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Abstract In pursuit of a fully coherent X-ray free-electron

laser (FEL), highly reflective Bragg crystals are used and

will be used as a highly selective spectral filter in hard

X-ray self-seeding FELs and X-ray FEL oscillators

(XFELO), respectively. However, currently, when simu-

lating self-seeding and XFELO, the three-dimensional

effect of Bragg diffraction is not fully considered. In this

paper, we derive a comprehensive solution for the response

function of the crystal in Bragg diffraction. A three-di-

mensional X-ray crystal Bragg diffraction code, named

BRIGHT, is introduced, which can be combined with other

FEL-related codes, e.g., GENESIS and OPC. Performance

and feasibility are assessed using two numerical examples,

namely a self-seeding experiment for the linac coherent

light source and XFELO options for Shanghai high repe-

tition rate XFEL. The results indicate that BRIGHT pro-

vides a new and useful tool for three-dimensional modeling

of FEL.

Keywords X-ray � Bragg diffraction � Self-seeding �
XFELO

1 Introduction

The discovery of X-rays in 1895 triggered a huge

amount of innovative scientific inquiry. X-rays from a

highly relativistic electron beam have emerged as a pow-

erful light source for probing in biology, chemistry, and

materials research [1]. A free-electron laser (FEL) is the

next-generation X-ray source, whose peak brightness is

about ten orders of magnitude over those of traditional

third-generation synchrotron light sources [2, 3]. Several

X-ray FEL user facilities have been successfully operated

in the past decade [4–8], while other X-ray FEL light

sources are under construction around the world. Never-

theless, almost all hard X-ray FEL facilities were inevi-

tably based on self-amplified spontaneous emission

(SASE) [9], which is caused by the noise of the electron

beam shot. SASE FEL typically has limited temporal

coherence with a spiky spectrum.

Therefore, the temporal coherence of hard X-ray FEL

has been a topic of great interest, and self-seeding has been

theoretically proposed and experimentally demonstrated

[10–12]. The self-seeding scheme uses the first undulator

section to generate moderate SASE radiation. Then, the

delayed monochromatic seed can be provided via a crystal

monochromator, which employs forward Bragg diffraction

(FBD). Finally, this monochromatic seed is amplified in the

second section of the undulator to produce fully coherent

X-rays.

The X-ray FEL oscillator (XFELO) is an alternative

scheme to generate stable, fully coherent radiation [13, 14].
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The physics and technologies of the FEL oscillator were

tested and proven decades ago for the long wavelengths,

such as in the infrared and ultraviolet regions [15–17].

However, XFELO can only use crystal mirrors that have

high reflectivity due to Bragg diffraction (BD) at a narrow

bandwidth in the X-ray region. Recently, with the devel-

opment of the Bragg crystal [18, 19], the XFELO

scheme was reconsidered, and some practical technical

problems were studied [20–24].

Because XFELO and the self-seeding FEL involve the

interaction between X-rays and the crystal, an additional

algorithm is needed for describing the Bragg diffraction. In

previous studies, the algorithms for calculating Bragg

diffraction were used in a one-dimensional manner

[14, 25, 26], i.e., the 3D radiation field is usually trans-

formed into one dimension for crystal reflection and then

artificially transformed back to 3D in the simulation. The

one-dimensional method smears out the transverse phase

information entirely and ignores some critical 3D effects,

including the wave front, which are essential for transverse

modes [25]. This paper describes the theory and imple-

mentation of a three-dimensional (3D) Bragg diffraction

code, named BRIGHT, which can be combined with

GENESIS and OPC in 3D self-seeding FEL and XFELO

simulations. For this purpose, we derive a comprehensive

theoretical solution for the response function, including the

3D effect of excitation by a finite-length X-ray pulse. This

response function is based on the previous research [27, 28]

of the spatiotemporal response function of crystal in Bragg

diffraction. BRIGHT focuses on the interaction between

X-rays and crystals in both reflection and transmission

geometries to satisfy the requirements of the self-seeding

FEL and the XFELO numerical simulation.

2 The theory of BRIGHT

To describe the X-ray crystal diffraction phenomenon

more rigorously, dynamical theory, where multiple scat-

tering is considered, has been introduced [29]. In this

section, the solutions of dynamical theory in the two-beam

case are derived. Then, the 3D effects are considered.

Finally, practical strategies are proposed to perform

numerical simulation and to implement BRIGHT.

2.1 Two-dimensional Bragg diffraction

A plane monochromatic electromagnetic wave propa-

gating in the vacuum can be written as

eðr~; tÞ ¼ eie
iðK~0r~�xtÞ: ð1Þ

The wave frequency can be expressed as x ¼ E=�h, where

E is the photon energy. The magnitude of the wavevector

in the vacuum K~0 is expressed by the wavelength k and

E as jK~0j ¼ K ¼ 2p=k ¼ E=hc. The incident wave propa-

gates in the crystal and interacts with the electron density

distributed around the atomic sites. These interactions

could excite a wave inside the crystal with electric vector

D~ðr; tÞ ¼ expð�ixtÞD~ðr~Þ. The spatial part D~ðr~Þ can be

obtained via the wave equation.

Since a perfect crystal has a periodic array of atoms, the

assumed solution of the wave equation is a Bloch wave

which is composed of an infinite number of plane waves,

D~ðr~Þ ¼ eik
~
0r~
X

H

D~He
iH~r~ ¼

X

H

D~He
ik~Hr~; ð2Þ

where k~H ¼ k~0 þ H~ is the wavevector satisfying Bragg’s

law in crystal. The in-crystal wavevector k~0 is associated

with the vacuum wavevector K~0 of the incident wave.

However, k~0 is slightly different from K~0 due to the

refraction. Figure 1 shows the wavevector of the incident

wave, K0, and the reflected wave, KH . The wave, trans-

mitted through the crystal, retains the wavevector K0.

For the perfect crystal, in general, there are only two

reciprocal lattice points on the Ewald sphere, which con-

tribute significantly to the solution of the fundamental

equations [30]. Because of this feature, we shall assume

that the excitation condition is fulfilled for the two

0K
→

HK
→

0K
→ z

θ

η

y

1z

2z

Fig. 1 (Color online) Schematic diagram of the two-dimensional

X-ray Bragg diffraction in the reflection geometry. The wavevector of

the incident and reflected waves is K0 and KH , respectively. Blue lines

depict the reflecting atomic planes. H is the diffraction vector for the

special atomic plane, and the unit vector ẑ is inward normal to the

crystal surface. g is the angle between the crystal surface and the

atomic plane. c ¼ c0
cH

with c0 ¼ K~0z~
K

and cH ¼ ðK~0þHÞz~
K

is the asymmetry

ratio for not highly asymmetric reflection.
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particular waves with the two wavevectors denoted by k~0

and k~H [28, 30]. According to Eq. (2), by correlating

eigenvalues of the fundamental equation and the boundary

conditions when the wave enters and leaves the crystal, the

transmission and reflection amplitude measured at the rear

and the front surfaces of the crystal are [28]:

R00 ¼ ei,1d
R2 � R1

R2 � R1eið,1�,2Þd
; ð3Þ

R0H ¼ R1R2

1� eið,1�,2Þd

R2 � R1Eið,1�,2Þd
ð4Þ

where

,m ¼
v0K
2c0

þ YmðyÞ
2KB

; Rm ¼
ffiffiffiffiffi
jcj

p ffiffiffiffiffiffiffiffiffiffiffi
vHv �H

p

v �H

YmðyÞ;

YmðyÞ ¼ ð�y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ c=jcj

p
Þ; a ¼ K~

2

H � K2

K2
;

y ¼ caþ v0ð1� cÞ
2jPj

ffiffiffiffiffi
jcj

p ffiffiffiffiffiffiffiffiffiffiffi
vHv �H

p ; KB ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
c0jcH j

p

2pjPj ffiffiffiffiffiffiffiffiffiffiffi
vHv �H

p :

ð5Þ

The subscript m indicates two possible solutions of Ym,

where it is assumed that the root in Ym is positive and the

index m ¼ 1 corresponds to the ‘‘þ’’ sign in Ym. v, which
characterizes the interaction between X-rays and matter

can be written as vðr~Þ ¼
P

HvHe
iH~�r~, where H~ is the

reciprocal lattice vector and the coefficients vH and v0 are

the Fourier components of the susceptibility. a describes

the deviation of the incident wave from the Bragg condi-

tion, which is proportional to the magnitude of the differ-

ence between the wavevector inside crystal and the vacuum

wavevector. y is a reduced parameter called deviation

parameter [30]. P is the polarization factor, while P ¼ 1 for

r-polarization and P ¼ cos 2hB for p-polarization. d is the

thickness of the crystal, Rm is the ratio of DHðmÞ and D0ðmÞ,

where DHðmÞ is the reflected wave and D0ðmÞ is the trans-

mitted wave [28].

KB is the extinction depth in the reflection geometry,

and K0 ¼ 2pKB is defined as the Pendellösung distance in

the transmission geometry. The full width at half maximum

(FWHM) of the rocking curve in the transmission geometry

and the width of the total reflection domain in the reflection

geometry, called Darwin width, are 2ReðdÞ with

d ¼ k
K0

jcH j
sin 2hB

.

2.2 Three-dimensional effect of Bragg diffraction

To simulate the interaction between X-rays and a crys-

tal, an X-ray pulse is decomposed into monochromatic

plane wave components using the Fourier transform (FT).

For each monochromatic plane wave, it multiplies the

relative diffraction amplitude R0H to calculate Bragg

diffraction or multiplies R00 for calculating forward Bragg

diffraction. Then, the inverse Fourier transform (IFT) is

unitized to obtain the diffracted wave amplitude.

Following the previous discussion and the deduction in

Ref. [31], we present the spatiotemporal response function

of the Bragg diffraction for a finite-length X-ray pulse. The

monochromatic Bragg diffraction field eðmÞH ðr~; tÞ and for-

ward Bragg diffraction field eðmÞ0 ðr~; tÞ of the crystal, with

initial field amplitudes ei, frequency x0, and glancing angle

~h
�
relative to the atomic plane around the central angle h,

are

eðmÞH ðr~; tÞ ¼ eie
�i½x0t�ðK~0ð~h

�ÞþH~Þr~�eiDHr~R0Hðx0Þ; ð6Þ

eðmÞ0 ðr~; tÞ ¼ eie
�i½x0t�K~0ð~h

�Þr~�R00ðx0Þ ð7Þ

where

K~0ð~h
�Þ¼ x0

c
sin/ŵ0þ

x0

c
cos/sinwv̂0þ

x0

c
cos/coswû0;

x0 ¼xð~h�ÞþX:

ð8Þ

As we mentioned in the previous subsection, the subscript

H means reflected (diffracted) one and the subscript 0

means transmitted (forward diffracted) one. The

wavevector K~Hð~h
�Þ of the Bragg diffraction field eðmÞH ðr~; tÞ

determined on the entrance surface in the case of Bragg

geometry with an arbitrary glancing angle ~h
�
around the

angle h is shown in Fig. 2. X is the deviation from the

Bragg’s law. / and w are presumed to be small for a typical

low-divergence X-ray FEL, and we exclude all of their

high-order terms. The wave number component in ŵ0 and

v̂0 is much less than along û0; their effect on the additional

momentum transfer DH is negligible. Following the

deduction in Ref. [23], the spatiotemporal radiation fol-

lowing Bragg diffraction can be rewritten as:

eHðt; r~Þ � eie
�ixðhÞsHðhÞ

Z þ1

�1

dX
2p

e�iXnH

�
Y

ðX; vH � sHðhxÞc cot h;wHÞR0H ½Xþ xðhÞ�;
ð9Þ

e0ðt; r~Þ � eie
�ixðhÞs0ðhÞ

Z þ1

�1

dX
2p

e�iXn0

�
Y

ðX; v0 � s0ðhxÞc cot h;w0ÞR00½Xþ xðhÞ�
ð10Þ

where
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nH ¼ sH þ D
ûH � r~
c

; n0 ¼ s0;

s0 ¼ t � û0 � r~
c

; v0 ¼ v̂0 � r~; w0 ¼ ŵH � r~;

sH ¼ t � ûH � r~
c

; vH ¼ v̂H � r~; wH ¼ ŵH � r~:

The quantity D, the normalized angular dispersion rate,

defined in Ref. [27], can be expressed as

D ¼ �ð1þ cÞ tan h. It is a measure of the variation of the

propagation direction of the diffracted wave. The spa-

tiotemporal envelope function
Q

represents the transverse

profile of the radiation beam. It can be written as the

Fourier integral of the angular profile:

Y
ðX; v0;w0Þ ¼

Z þ1

�1

dw
2p

e�iv0ðxðhÞ=cÞw

�
Z þ1

�1

d/
2p

e�iw0ðxðhÞ=cÞ/f ðX;w;/Þ

ð11Þ

f ðX;w;/Þ is the 3D Fourier transform of the incident pulse.

For 3D Bragg diffraction simulation, we must directly take

the 3D Fourier transform. However, enormous resources

have been spent on computing the Fourier transform in this

way due to an odd number of grid points, which is

incompatible with the fast Fourier transform (FFT) of the

GENESIS output data. With reasonable approximations,

we split the 3D radiation field along the longitudinal axis at

the grid transverse coordinates at transverse coordinates v0
and w0 in Eq. (11) and take the Fourier transform of each

longitudinal wavelet to get the function
Q
ðX; v0;w0Þ and

avoid taking the 3D Fourier transform directly.

In practice, the steps to obtain the 3D radiation pulse

after Bragg diffraction are: First, take the FFT of each

longitudinal wavelet at a fixed transverse coordinate; then,

multiply them by the corresponding monochromatic wave

diffraction amplitude function R0H or R00 and obtain the

radiation wavelet after Bragg diffraction by IFFT; and then

recombine the 3D radiation at the previous transverse

coordinate; finally, substitute the transverse variable vH
with vH � sHc cot h or v0 with v0 � s0c cot h, which rep-

resents a spatial transverse shift due to Bragg diffraction of

the crystal. The final step in this study is negligible for

XFELO, since h � 0 causes cot h � 0. The following sec-

tions present how they address this step and contribute to

achieving the goal of reliable FEL simulation.

3 The framework of BRIGHT

Figure 3 presents the structure of the BRIGHT code. For

greater convenience, several divisions of BRIGHT by

functions have been envisaged. The crystal diffraction

amplitudes can be calculated only once for all subsequent

FEL simulations. For instance, the XFELO simulation

ˆHu
ˆHv

ˆ Hw

0û
0v̂

0ŵ

*
0 )(K θ

→
%

*θ%

*)(HK θ
→

%

θ%θ

( )HK θ
→

φ ψ

H
→

Fig. 2 (Color online) Schematic presentation of 3D X-ray Bragg

diffraction in the reflection geometry. As defined in Ref. [31], û0, v̂0,

ŵ0 are the coordinate axis directions for incident radiation, while

ûH ¼ û0 þ H~
xðhÞ=c, v̂H ¼ v̂0 � cot h H~

xðhÞ=c, and ŵH ¼ �ŵ0 are the coor-

dinate axis directions for the diffracted radiation beam. K~HðhÞ,
assumed to propagate along the direction of the unit vector û0, is the

central wavevector of the incident radiation pulse and has the

reflected wavevector K~HðhÞ. h is the glancing angle of incidence, and

H~ is the reciprocal crystal lattice vector. For the frequency xðhÞ, the
Bragg’s law reads as xðhÞ sin h ¼ Hc=2. The incident radiation

component propagates along K~0ð~h
�Þ with the glancing angle of ~h

�
to

the reflecting atomic planes, creating an angle of / with the scattering

plane. The angle between K~0ðhÞ and K~0ð~hÞ, which is the projection of

K~0ð~h
�Þ onto the scattering plane, is w

Crystal
Information

Calculating
R     and R

Recombined
radiation pulse

at coordinate (i,j)

Output
Radiation

 pulse

Input
Radiation

Pulse

Read longitudinal
radiation S at fixed

coordinate (i,j)

FFT(S)
S Multiply R     or R

IFFT(S)

GENESIS
OPCwhile i < ncar

while j < ncar

  00 0H

  00 0H

Fig. 3 The framework of BRIGHT
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contains hundreds of Bragg reflections of the same crystal,

but the theoretical reflectivity of the crystal remains

unchanged, and there is no need to calculate the diffraction

amplitude for every round-trip. Therefore, the framework

of BRIGHT is comprised of two main parts. First, the

diffraction amplitude functions R0H and R00 are calculated

using Eqs. (3) and (4) with the required crystal information.

The second one controls the interaction of the crystal with

radiation. The 3D radiation was split along the longitudinal

axis with the transverse grid size ncar � ncar. The

amplitude of the radiation along the longitudinal axis is

then converted into a spectrum using FFT. To obtain the

interaction between the crystal and the radiation, the

spectral amplitudes are multiplied by R0H or R00, which are

defined in Eqs. (3) and (4), respectively. The final radiation

amplitude can be obtained using IFFT. Finally, the result-

ing radiation is recombined into 3D radiation in the pre-

vious transverse coordinates.

BRIGHT implements multicore parallel computing with

Python scientific library NumPy [32] and other IO inter-

faces. BRIGHT mainly assists GENESIS in 3D FEL sim-

ulations and provides a completely transparent

programming interface and integration tools for commu-

nication with GENESIS. BRIGHT supports the GENESIS

output format, which means that the parameters to control

the output of BRIGHT are the same as in GENESIS.

Definitions of these parameters, i.e., ncar and nslices, can

be found in the manual of GENESIS. Note that many of

these parameters require a good understanding of their

effects on the output radiation while changing them.

4 Example of XFELO simulation

The first hard X-ray FEL user facility in China called

SHINE is under design [31, 33–37]. Table 1 lists the

parameters of a sample XFELO system for SHINE. With

the help of a photocathode electron gun and a supercon-

ducting linac, SHINE can produce relativistic electron

beams with the energy of 8 GeV and 1 MHz repetition

frequency. In addition, the undulator lines that can cover

the photon energy of 0.4–25 keV hold a high potential for

XFELO operation. Figure 4 presents a schematic layout of

the optical cavity of XFELO. Two Be parabolic compound

refractive lenses (CRLs) with a focal length of f ¼ 57:7 m

are used for X-ray focusing [24]. Two bending magnets

(B1, B2) are used to change the direction of the electron

beam. Three undulator cells are employed, and the cavity

length would be approximately 150 m to match the high

repetition frequency of the electron beams [31].

The first two columns in Fig. 5 show the theoretical

Bragg reflectivity (red line) with the related phase (blue

line) calculated by BRIGHT. The peak reflectivity of the

upstream mirror has reached 95%, while the peak reflec-

tivity of the downstream mirror is 80%. Note that in order

to guarantee enough power in the optical cavity and to

ensure sufficient output, the downstream mirror has a lower

reflectivity. The Darwin width predicted by BRIGHT is

approximately 10 meV with a photon energy of 14.3 keV,

which is primarily due to a full coherence.

Another significant improvement is that the simulation

results by BRIGHT preserve the entire transverse phase

distribution, which is beneficial for constructing eigen-

modes. The distant evolution of the transverse intensity of

the radiation pulse is shown in Fig. 6. The fact that a

stable output (after approximately 90 rounds), shown in the

third column of Fig. 6, is completely dominated by one

near-Gaussian transverse mode means that it is transversely

coherent (diffraction limited). Meanwhile, the transverse

phase is nearly the same for points in the central area

shown in Fig. 7 (third column). In addition, 3D simulation

gives a smaller transverse radiation size and a higher gain

in a single pass, which can generate higher radiation power,

as shown in [31]. The third column in Fig. 5 illustrates the

evolution of RMS radiation size at the undulator exit in 3D

simulation (red) and 1D simulation (blue). It takes more

round-trips for generating a stable transverse mode for

XFELO in 3D simulation than in 1D simulation. In the

XFELO operation, a longer undulator will be implemented,

Table 1 Main parameters of the SHINE

Parameters Value

Beam energy (GeV) 8

Relative energy spread (%) 0.01

Repetition rate (MHz) 1

Peak current (kA) 1

Normalized emittance (mm mrad) 0.4

Undulator period length (mm) 26

XFELO photon energy (keV) 14.3

Fig. 4 (Color online) Schematic view of the XFELO system of

SHINE
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the drift space will be suppressed, and the optical cavity

will be more sensitive than in a conventional FEL oscil-

lator. Thus, 3D effects are essential for XFELO simulation.

The one-dimensional method can undermine stable condi-

tions, destroy the transverse information and decrease the

power of the X-ray pulse in the XFELO simulation.

5 Example of self-seeding FEL simulation

For the first time, linac coherent light source (LCLS),

the first X-ray free-electron laser, experimentally demon-

strated hard X-ray self-seeding technique in 2012. The

relevant parameters of the self-seeding FEL system of

LCLS are listed in Table 2. The normal operation of LCLS

has 150–250 pC of charge in single bunch. However, the

facility can operate in the low-charge mode (bunch charge

of 40 pC) with a corresponding bunch length of approxi-

mately 10 fs for the self-seeding operation [11]. A Gaus-

sian profile electron beam with a FWHM beam length of 10

fs and without taking into account wake field effects in

undulators was used in this simulation. A simulation of

another ultrashort electron beam (bunch charge of 20 pC)

can be found in Ref. [10].

The undulator layout used in this study is illustrated in

Fig. 8. The undulator is divided into two sections. The

SASE radiation generated in the first section passes through

a diamond crystal to narrow its bandwidth. Meanwhile, a

Fig. 5 (Color online) The reflectivity of a sapphire (0 0 0 30) mirror

calculated by BRIGHT. The reflectivity of the upstream mirror has

reached 95%, while the reflectivity of the downstream mirror is 80%

to match the stable conditions of the optical cavity. The third column

shows the evolution of the transverse RMS radiation size on undulator

exit of the 3D XFELO simulation using BRIGHT (red) and the 1D

method (blue)
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Fig. 6 (Color online) The transverse intensity of a single pulse at the round-trip numbers 10, 30, and the final stable output
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Fig. 7 (Color online) The transverse phase of a single pulse at the round-trip numbers 10, 30, and the final stable output
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relatively compact chicane is used to delay the electron

beam and wash out the SASE microbunching. In the

second part of the undulator, the filtered radiation is

amplified by a delayed electron beam to achieve power

saturation, and decrease the intensity of fluctuations.

For the case of 40 pC, the average energy of the SASE

radiation pulse generated by the first part of the undulators

is * 30 lJ in the GENESIS simulation and is greater than

the 20 lJ measured in the experiment. The first column in

Fig. 9 indicates the spectral transmissivity intensity of

diamond with the atomic plane (004) and a glancing angle

of 56.53�. A radiation pulse passes through a diamond

crystal and is filtered in a narrow bandwidth. Then, the time

profile of the transmitted radiation pulse shows a long

monochromatic wake. These effects are best seen in the

second and third columns of Fig. 9, where we show the

spectrum and power profile after the filter. In addition to

filtering, the crystal can produce an additional time delay of

the monochromatic wake and a slight transverse spatial

shift of the transmitted radiation pulse, as shown in Fig. 10.

The wake can be as small as a few tenths of lm due to the

extremely short time of radiation pulse.

The seeded power profiles and spectra at the exit of the

second undulator section, including the contribution of

SASE in the first undulator section, are shown in Fig. 11.

The results indicate that the mean seeded signal is * 113

lJ (an average over 35 shots), while the experimental result

Fig. 8 (Color online) Undulator layout of the self-seeding system of

LCLS

Table 2 Main parameters of the LCLS self-seeding simulation

Parameters Value

Beam energy (GeV) 13.6

Relative energy spread (%) 0.01

Bunch charge (pC) 40

Normalized emittance (mm mrad) 0.4

Undulator period length (mm) 30

SASE photon energy (keV) 8.3

Beam time delay (fs) 20

75

Fig. 9 (Color online) The spectral dependence of the transmission

(first column), the spectrum after the diamond crystal (second

column), and the power profile after the diamond crystal (third

column). The filter effect, the monochromatic following wave, is

visible in the third column. The light red line refers to a single shot;

the dark red line indicates the average over 35 shots
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1.0

15-15-45 -30-60-75

y

0.2

0.4

0.6
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15-15-45 -30-60-75

y

Fig. 10 (Color online) Longitudinal profile before the crystal and after the crystal with a glancing angle of 56.53�. As the center (red line) of the

radiation shifted from 0 in the second column, a slight transverse spatial shift after the diamond crystal is shown
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is * 53 lJ. A larger pulse energy is produced by an ideal

electron beam without the effects of the wakefield of

undulators. The noisy power distribution in Fig. 11(left) is

caused by the following reason. The seed power is gener-

ated by a random SASE process, and the seed power, fil-

tered by the crystal Bragg diffraction bandwidth, fluctuates

close to 100%. The average dip in the power distribution at

the center of the self-seeded pulse is caused by a decrease

in the energy spread of the electron beam in the first section

of the undulator. A 1D simulation will produce a higher

pulse energy (* 127 lJ) in the second section of the

undulator, while using the same seed that is generated in

the first undulator section, which will lead to optimistic

results for high-power FEL studies. This is because 1D

simulation ignores the whole transverse phase information,

and GENESIS treats transverse mode as a Gaussian mode.

The FWHM bandwidth of the average seeded spectrum is

approximately 0.47 eV, which is less than the experimental

results (1 eV) of LCLS. The FWHM bandwidth of a single-

shot spectrum is approximately 0.42 eV. There are other

small spectral spikes, which originate from the amplifica-

tion of shot noise and the SASE background.

6 Conclusion

This paper presents a 3D Bragg diffraction code, named

BRIGHT, for XFELO and self-seeding FEL simulations.

To describe the principle of BRIGHT, we briefly derive the

solution of the dynamic theory, on which BRIGHT is

mainly based, in the two-beam case. Then, we introduce

the 3D effect into the response function of crystal in both

the reflection and transmission geometries. Meanwhile, we

reasonably simplify the 3D response function to reduce the

time consumption of BRIGHT.

An example of XFELO simulation based on the

parameters of SHINE is studied by taking advantage of the

combination of GENESIS, OPC, and BRIGHT. The results

indicate that 3D simulation gives a smaller radiation size

and a more Gaussian-like transverse mode, while there is

good agreement between the classical method calculated in

Ref. [31] and BRIGHT. We also simulate the self-seeding

FEL based on the experimental parameters of LCLS. The

simulation results illustrate that the bandwidth of a self-

seeded X-ray pulse is approximately 0.47 eV, and the

average seeded X-ray pulse energy is * 113 lJ. The

results are rather reasonable, and there is a general agree-

ment with experimental data. These results confirmed the

feasibility and effectiveness of BRIGHT, which would

make a great contribution to current and future studies of

FEL.
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