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Abstract Stochastic point kinetics equations (SPKEs) are
a system of Itd stochastic differential equations whose
solution has been obtained by higher-order approximation.
In this study, a fractional model of SPKEs has been ana-
lyzed. The efficiency of the proposed higher-order
approximation scheme has been discussed in the results
section. The solutions of SPKEs in the presence of New-
tonian temperature feedback have also been provided to
further discuss the physical behavior of the fractional
model.

Keywords Fractional stochastic point reactor kinetics
equations - Fractional calculus - Higher-order
approximation - Caputo derivative - Neutron population

1 Introduction

Stochastic point kinetics equations (SPKEs) are a sys-
tem of coupled nonlinear stochastic differential equations
(SDEs) [1] and are important in nuclear engineering. The
SPKEs model a system of 1t6 SDEs, specifically, neutron
population and delayed neutron precursors. The physical
dynamical system has been established to be a population
process, and techniques have been employed by Hayes and
Allen [2] to transform deterministic point kinetics equa-
tions into a system of SDEs. The fractional diffusion model
is normally applied to large variations of neutron cross
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sections, which preclude the use of classical neutron dif-
fusion equations [3-6]. Various approximation methods
have been developed to improve the control of processes in
the nuclear reactor.

In recent developments, dynamic, multiphysics phe-
nomena face many challenges regarding accurate numeri-
cal schemes, resulting in severe computational
requirements. An approach to reduce the severe computa-
tional requirements of standard low-order simulations is to
employ higher-order formulations. In the hierarchy of high-
order methods, compact schemes represent an attractive
choice for reducing dispersion and anisotropy errors.

Nowak et al. [7] presented the numerical solutions of a
fractional neutron point kinetics model for a nuclear
reactor. Numerical solutions of SPKEs by implementing
stochastic piecewise continuous approximation (PCA) have
been obtained by Hayes and Allen [2], which provided a
very succinct idea about the randomness of neutron density
and precursor concentrations. Saha Ray [8] showed that
Euler-Maruyama (EM) and Taylor 1.5 strong order
numerical schemes are well-founded estimators compared
with stochastic PCA. Saha Ray and Patra [9] applied the
Grunwald-Letnikov definition of fractional derivative for
solving SPKEs. Nahla and Edress [10] showed the effi-
ciency of analytical exponential model (AEM) for obtain-
ing solutions of SPKEs.

In our present work, we demonstrate the fractional
numerical method for obtaining the mean neutron popula-
tion for various reactivities. In Sect. 2, we introduce the
fractional stochastic nonlinear point reactor kinetics equa-
tions (SNPKE). The fractional 1t6 SDE for NPKEs is
obtained using the central limit theorem. In Sect. 3, we
discuss the higher-order approximation method for Caputo
derivative, and in Sect. 4, we discuss its application. In
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Sect. 5, we discuss the obtained numerical solutions for
various reactivities.

2 Framework of fractional SNPKE

We now introduce an elementary definition before
stating the central limit theorem.

Definition 2.1 Let X;; be the sample mean of M inde-
pendent samples Xj, ..., X), of a random variable X such
that

1
XM:M(X1+"'+XM)a

where u is the mean and ¢ is the variance for each inde-
pendent and identically distributed real-valued random

variables X;.

Theorem 2.1 (Central Limit Theorem) If each random
variable X; has a finite second moment with VarX; = a2,
the distribution of Xy converges to that of a Gaussian
random variable with mean u and variance % Thus, X;,

converges in distribution to Z ~ N(0, ¢?).

The fractional It6 SDE for NPKEs with temperature
feedback effects [11-15] obtained from the central limit
theorem can be written as follows [16]:

" o dW(r
EDIW() = A0 + 0+ B T
where o is the fractional order of the derivative and
O<a<l,

(2.1)

o

and Q = | O |. Here, m is the total number of delayed

0
neutron groups and Wy(t), Wi (), Wa(z),..., Wy(t) are

standard Wiener processes as defined in [8], N(¢) is the
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neutron population, and C;(¢) is the precursor concentration
of i-group of delayed neutrons.
The coefficient matrix A(f) is represented in the fol-

Wo(t)
Wi(t)
lowing form = Wa(1)
Wn(1)
p;lﬁ P T
% - 0 0
A(l‘) = % 0 —/12 0 ) (2'2)
Pm —A,
; 0 0

m
where p is the total reactivity, f = Y f3; is the total fraction
of delayed neutrons, fB; is the fractidn and 4; is the decay
constant of i-group of delayed neutrons, and / is the prompt
neutron generation time.
The covariance matrix B(f), which is evaluated in Ref.
[16], is represented as follows:

to(t) — —m()  —p(1) — 4, (1)

=y (1) () 0 0
B(t)= | —#() 0 (1) ... 0 ’

) 00 1)

(2.3)

where 1o (1) = (%/‘)N(r) =S ACH (1) (8 =BN (1) = 2,C4(0),
and i=1,2,3,....m. =l

3 Higher-order approximation scheme
3.1 Fractional calculus

The Caputo derivative operator for « € (0, 1) is defined
as follows:

t

S8 (0) = =y [ (=97 (9

0
in which I'(+) is the Euler gamma function.

In this paper, a (3 — o)™ order scheme for Caputo
derivative {D*W(z) with o € (0,1) has been discussed for
obtaining the solutions of fractional SNPKEs. Let 0 =
to<ti<---<ty =T and ¢, =ty + nt be the equidistant

discretized times with 1 = A, = % for M € Z such that
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€ (0,1). Now, using the Taylor expansion to ¥'(s),
W(t;i_1), and W(#;11) at point t = (0 <i<n), we get

'I//// (tl)

Wils) = W) + V(1) (s — 1) + =5 (s = i)’
+0((s— 1)), s € (t,ti),
(1) = T(ti+1);C‘P(ti—l) B ‘1”356‘) 2 4+ 0(+*), and
) — . . #) (¢,
P (1) = W(ti1) Z‘I:EE) +¥(E) ¥ lz(tl) 2
+ 0(7%).

Hence, we can obtain the following:

P(s) = W (tis1) 2—T‘P(li71) " W(ti1) — Z‘I;EZ,») +¥(t 1)
(s — 1) — Y’/;ft,») 24 t{//;!(t,-) (s — 1)
+O((s - [i)3)7 0<s—1;,<T.

Therefore, the Caputo derivative can be discretized as

t

770 10| R——— / (6, — )W (5)ds

+

(S — [,’)

21 T

3 2+ T (s — ti)z} ds + 0(<%)
S b (Wi
= Win-i\Fir1 — Fi-
(G- 2) 2 1, +1 1

Fwopei(Wivr — 2% + Winy)] + 1"

where n =1,2,...,M and 7" is the truncation error.
Therefore, the Caputo derivative has the following
numerical approximation [17]:

— n—1
C o
ODtn‘P( 3 _ a ;
X Wip—i(Wir1 — Wict) + wou—i(Wipr —2Wi + ¥iy)]
+0(77),
(3.1)

where 0 <a<1, wy,_; = %[(n _ i)lfa —(n—i— 1)1701]’
Won-i=(n—i)""—(n—i—1)**—(2—a)(n—i—1)'"* and
r" is the truncation error in the following form:

| i

r(1—o) Z;/ (3.2)
[—Cy1? 4 3Cy(s — 1;)*]ds + O(7%),

. q////([i) .
where Cy = —5r~ s a constant.

The right-hand side of Eq. (3.2) can be expressed as
follows:

1 n—1

(1 — o) = J

[—Cy1? 4 3Cy(s — 1;)*]ds + O(7%)

C n—1
— F(litoc) 3 (I +3D),
where
I =— [ (t,—s)"%ds
T3tiot ey
— i) i)
L= [ (t,—s) "(s—1)ds
,ngoc Iy 21.37a .
:]_ (nilil) (1—06)<2 OC)(n l*l)z
S I
(I-a)2—-0)(3—a)
1.3701 ) g 2,53701 ) -
:l—oc(n_l_l) —m(n—l—l)
2 f—i— 1) = (= i)
C(1-0)2-0)(3-a) '
Therefore,

C‘l’ n—1
mz; (I, + 3L) =

=l

{_”1“—3[@—1)1 o427

6
2—o

6 n3—0(
R T }

[(n =174 4257 1]

Let
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n—1

n—1
S(n) =-3>_i'™ _zﬁaziz_a
i=1

i=1

+ 6 n3—o¢ _nl—(x
2—-a)(3—0)
n—1
:Zai, n>1.
=1
If n =1, define ap = s(1) = m — 1. Then, ¢;(i< 1)

can be defined as follows:

a;=S(i+1) — S(i)

6 3—u 33— 6 2—o
:ﬁ[(i—i—l)‘ -7 = — — (i
Srzl)l’)“(s— 2i12°‘. ’

It can be proven that |S(n)| is bounded for n > 1 [17-19].
00
This proves that the series Y a; converges.
i=0
On further simplification, we get:

Cryx T
DiY(t,) =———~
0% (tn) r3—ua)

n—2
Y. (Wi +wai) + Z Win—i Vit
i=0

n—1 n—2
- E Win—i¥io1 + E wa - iWis1.
i=0 i=0

n—1

+ Z wai(—2¥; + Wi1) | + O %)
=0

(3.3)

In Eq. (3.2), if i = 0, then W¥;_; = ¥_,, which lies outside
of [0, T]. Various options have been provided to approach

4 Solution of SPKE by higher-order
approximation method

In this section, higher-order approximation to Caputo
derivative has been applied to Eq. (2.1) as follows:

n—2

T
— ¥, n—i' Vi
TG =) [ (wi1+w21)+ ;WL 41

n—1 n—2
- E Win—iWiz1 + E wa Wit
i=0 i=0

n—1

+ won—i(—2%; + q‘il)]
i=0

dW(z)

= A(D)¥Y(1) + Q + B:(1) o

Therefore, the above expression can be simplified into an
explicit numerical scheme as follows:

1

S —
(Wi +wa)

<r(3 — o) (A(tn,l)\v,,,l +0+ B%(tn,l)AW(t,,))

n—2 n—1

- E Wl,nfi‘PiJrl_E win—iVic1
=0
n—2

i=0
— n—1
+ > wyu Wiy + Z Won—i(—2%; + Wi )))
i=0 i=0
(4.2)

where AW(1,) = V/hS, and n=1,2,....M with initial
condition

No
¥_,. In numerical calculations, the neighboring function BNy
values have been used to approximate W_;, that is, 78
¥ = W(0) — TV (0) + % W (0) + O(). B2No
(0) = =¥'(0) +5 ¥"(0) + O(¢") woy - | 20| (43)
1. When P'(0) = ¥"(0) =0, then ¥_; = ¥y + O(%); _
the convergence order is O(7°~%). B:No
2. When Y'(0)=0, ¥"(0)#0, then WY_, =YY, Do,
+Z9"(0) + O(c*); the convergence order of
Eq. (3.1) is O(z?).
3. When ¥'(0) # 0, then the convergence order is O().
Table 1 Mean peak values of N(¢) for different step reactivities
p o =0.96 o=0.98 o=10.99 EM o =1 Taylor 1.5 strong order o = AEM o =1 ESM o =1
[8] 1[8] [20] [10]
Peak Time Peak Time Peak Time Peak Peak Peak Peak
(s (s) (s)
0.003 180.796 0.1 180.033  0.095 180.819 0.083  208.6 199.408 186.30 179.93
0.007 128.655 0.001 128.248 0.001 124.113  0.001 139.568 139.569 134.54 134.96
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Fig. 1 (Color online) Mean N(t) and two arbitrary sample paths for a step reactivity p = 0.003 and « = 0.96, b step reactivity p = 0.003 and
o = 0.98, c step reactivity p = 0.003 and « = 0.99

Table 2 Mean peak values of N(¢) for ramp reactivity p = 0.1t and different values of fractional order o

a o o =10.96 o =0.98 o= 0.99 AEM o =1 [20] ESM o =1 [10]
Peak Time (s) Peak Peak Peak Time (s) Peak Peak
0.1p¢ 101 113.563 0.998 113.275 186.30 113.045 0.1 113.267707 113.116433
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Fig. 2 (Color online) Mean N(¢) and two arbitrary sample paths for a ramp reactivity p = 0.1 and o« = 0.96, b ramp reactivity p = 0.1f¢ and
o = 0.98, ¢ ramp reactivity p = 0.14¢ and a = 0.99

Table 3 Mean peak values of — — —
N(t) for p,, = 0.5, Pex o =0.96 o =0.98 o =10.99
Pex = 0.758, and p., = B, b Peak Time (s) Peak Time (s) Peak Time (s)
comparison of mean peak
values of N(t) for p., = 0.5f, (a)
Pex B 0-7(51& ang ggx = p for 0.58 42.6182 28.65 44.789 30.29 45.9708 29.25
= L anda=a 0.758 159.21 8.875 160.124 8.895 162.99 9.305
p 801.166 0.985 795.268 1.03 772.893 1.0625
Pex SSFEMM [15] (o = 1) DFMM [15] (x = 1) o =0.98
Peak Time (s) Peak Time (s) Peak Time (s)
(b)
0.5p 46.4939 28.34 46.2606 27.84 44.789 30.29
0.758 163.707 8.795 164.22 8.95 160.124 8.895
p 760.589 1.065 769.238 1.0575 795.268 1.03

@ Springer



Higher-order approximate solutions of fractional stochastic point kinetics equations in...

Page 7 of 13 49

(@)6of ' Mezn Path
= s0E Szample Path 1
= Szmpls Path 2
z wf -
-
(=
£ JE
Z 20f
E
Z 10F
[} L
0 20 40 60 80 100
Time (5)
b
200} — Mz Dath

—_ Szmpls Path 1

-._E 150+ Sampls Dath 2
el
=
B
£ 100f
E
-
= S0+
ok
0 10 20 30 40 50
Time (5)
(c)
1000 F ' ' —  MemPah
s00f —_— Samgpla Path 1
— Sample Path 2

Neutron Populition

0 5 10 15 20 25
Time (s)
Fig. 3 (Color online) Mean N(¢) and two arbitrary sample paths for a

step reactivity p., = 0.5 and o« = 0.96, b step reactivity p., = 0.75f
and o = 0.96, ¢ step reactivity p,, = f and a = 0.96

So,
St,

S, =5 |, (4.4)
Smrz

where So,,S1,,52,,...,5m, are random variables from

N(0,1) with mean equal to 0 and variance equal to 1.
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Fig. 4 (Color online) Mean N(¢) and two arbitrary sample paths for
a step reactivity p,, = 0.5 and « = 0.98, b step reactivity p,, =
0.75f and o = 0.98, ¢ step reactivity p., = f and o = 0.98

Theorem 4.1 The local truncation error of the scheme is
o(T>).

Proof The local truncation error of the higher-order
scheme for Eq. (4.2) can be derived as follows:
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Fig. 5 (Color online) Mean N(¢) and two arbitrary sample paths for a
step reactivity p., = 0.56 and o« = 0.99, b step reactivity p,, = 0.75f
and o = 0.99, ¢ step reactivity p., = f and o = 0.99

o n—1
Rf=—
I TIr(3—ua) ;
Wip—i(Wir1 — Wic1) + wopi(Wisr —2W; + Wily)]
- A(tnfl)\l’n—l - Q - B%(tn—l)AW(tn)

—a n—1

:I‘(S—oc)z

i=0
Win—i(Wiz1 — Wict) + wo e i(Wipr — 2Wi + Wiy
- gD:,‘P([") _A(tﬂ*l)(‘Pnfl - ‘Pn—l)
:0(13’“).
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5 Numerical results and discussions

Here, the solutions of SPKE (i = 6) have been obtained
using higher-order approximation scheme.

5.1 Step reactivity

In this section, the numerical solutions of the fractional
stochastic point kinetic model [10] using the following
parameters have been obtained: 4, =0.0127 71,
Jo=00317s"", A3 =0.115s"1, 14 =0311s"", Ais=
14571, Jg=3.87s"!, B, =0.000266, f,=0.001491,
s =0.001316, p, =0.002849, f5=0.000896, f;=
0.000182, f = 0.007,1=2.0 x 10s,v=2.5,and ¢ = 0
with N(0) = No = 100 (neutron) and C;(0) = 222

For different step reactivities, i.e., p = 0.003 and
p = 0.007, the mean peak values of N(¢) with respect to
time for fractional orders o = 0.96, 0.98, and 0.99 at step
size h = 0.001 s and for 500 trials are presented in Table 1.
In addition, the results have been compared with those
obtained by other methods, namely EM [8], Taylor 1.5
strong order [8], AEM [20], and efficient stochastic model
(ESM) [10] with graphical representation in Fig. 1. The
solutions of SPKE obtained using the above-discussed
fractional scheme have been tabulated to establish the
efficiency of the higher-order approximation method.

5.2 Ramp reactivity

The numerical solutions of the fractional SNPKE have
been obtained using the same parameters as those in
Sect. 5.1. Here, the reactivity can be represented as
p=0.1pt.

For ramp external reactivity, i.e., p = 0.1f¢, the mean
peak values of N(f) with respect to time for fractional
orders oo = 0.96, 0.98, and 0.99 at step size h = 0.001 s and
for 500 trials are listed in Table 2. In addition, the results
have been compared with those obtained using other
methods, namely AEM [20] and ESM [10] with graphical
representation in Fig. 2. The solutions of SPKE obtained
using the above-discussed fractional scheme have been
tabulated to establish the efficiency of the higher-order
approximation method.

5.3 Temperature feedback reactivity

In this section, solutions of fractional stochastic point
kinetic model with i-group of delayed neutrons (i = 6) in
the presence of Newtonian temperature feedback have been
obtained using the higher-order approximation method.
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t

Table 4 Mean peak values of N(¢) for p, = 0.1¢ and 0.01¢, p(t) = at — o [ N(t)dt, b comparison of mean peak values of N(¢) for p,, = 0.1¢

and 0.017, p(t) = at — o [ N(t)dt for « = 1 and o = 0.98

0

a [ o= 0.96 o=0.98 o=0.99
Peak Time (s) Peak Time (s) Peak Time (s)
(@)
0.01 1o 1.69869E + 10 1.084 1.76031E + 10 1.103 1.73211E + 10 1.112
10°1 2.0663E + 12 1.132 2.18262E + 12 1.151 2.13422E + 12 1.161
0.1 10 1.78236E + 11 0.223 1.90873E + 11 0.232 2.01965E + 11 0.235
10°1 2.34211E + 13 0.238 2.37627E + 13 0.248 2.41795E + 13 0.252
a o SSFEMM [15] (& = 1) DEMM [15] (e = 1) AEM [10] (. =1) o=0.98
Peak Time (s) Peak Time (s) Peak Time (s) Peak Time (s)
(b)
0.01 1011 1.68604E + 10 1.118 1.69492E + 10 1.118 1.673436E + 10  0.854 1.76031E + 10 1.103
10°1 2.12034E + 12 1.169 2.12802E + 12 1.168 2.082531E+ 12 0.877 2.18262E + 12 1.151
0.1 10! 1.88849E + 11 0.235 1.89642E + 11 0.235 1.790577E + 11 0.142 1.90873E + 11 0.232
10713 2.24448E + 13 0.251 2.26026E + 13 0.251 2.143778E + 13 0.150 2.37627E + 13 0.248

The total reactivity of the reactor in the presence of
temperature feedback [21] is represented in the following
form:

) = p0) = py0), oyl =5 [ N(oJa,
0

where 0 = oK., p., () is the external reactivity, T(¢) is the
temperature, 7 is the initial temperature, « is the temper-
ature coefficient, and K. is the reciprocal of the thermal
capacity.

In the interval [, #1], the total reactivity can be
expressed as follows [15]:

k

p(te) = pe(tc) = ha > N(1)).

J=0

5.3.1 Step external reactivity

In this section, the numerical solutions of the SPKE of
U?® nuclear reactor [3] using the following parameters
have been obtained: 1; = 0.0124 s~!, A, = 0.0305 s~!,
J3=0.111 s7', 2,=0301 s!, As=1.13 s, J=

3.0 s7', B, =0.00021, B, =0.00141, pB;=0.00127,
B, = 0.00255, B5 = 0.00074, B, = 0.00027, f = 0.00645,
[1=50x107%s, o=50x10°K!, and K.=

0.05 K/MW; with N(0) = Ny =1 (neutron) and C;(0) =
BiN(0)

i

For different step external reactivities, i.e., p., = 0.5p,
Pex = 0.75p, and p., = f, the mean peak values of N(¢) for
fractional orders o = 0.96, 0.98, and 0.99 and for different
step external reactivities 0.5f, 0.75f, and f using 500 trials
are presented in Table 3a. These results have been com-
pared with previously obtained results of split-step forward
EM method (SSFEMM) and derivative-free Milstein
method (DFMM) [15] in Table 3b with graphical repre-
sentation in Figs. 3, 4, and 5. The solutions of SPKE
obtained using the above-discussed fractional scheme have
been tabulated to establish the efficiency of the higher-
order approximation scheme.

For o = 0.96, 0.98, and 0.99, the mean N(z) with two
arbitrary sample paths has been shown for p. = 0.50,
Pex = 0.75, and pex = .

5.3.2 Ramp external reactivity

The numerical solutions of the fractional SNPKE of
U?® nuclear reactor have been obtained using parameters
similar to those in Sect. 5.3.1. Here, the external reactivity
is represented as p,, = 0.1¢ and p., = 0.01¢, the nonlinear
coefficient ¢ takes 107! or 10713,

For different ramp external reactivities, i.e., p., = 0.17
and 0.01¢z, the mean peak values of N(r) with respect to
time for fractional orders « = 0.96, 0.98, and 0.99 at step
size h = 0.001s and for 500 trials are listed in Table 4a.
These results have been compared with the previously
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Fig. 6 (Color online) Mean N(¢) and two arbitrary sample paths for a

ramp reactivity p., = 0.01z, ¢ = 1071,

and «=0.96, b ramp

reactivity p., = 0.01f, ¢ = 10713, and o = 0.96, ¢ ramp reactivity
Pex = 0.1t, 6 = 1071, and « = 0.96, d ramp reactivity p., = 0.1z,

6=10"1, and « = 0.96
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Fig. 7 (Color online) Mean N(¢) and two arbitrary sample paths for a

ramp reactivity p,, = 0.0lz, ¢ = 107",

and o =0.98, b ramp

reactivity p., = 0.01¢, ¢ = 10713, and « = 0.98, ¢ ramp reactivity
Pex = 0.11, 6 = 107", and o = 0.98, d ramp reactivity p,, = 0.1z,

o=10"1, and « = 0.98
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Fig. 8 (Color online) Mean (a)
N(t) and two arbitrary sample £ 10°
paths for a ramp reactivity E 107
Pex = 0.017, ¢ = 10711, and g
o = 0.99, b ramp reactivity = 10
Pex = 0.012, ¢ = 10713, and .E 1000
o = 0.99, ¢ ramp reactivity Z 1
Pex = 0.11, 6 = 1071, and
o = 0.99, d ramp reactivity 0 1 2 3 1 3
Pex =0.11, 0 = 1013, and Time (s)
o =0.99 (b)
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Table 5 Mean peak values of N(r) for sinusoidal reactivity p = 0.005333 sin (“T’) for different values of fractional order o
P o =0.96 o= 0.98 o =0.99
Peak Time (s) Peak Time (s) Peak Time (s)
0.005333 sin (%) 38.0005 38.28 45.8029 38.18 49.1345 38.99

obtained results [10, 15] in Table 4b with graphical rep-
resentation in Figs. 6a—c, 7a—c, and 8a—c. The solutions of
SPKE obtained using the above-discussed fractional
scheme have been tabulated to establish the efficiency of
the higher-order approximation method.

5.4 Sinusoidal reactivity

In this section, the reactivity is in the form of sinusoidal
change, i.e., p = pgsin (”T’) The numerical solution for this

reactivity has been obtained using the following parame-
ters:  py, = 0.005333, f;, =p=0.0079, 4, =0.077,
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Fig. 9 (Color online) Mean N(¢) and two arbitrary sample paths for

sinusoidal reactivity p = 0.005333 sin(’%) with a fractional order

o = 0.96, b fractional order « = 0.98, and ¢ fractional order o = 0.99

A=0.001, ¢g=0, N(0)=Nyp=1, and time period
T = 100s. The mean peak values of N(¢) with respect to
time for fractional orders o = 0.96, 0.98, and 0.99 are
presented in Table 5 with graphical representation in
Fig. 9.

6 Conclusion
In this study, fractional SPKEs have been solved using

the higher-order approximation scheme with different
fractional orders «. The obtained numerical solutions for

@ Springer

mean N(z) have been presented in the tables and graphi-
cally demonstrated to justify the efficiency of the proposed
higher-order approximation method. In addition, the results
have been compared to some previous works such as
[10, 15, 17]. The results obtained by the implemented
fractional model are in good agreement with previous
results, which further establishes the efficiency of our
proposed scheme. The graphical representation for differ-
ent reactivities shows the behavior of the mean neutron
population. The random fluctuations at low power levels
and achievement of equilibrium state after reaching its
peak value provide us with a succinct idea about the
behavior of N(¢) for different reactivities.
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