mass absorption coefficient of

element i and the mass absorption coefficient of the sample

for the characteristic X-ray energy Ej of element j,

respectively. The percentage of the tertiary X-ray fluores-

cence in the total detected intensity does not exceed 4%,

even in the most extreme cases, and can be ignored in the

calculations. Therefore, the detected intensity Ii;E of the

fluorescence radiation of element i in the sample can be

expressed as the sum of the primary fluorescence intensity

and the secondary fluorescence intensity [21].

Ii;E ¼ Si;E þ Sij;E : ð9Þ

Actually, in X-ray spectrum analyses, the count rate of

one energy channel is not related only to the target ele-

ment; it is also affected by other elements in the matrix.

Therefore, the spectrum can be regarded as the sum of the

contributions of a series of elements within the same

matrix. Once the theoretical spectrum of a single element is

obtained, the optimal response relationship between the

content of that element and the detected X-ray spectrum

can be established. Based on the fluorescence formulas, the

calculated intensity is just a value equal to the total area of

the detected X-ray peak for one element. Thus, the inten-

sity at the peak position needs to be Gaussian-broadened

[24] to the scale edge of the spectrometer, which is

approximately 0–1023 channels. This can be described in

the following procedure.

The Gaussian distribution prototype formula [25] is

shown in the following.

f ðxÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p e
�ðx�lÞ2

2r2 : ð10Þ

Here, l is the distribution expectation, which is the char-

acteristic peak position in EDXRF spectral analysis. r is

the distribution’s standard deviation, which is indispens-

able in the Gaussian-broadening process. Experimentally,

nine kinds of single-element samples, namely potassium

(K), calcium (Ca), titanium (Ti), iron (Fe), nickel (Ni), zinc

(Zn), strontium (Sr), zirconium (Zr), and molybdenum
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Fig. 2 Original X-ray spectral distribution obtained via Monte Carlo

methods
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(Mo), were prepared, as given in Table 1 in the next sec-

tion. The actual EDXRF spectra were Gaussian fitted with

the OriginPro9 program, and then, the r of each element’s

spectral line was obtained. The functional relationship

between the characteristic energy and r is shown in Fig. 3.

Once the r of element i is obtained via interpolation

through Eq. (10), the characteristic X-ray intensity Ii;E can

be Gaussian-broadened into 1023 energy channels:

Ei;0; Ei;1; Ei;2; . . . Ei;1023ð ÞT: Unlike conventional

quantitative EDXRF methods, the FSLS method directly

relates element concentrations to the detected EDXRF spec-

trum. Therefore, it is able to establish the response relation-

ship between the theoretical spectrum and the actual detected

spectrum, which can be described in the following form:

E1;0 E2;0 . . . Ei;0

E1;1 E2;1 . . . Ei;1

E1;2

..

.

E1;1023

E2;2

..

.

E2;1023

. . . Ei;2

..

.

. . . Ei;1023

0
BBBBB@

1
CCCCCA

�

C1

C2

..

.

Ci

0
BBB@

1
CCCA

¼

A1

A2

A3

..

.

A1023

0
BBBB@

1
CCCCA
: ð11Þ

This equation can be simplified as follows:

P0 � Cx ¼ P: ð12Þ

Here, P0 represents the theoretical pure-element matrix

with a number of rows equal to the number of channels in

the full spectrum and a number of columns equal to the

number of pure elements of interest in the unknown sam-

ple. Matrix Cx consists of the calculated contents of the

corresponding elements, which are updated after each

iteration. P is the actual full spectrum measured with a

portable EDXRF spectrometer. This instrument uses a Rh-

Table 1 Component

proportions of the 45 standard

samples (the mass of each

sample was 0.05 kg)

No. KCl H3BO3 SiO2 No. CaO H3BO3 SiO2 No. TiO2 H3BO3 SiO2

Component proportions (%) of the standard samples from No. 1 to No. 15

1 0.19 28.58 71.23 6 0.14 28.57 71.29 11 0.17 28.57 71.26

2 0.96 28.57 70.47 7 0.70 28.57 70.73 12 0.83 28.57 70.59

3 1.91 28.57 69.52 8 1.40 28.57 70.03 13 1.68 28.62 69.69

4 9.54 28.57 61.89 9 6.99 28.57 64.43 14 8.35 28.56 63.09

5 19.08 28.57 52.35 10 13.99 28.57 57.44 15 16.69 28.57 54.74

No. Fe2O3 H3BO3 SiO2 No. Ni H3BO3 SiO2 No. ZnO H3BO3 SiO2

Component proportions (%) of the standard samples from No. 16 to No. 30

16 0.14 28.57 71.29 21 0.11 28.57 71.32 26 0.13 28.57 71.31

17 0.71 28.57 70.72 22 0.51 28.57 70.93 27 0.62 28.57 70.81

18 1.43 28.57 70.00 23 1.00 28.57 70.43 28 1.24 28.57 70.18

19 7.15 28.57 64.28 24 5.00 28.57 66.43 29 6.23 28.57 65.20

20 14.30 28.57 57.13 25 10.00 28.57 61.43 30 12.47 28.57 58.97

No. SrCl2�6H2O H3BO3 SiO2 No. ZrO2 H3BO3 SiO2 No. MoO3 H3BO3 SiO2

Component proportions (%) of the standard samples from No. 31 to No. 45

31 0.29 28.58 71.14 36 0.13 28.57 71.30 41 0.15 28.57 71.28

32 1.54 28.57 69.89 37 0.67 28.57 70.76 42 0.75 28.58 70.68

33 3.05 28.57 68.38 38 1.35 28.57 70.08 43 1.51 28.57 69.92

34 15.22 28.57 56.22 39 6.76 28.57 64.67 44 7.51 28.57 63.92

35 30.43 28.57 41.00 40 13.51 28.57 57.92 45 15.01 28.57 56.42

3 6 9 12 15 18
0.05

0.06

0.07

0.08

Si
gm

a 
(σ
)

Characteristic energy (keV)

Y = 9×10-6X2 + 0.0017X+ 0.0492 
R2 = 0.9934

Fig. 3 (Color online) Relationship between r and the characteristic

energy of different elements
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anode X-ray tube with a tube voltage of 30 kV. A Si-PIN

semiconductor detector with a resolution of 196 eV (at
55Fe) was employed. The measuring time was 300 s for

each sample. The overdetermined equations presented in

Eq. (11) have a unique smallest least-squares solution,

which can be referred to in previous literature [26, 27]. The

determination of factor Gi and each mass absorption

coefficient will be described in detail in the next section.

3 Experiments

Determining factor Gi and the mass absorption coeffi-

cients is the key issue in the entire algorithm. As shown in

Eq. (5), factorGi can be seen as a structural constant for one

specific element i in a certain detector system. However, it is

difficult to directly calculate it. Replacing the absolute X-ray

intensity with the relative intensity is the most common

method to eliminate some physical parameters, including

factorGi [2, 28]. In this paper, a more innovative approach is

proposed to calculate Gi with standard single-element sam-

ples through Eq. (6) and then to establish a function of Gi

with the characteristic X-ray energy of different elements.

Nine kinds of standard single-element (K, Ca, Ti, Fe, Ni, Zn,

Sr, Zr, and Mo) samples with five different contents

(9� 5¼45) were prepared in our laboratory. The component

proportions of the 45 samples are listed in Table 1.

Here, SiO2 was used as the matrix in the sample and

H3BO3 was used as an adhesive for different contents. The

Gi profile versus the characteristic X-ray energies of K, Ca,

Ti, Fe, Ni, Zn, Sr, Zr, and Mo is shown in Fig. 4.

As shown in Fig. 4, the fitted formula between factor Gi

and the characteristic X-ray energy E is:

Gi ¼ 2� 106E�1:393: ð13Þ

The square of the correlation coefficient (R2) is 0.9721.

Therefore, the Gi factor of any element between K and Mo

can be calculated via interpolation from Eq. (13). The mass

absorption coefficient is another basic parameter that is

closely related to the contents of unknown elements. The

matrix information of the sample is the key to obtain the

mass attenuation coefficient in EDXRF. In fact, the inter-

action of X-ray with compounds or mixtures along their

trajectories can be equivalent to their interaction with single

elements. The atomic number of this equivalent element is

called the effective atomic number of this compound or

mixture. Maynerod [29] first proposed a formula to calculate

the effective atomic number Zeff , which is given as follows:

Zeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

fiZ
m
i

m

q
: ð14Þ

Here, Zi is the atomic number of element i in the irradiated

matter and fi is the electron percentage of element i in the

irradiated matter. Index ‘‘m’’ is 2.49. Zhang et al. [13]

divided the elements in a multi-component sample into two

groups, including the known one and the ‘‘dark matrix.’’

XZeff is defined to represent the effective atomic number of

the ‘‘dark matrix.’’ Thus, the calculation formula of Zeff for

a multi-component sample can be expressed as follows:

Z2:94
eff ¼

X
CiZ

2:94
i þ ð1�

X
CiÞXZ2:94

eff ; ð15Þ

where Ci is the concentration of element i. Figure 5 is the

actual X-ray spectrum of sample No. 11, obtained with the

EDXRF spectrometer. The blue line stands for the raw

X-ray spectrum. After smoothing and deducing back-

ground scattering (red line), the net X-ray spectrum (black

line) can be obtained.

Rayleigh and Compton scattering peaks exist in the net

EDXRF spectrum. Many researchers have concluded that

the coherent-to-Compton scattering cross-sectional ratio

depends only on the effective atomic number of composite

materials [30]. Duvauchelle et al. [31] pointed out that a

2 4 6 8 10 12 14 16 18
0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

G
i

Characteristic X-ray energy (keV)

Y=2×106X-1.393

R2=0.9721

Fig. 4 (Color online) Relationship between factor Gi and the

characteristic X-ray energies of different elements

0 5 10 15 20 25 30
0

300

600

900

1200

1500

1800

Coherence 
scattering peak

In
te

ns
ity

 

Energy  (keV)

 Raw X-ray spectrum
 Estimated baseline
 Net X-ray spectrum

Compton scattering peak

Fig. 5 (Color online) Actual X-ray spectrum of sample No. 11 (for a

test time of 300 s)
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given Zeff should define a mixture or compound based on

the intensity ratio of the Rayleigh-to-Compton scattering.

İçelli et al. [32] successfully applied the coherent-to-

Compton scattering cross-sectional ratio to obtain the Zeff
of some elements (26� Z � 82). Thus, in this paper, we

define R as the ratio of the coherence-to-Compton scat-

tering net peak. As shown in Fig. 6, the functional rela-

tionship between Zeff and R for different elements can be

established as follows.

The relationship between Zeff and R is fitted with a

quadratic equation, as shown in Eq. (16).

Zeff ¼ �125:794R2 þ 169:494R� 18:729: ð16Þ

The square of the correlation coefficient is 0.9608. The

mass absorption coefficient for a multi-component sample

is equal to the sum of the weighted mass absorption

coefficient of each component, including the known con-

tents and the ‘‘dark matrix.’’ This parameter can be derived

[14] as follows:

lS;E ¼
X

Cili;E þ ð1�
X

CiÞlXZeff ;E: ð17Þ

Here, Ci is the concentration of element i, which should be

updated after each iteration of Eq. (11). XZeff is the

effective atomic number of the ‘‘dark matrix,’’ whose mass

absorption coefficient is defined as lXZeff ;E. Related

parameters and formulas for calculating the mass absorp-

tion coefficients can be referred to in the cross-sectional

manual [33]. ð1�
P

CiÞ is the concentration proportion of

the unknown ‘‘dark matrix.’’ It should be noted that each

mass absorption coefficient will be updated and the P0

matrix will be reconstituted after each iteration. A simpli-

fied flow diagram of the whole algorithm can be drawn as

shown in Fig. 7.

0.2 0.3 0.4 0.5 0.6 0.7
7

14

21

28

35

42
Z e

ff

R

Y=-125.794X2+168.494X-18.729
 R2=0.9608

Fig. 6 (Color online) Relationship between R and Zeff for different

elements
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Establish Gi-E function with 
standard samples

Calculate Gi for unknown 
sample from Eq. (13)

Get R for unknown sample

Calculate Zeff for unknown 
sample from Eq. (16)

Calculate us and ui

Calculate  P0 from 
Eq. (9) with Ci =1

Gaussian broadening

Calculate Cx from Eq. (11)

Cx error < 0.005%

Update us and ui

Calculate  P0 from 
Eq. (9) with Ci =1

Output Cx

End

Yes
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Fig. 7 Simplified flow diagram

of the whole algorithm
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4 Results and discussion

In this paper, 13 national standard soil (Nss) samples

were used to verify the feasibility of the FSLS algorithm.

The iterations stop when the difference between the current

and the former calculated contents is less than 0.005%. The

results of the algorithm are given in Table 2.

Ti, Fe, Ni, Cu, and Zn were the most common elements

in the geological samples. From Table 2, Ti and Fe, whose

concentration exceeded several thousands of ppm, were

labeled using percentage symbols (%), whereas the unit

used for Ni, Cu, and Zn was micrograms per gram (lg/g). It
is clear that the calculated contents for high-concentration

elements are close to the standard contents. In particular,

the calculated results for Fe are in good agreement with the

standard contents and the corresponding relative errors are

comparatively lower than those of the low-concentration

elements. To intuitively analyze the trend changes in the

content of each element, the resulting data were plotted as

column graphs, with the error bars [34] representing stan-

dard deviation, in Fig. 8. The red columns stand for the

standard contents, and the shadow columns represent the

calculated contents. The blue line is the relative error level.

As shown in Fig. 8, the calculated content has the same

variation tendency as the standard content among the 13

Nss samples, which reflects the feasibility of using the

FSLS algorithm. There is a close relationship between the

calculated content and the standard content except for Ni,

Table 2 Calculated results and relative errors for elements Ti, Fe, Ni, Cu, and Zn, out of the 13 Nss samples

Nss Ti Fe Ni

No. Standard content

(%)

Calculated content

(%)

Relative error

(%)

Standard content

(%)

Calculated content

(%)

Relative error

(%)

Standard content

(lg/g)

2 0.271 ± 0.008 0.204 ± 0.014 25 2.462 ± 0.070 2.003 ± 0.071 19 19.4 ± 1.3

3 0.224 ± 0.008 0.190 ± 0.011 15 1.399 ± 0.050 1.243 ± 0.011 11 12.0 ± 2.0

4 1.080 ± 0.031 0.975 ± 0.095 10 7.205 ± 0.110 6.993 ± 0.046 3 64.0 ± 5.0

5 0.629 ± 0.021 0.657 ± 0.094 4 8.828 ± 0.180 8.859 ± 0.772 0 40.0 ± 4.0

6 0.439 ± 0.012 0.413 ± 0.055 6 5.659 ± 0.130 5.558 ± 0.029 2 53.0 ± 4.0

8 0.380 ± 0.012 0.298 ± 0.021 22 3.134 ± 0.050 2.865 ± 0.019 9 31.5 ± 1.8

9 0.424 ± 0.023 0.386 ± 0.034 9 3.358 ± 0.100 3.479 ± 0.035 4 33.0 ± 3.0

10 0.427 ± 0.006 0.383 ± 0.052 10 2.917 ± 0.030 3.029 ± 0.022 4 26.0 ± 1.0

12 0.392 ± 0.006 0.313 ± 0.029 20 3.295 ± 0.040 3.017 ± 0.028 8 32.0 ± 1.0

13 0.382 ± 0.011 0.295 ± 0.015 23 2.875 ± 0.040 2.480 ± 0.030 14 28.5 ± 1.2

14 0.466 ± 0.013 0.366 ± 0.023 21 3.722 ± 0.060 3.746 ± 0.007 1 33.0 ± 2.0

15 0.527 ± 0.020 0.451 ± 0.048 14 4.505 ± 0.070 4.104 ± 0.538 9 41.0 ± 1.0

16 0.578 ± 0.026 0.497 ± 0.045 14 3.805 ± 0.050 3.693 ± 0.026 3 27.4 ± 0.9

Ni Cu Zn

Calculated

content (lg/g)
Relative

error (%)

Standard content

(lg/g)
Calculated

content (lg/g)
Relative

error (%)

Standard content

(lg/g)
Calculated

content (lg/g)
Relative

error (%)

61.6 ± 4.6 218 16.3 ± 0.9 22.9 ± 1.6 40 42 ± 3 70 ± 6 67

47.1 ± 1.2 293 11.4 ± 1.1 13.4 ± 0.8 18 31 ± 3 53 ± 4 70

113.0 ± 3.0 76 40.0 ± 3.0 55.6 ± 3.7 39 210 ± 13 259 ± 14 23

101.6 ± 8.0 154 144.0 ± 6.0 133.7 ± 25.6 7 494 ± 25 592 ± 69 20

107.2 ± 13.5 102 390.0 ± 14.0 424.2 ± 18.2 9 97 ± 6 124 ± 8 28

64.5 ± 5.5 105 24.3 ± 1.0 32.7 ± 1.6 35 68 ± 4 104 ± 8 54

88.3 ± 5.4 168 25.0 ± 3.0 31.1 ± 1.6 24 61 ± 5 103 ± 5 69

62.5 ± 4.0 141 19.0 ± 1.0 22.3 ± 0.3 17 60 ± 4 95 ± 12 58

77.1 ± 5.0 141 29.0 ± 1.0 40.6 ± 1.9 40 78 ± 5 117 ± 13 50

65.5 ± 4.3 130 21.6 ± 0.8 27.5 ± 1.4 28 65 ± 3 97 ± 5 50

73.3 ± 5.6 122 27.4 ± 1.0 37.2 ± 1.86 36 96 ± 3 142 ± 7 48

83.7 ± 2.1 104 37.0 ± 2.0 45.7 ± 1.38 23 94 ± 4 139 ± 16 48

80.7 ± 4.0 195 32.0 ± 2.0 34.9 ± 2.06 9 100 ± 8 149 ± 10 49
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whose relative error is larger than 100%. The analysis

results are as follows.

(1) For high-concentration elements, such as Fe (as

shown in Fig. 8b), whose maximum standard content

is 8.828%, the minimum relative error is 0.35% (Nss

5). However, the relative error increases with the

decrease in its standard content. When the standard

content is 2.462%, the relative error reaches 18.64%

(Nss 2), which is acceptable in EDXRF analyses.

This is mainly because Fe is the major element in the

solid samples; its concentration exceeds 1.39%. The

background scattering intensity of the original X-ray

beam can be considered inversely proportional to the
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Fig. 8 (Color online) Column charts showing calculated content and standard content for elements a Ti, b Fe, c Ni, d Cu, and e Zn
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element contents. Therefore, comparatively low

backscattered radiation contributes little to the

characteristic peak area of Fe during the back-

ground-deducing step. In addition, the count rate of

the detector is proportional to the content of Fe, as

shown in Fig. 9a. Increasing the count rate would

effectively reduce the statistical error. The calcula-

tion results of Ti, which is also a major element in

the Nss samples, are similar to those of Fe. The

differences between the red columns and the shadow

columns for Ti in Fig. 8a exist for the same reason as

for Fe.

(2) Ni, Cu, and Zn are microelements in the 13 Nss

samples because their average contents are just

33.91 lg/g, 62.85 lg/g, and 115.08 lg/g, respec-

tively. Their actual characteristic X-ray peaks are

probably affected by the high backscattered radia-

tion. As shown in Fig. 8c–e, the shadow columns of

the calculated contents for these elements are almost

higher than the red columns of their standard

contents. This may be due to the absorption

enhancement effects of other trace elements, such

as Ce, Ba, and Pb, which leads to the actual

characteristic X-ray intensity line deviating from

the true intensity line. Among the 13 Nss samples,

the one with a high content of Ni, Cu, and Zn has a

smaller relative error than the other samples. The

differences found between them are significantly

related to measurement accuracy.

(3) However, for microelement Ni and as shown in

Fig. 8c, the maximum relative error is 292.69%,

which corresponds to 12 lg/g (Nss 3), and the

minimum relative error is 76.49%, which corre-

sponds to 64 lg/g (Nss 4). The average error is up to

149.80%, and the reason for this is not just related to

the trace amount of Ni in the solid samples. Except

for the absorption enhancement effect of the other

microelements (which are neglected in this FSLS

algorithm), the peak overlap effect caused by the

elements (such as Co) adjacent to Ni is another main

factor. Besides, the net characteristic X-ray intensity

of Ni is heavily affected by the characteristic Kb rays

of Fe, which are beyond the resolution capability of

our detector. This leads to a strong increase in the

weak peak area of the characteristic X-ray for Ni,

and thus, the calculated content of Ni is far in excess

of the standard value. The former can be used to

calibrate the inter-element effects via empirical

coefficient approaches and, in the subsequent step,

increasing the number of the spectral variables in the

P0 matrix will, to some extent, reduce the mutual

interference between elements. Furthermore, as

shown in Fig. 9c, there is a nonlinear relationship

between the content of the Ni element and the

counting rate of the system. Therefore, statistical

fluctuations during the spectral data acquisition will

seriously influence the final calculated results. It is

crucial to improve the accuracy of detection systems.
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Fig. 9 Linear relationship

between the count rate of the

detector and the standard

content of a Fe, b Ti, and c Ni
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In addition, a single residual matrix is needed to

optimize the FSLS algorithm, which can effectively

modify the mismatch between the algorithm model

and the X-ray characteristic spectrum data caused by

statistical fluctuations, backscattered radiation, etc.

5 Conclusion

This paper introduces an FSLS method to quantitatively

perform EDXRF analysis for unknown solid samples.

Compared with the conventional FPM approach, it is a

multivariate calibration method that is able to increase

component selectivity and provide the possibility of

detecting a sample as an outlier. The Gi factor and mass

absorption coefficients are critical parameters to describe

the features of the fluorescence spectra of pure elements. It

is innovative to obtain the Gi factor for different elements

through a Gi � E function. To take full account of the

unknown components in the sample, XZeff can be used to

represent the effective atomic number of the ‘‘dark

matrix.’’ The coherent-to-Compton scattering peak ratio is

applied to obtain the Zeff of some of the elements. Based on

fluorescence formulas, the calculated X-ray intensity

should be Gaussian-broadened at the peak position to the

scale edge (0–1023 channels) of the spectrometer. Subse-

quently, the response relationship between the theoretical

spectral matrix and the actual X-ray spectrum can be

established. The results show that using the FSLS method

is feasible for light elements (C hundreds of lg/g) in

unknown samples. However, for microelements, high

backscattered radiation, measurement accuracy, and inter-

elements effects are the main sources of relative errors. In

particular, for Ni, the characteristic Kb rays of Fe affect its

weak characteristic X-ray peak. In future researches,

increasing the number of the spectral variables in the P0
matrix and optimizing the FSLS algorithm with a residual

matrix will, to some extent, modify the mismatch between

the algorithm model and the X-ray data and reduce the

mutual interference between elements.
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