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Abstract Spectral computed tomography (CT) based on

photon counting detectors (PCDs) is a well-researched

topic in the field of X-ray imaging. When PCD is applied in

a spectral CT system, the PCD energy thresholds must be

carefully selected, especially for K-edge imaging, which is

an important spectral CT application. This paper presents a

threshold selection method that yields better-quality ima-

ges in K-edge imaging. The main idea is to optimize the

energy thresholds ray-by-ray according to the targeted

component coefficients, followed by obtaining an overall

optimal energy threshold by frequency voting. A low-dose

pre-scan is used in practical implementations to estimate

the line integrals of the component coefficients for the basis

functions. The variance of the decomposed component

coefficients is then minimized using the Cramer–Rao lower

bound method with respect to the energy thresholds. The

optimal energy thresholds are then used to take a full scan

and gain better image reconstruction with less noise than

would be given by a full scan using the non-optimal energy

thresholds. Simulations and practical experiments on

imaging iodine and gadolinium solutions, which are com-

monly used as contrast agents in medical applications, were

used to validate the method. The noise was significantly

reduced with the same dose relative to the non-optimal

energy thresholds in both simulations and in practical

experiments.

Keywords Spectral CT � Contrast agent imaging �
Cramer–Rao lower bound � Thresholds optimization � K-
edge

1 Introduction

X-ray CT imaging is an important tool in clinical

diagnoses, non-destructive testing, security inspections,

and other fields. X-ray attenuation is a function of the

photon energy and the material properties, but traditional

CT detectors cannot identify the photon energy [1].

Therefore, traditional CT systems can only provide an

average linear attenuation coefficient in the material for a

polychromatic source. Generally, the higher-energy spec-

tral components are less strongly attenuated, while the

lower-energy spectral components are more strongly

attenuated. This results in the beam-hardening effect,

which produces shading and cupping artifacts in the CT

reconstructions and is inevitable in traditional CT systems.

Spectral CT imaging can acquire signals for multiple

energy spectra, so the energy-dependent attenuation can be

fully utilized to identify different material properties to

discriminate different materials. A current popular real-

ization involves dual-energy imaging [2], which uses kVp-

switching techniques with two sources running at different

energies [3] and dual-layer detector approaches [4]. Dual-

energy imaging can effectively suppress beam-hardening

artifacts and yield specific material information, such as the
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effective atomic number that could not be obtained from

traditional CT imaging.

Spectral CT based on PCD has generated much interest

in recent years. PCD uses different energy thresholds to

identify the energy of each incident photon so that signals

collected by PCD carry energy information. K-edge

imaging [5, 6] is one of the most important PCD applica-

tions. The K-edge energies are used as thresholds, where K-

edge imaging is then used to identify and quantify high

Z elements within a specimen, an animal, or a patient.

Some high Z elements serve as contrast agents for diag-

nostic X-ray imaging, such as I, Gd, and Au solutions. The

raw CT data are then analyzed with different energy bins to

enable spectral CT to have a high signal-to-noise ratio

(SNR) and spatial resolution. The multiple spectra are then

used with material decomposition methods to discriminate

between materials. Furthermore, it is also possible to

reduce the radiation dose that is used in each scan [7]. The

common spectral CT reconstruction methods are pre-re-

construction, post-reconstruction, and ‘‘one-step’’ recon-

struction [8, 9].

The pre-reconstruction method decomposes the material

information in the projection domain. Dual effect and

material basis function techniques are commonly used for

the decomposition. The analysis also requires K-edge

material attenuation coefficients. The linear combination

coefficients of the basis functions are calculated according

to the raw projection data collected in different energy bins

to reconstruct the spatial distribution of the basis functions.

The physical model given by the pre-reconstruction algo-

rithm is fairly accurate. Since a pair of ray paths is

simultaneously measured using low and high energy bins,

this method can be implemented using dual-source or

high–low switching modes. The post-reconstruction

method decomposes materials in the spatial domain and is

mostly used in medical dual-energy CT [10]. First, the CT

images are reconstructed using the low and high energy bin

information. Then, the material basis function distributions

are obtained based on the reconstructions. This is easily

implemented and is not limited by the system scanning

method. However, beam-hardening artifacts can affect the

image quality. The ‘‘one-step’’ method directly estimates

the material reconstruction using the raw measured CT data

in the low and high energy bins. Iterative techniques are

then normally used for the ‘‘one-step’’ method, which

makes the method more complex than the other two

methods.

This work focuses on the pre-reconstruction method due

to its robustness and usefulness using pairs of matched ray

paths, which can be easily obtained in spectral CT.

The PCD signals are used to choose suitable energy

thresholds and obtain high-quality images. Two empirical

methods can be used to determine the energy thresholds.

One method simply distributes the thresholds evenly over

the entire spectrum. The other method averages the number

of incident photons over all energy bins. This study uses

Cramer–Rao lower bound (CRLB) theory to calculate the

energy thresholds. CRLB theory, originally proposed by

Cramer in 1945 [11], provides a theoretical noise bound for

unbiased estimates of random variables. In 1976, Alvarez

and Macovski used CRLB with a dual-energy CT to ana-

lyze the noise in the basis function decomposition [2]. In

2009, Rossel et al. utilized CRLB with spectral CT data to

analyze the noise in the material decomposition results in

the projection domain and in reconstructions in the spatial

domain [12, 13]. They used CRLB to obtain an analytical

expression for the lower bound of the decomposition noise.

They then optimized the thresholds based on CRLB anal-

ysis in the projection domain using line integrals over the

basis function coefficients in the special situation for a

vertical ray path [14]. Meng et al. [15] optimized the

energy thresholds in the spatial domain using image sub-

traction. Since the line integrals of the decomposition

coefficients for the scanned objects are unknown and could

vary greatly in practice, this study proposes an energy

threshold optimization method for K-edge imaging. The

main idea is to first use a low-dose pre-scan to obtain the

line integrals of the basis function coefficients. The line

integral along a single ray path is then used to reduce the

local variance of the basis function using CRLB theory.

This yields a minimum variance threshold. Frequency

voting is then used to calculate the overall optimal

thresholds. Finally, a full scan is taken using the optimal

energy thresholds in order to obtain a high-quality image.

2 Theory and methods

2.1 System model of a spectral CT

A key step in spectral CT imaging is to obtain an

energy-independent component coefficient distribution for

the scanned object. In a general model [16], the linear

attenuation coefficient curve for a certain material is

decomposed into a linear combination of several basis

functions:

lðr~;EÞ ¼
XC

s¼1

asðr~Þ/sðEÞ; ð1Þ

where /sðEÞ represents the energy-dependent component

in lðr~;EÞ and asðr~Þ represents the spatial distribution of the
component coefficient at location r~ corresponding to the

sth basis function.

Therefore, the projection of linear attenuation coeffi-

cients in CT imaging can be formulated as:
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Z
lðr~;EÞdr~¼

Z XC

s¼1

asðr~Þ/sðEÞdr~: ð2Þ

By defining the line integral of the sth basis function as As:
Z

asðr~Þdr~¼ As: ð3Þ

Equation (2) becomes:

Z
lðr~;EÞÞdr~¼

XC

s¼1

As/sðEÞ: ð4Þ

Consider a spectral CT image obtained using a photon

counting detector with NE independent energy windows.

Let ni (i ¼ 1; 2; . . .;NE) denote the number of photons

detected in the ith energy channel with �ni as its mean value.

Assuming Poisson statistics for the counting measure-

ments, the probability is:

Pr n1; . . .; nNE
ð Þ ¼

YNE

i¼1

�nnii
ni!

e��ni : ð5Þ

According to Beer’s law:

�ni ¼
Z Eiþ1

Ei

dE0
Z þ1

0

I0ðEÞ exp �
Xn

s¼1

As/sðEÞ
 !

hðE0;EÞdE

¼
Z þ1

0

I0ðEÞ exp �
Xn

s¼1

As/sðEÞ
 !

dE

Z Eiþ1

Ei

hðE0;EÞdE0

¼
Z þ1

0

I0ðEÞ exp �
Xn

s¼1

As/sðEÞ
 !

Hði;EÞdE;

ð6Þ

where I0ðEÞ denotes the spectrum of the X-ray source and

Ei is the energy threshold. hðE0;EÞ denotes the detector

response function. We also define Hði;EÞ ¼
R Eiþ1

Ei
hðE0;EÞdE0 as the integrated detector response for the

ith energy channel. We define the vector

A ¼ ðA1; . . .;ACÞT. Using the negative log-likelihood and

ignoring the constant term, the objective function to be

minimized is:

UðA1; . . .;ACÞ ¼
XNE

i¼1

ð�ni� niln�niÞ

¼
XNE

i¼1

Z þ1

0

I0ðEÞe�
PC

s¼1
AsUsðEÞHði;EÞdE

�

�niln

Z þ1

0

I0ðEÞe�
PC

s¼1
AsUsðEÞHði;EÞdE

�

ð7Þ

The function UðA1; . . .;ACÞ is nonlinear. The ni

measurements are used to calculate the line integrals A by

minimizing Eq. (7) in the case of C�NE:

Â1; . . .; ÂC
� �

¼ argmin
As

UðA1; . . .;ACÞ: ð8Þ

Newton’s method can be used to iteratively solve Eq. (8).

According to Eqs. (5–7):

Ts ¼
oU
oAs

¼
XNE

i¼1

o�ni
oAs

� ni

�ni

o�ni
oAs

: ð9Þ

Therefore, the updating formula is:

Akþ1
1

..

.

Akþ1
C

��������

��������
¼

Ak
1

..

.

Ak
C

��������
�

oT1

oA1

� � � oT1

oAC

..

. . .
. ..

.

oTC

oA1

� � � oTC

oAC

�����������

�����������

�����������

�����������

�1

Ak
s

oU
oA1

..

.

oU
oAC

�����������

�����������

�����������
Ak
s

:

ð10Þ

2.2 Optimizing energy thresholds for spectral CT

imaging

The line integral of decomposition coefficient As is

further reconstructed to determine its spatial distribution

asðr~Þ via commonly used CT reconstruction methods.

Hence, the accuracy and noise of As will propagate to

asðr~Þ, which will affect the output image quality. The key

factors in Eq. (7) affecting the accuracy and noise of As are

the energy thresholds Ei when I0ðEÞ is fixed for the system.

Hence, this study focuses on finding the optimal energy

thresholds.

The variance is minimized to optimize the energy

thresholds. According to references [12, 17, 18], there is a

lower bound for the variance of the estimate Âs:

r2s � F�1
� �

s;s; ð11Þ

where F is the Fisher information matrix of the function

UðA1; . . .;ACÞ and �½ �s;s represents an element on the

diagonal.

The Fisher information matrix with respect to As is

calculated as:

Fs1;s2 ¼
o2U

oAs1oAs2

	 
�����
Âs1 ;Âs2

; ð12Þ

o2U
oAs1oAs2

¼
XNE

i¼1

o2�ni
oAs1oAs2

þ ni

�n2i

o�ni
oAs1

o�ni
oAs2

� ni

�ni

o2�ni
oAs1oAs2

� �
;

ð13Þ

where h�i denotes the expectation value. With
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hnii ¼ �ni ð14Þ

Eqs. (12) and (13) can be simplified to:

Fs1;s2 ¼
XNE

i¼1

1

�ni

o�ni
oAs1

o�ni
oAs2

�����
Âs1 ;Âs2

: ð15Þ

The optimal energy thresholds are then:

E�
i ¼ argmin

Eif g;i2 1;NE½ �
F�1
� �

s;s: ð16Þ

However, there are three problems:

1. The line integral As is not known for practical scans.

2. There are a huge number of ray paths in CT images,

and the optimal energy thresholds can differ for

different paths.

3. The optimal energy thresholds can also differ for

different basis components.

In light of these problems, the following method was

developed to optimize contrast agent imaging in spectral

CT images:

1. Pre-scan an object with an ultra-low dose.

2. Estimate Âs from the pre-scan data using Eqs. (8–10).

3. Find the optimal energy thresholds for each ray for the

basis function of interest, which are the contrast

fractions in this task according to Eqs. (15) and (16)

(the basis function of interest is the component of

contrast agent in this paper).

4. Set the optimal energy thresholds as the thresholds

with maximum frequency for the ray paths of interest.

5. Scan the object with a normal dose.

6. Decompose the material components and reconstruct

the spatial distribution of the coefficients.

Since there is no closed form solution for the noise as a

function of the energy thresholds, we can only optimize by

threshold scan.

The pseudo-code for the decomposition procedure and

the procedure used to find the optimal thresholds for every

single ray path is as follows (Table 1).

3 Experimental studies

The method was validated using simulations and prac-

tical experiments on commonly used I and Gd solutions.

These experiments used the photoelectric effect function,

Compton effect function, and attenuation function for the

contrast agent as the basis functions for component

decomposition.

3.1 Simulation experiments

The simulations used the phantoms shown in Fig. 1.

Data were collected in 360 views over 2p using the

energy spectrum shown in Fig. 2. This method can be

extended to cases with other numbers of energy bins. We

would like to focus on 4 energy bins because the

advantage of using more than 4 energy bins is limited in

our studies. The detector response function was assumed

to be ideal, i.e., Hði;EÞ ¼ 1. The distance from the

source to the center of rotation is 48.5 cm, and the

distance from the source to the detectors is 73.5 cm. The

detector is 15.36 cm in width with 100 um bin size. The

pixel size of the reconstruction image is 100 um. These

geometric parameters are suitable for both simulation

and practical experiments.

Table 1 The pseudo-code for the optimization method

Define Niter and initialize A1

for iteration k ¼ 1 toNiter

for i ¼ 1 toNE , Calculate �nki by Eq. (6)

end

Update Akþ1 by Eqs. (8–10)

end

A ¼ ANiterþ1

To optimize Ei, fix E1; . . .;Ei�1;Eiþ1; . . .;ENE

Calculate �n1; . . .; �ni�1; �niþ1; . . .; �nNE
by Eq. (6)

for Ei ¼ Ei�1 toEiþ1:

Calculate �ni by Eq. (6)

Calculate F by Eq. (15)

NoiseðEiÞ ¼ F�1
� �

s;s

end

Search E�
i ¼ argmin Eif g NoiseðEiÞs;s

Fig. 1 a Numerical phantom used for imaging Gd; b numerical

phantom used for imaging I
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3.1.1 Optimize energy thresholds for imaging the Gd

contrast agent

As mentioned in Sect. 2.2, a pre-scan of the phantom

was performed using the non-optimized energy thresholds.

Since the K-edge of Gd is 50 keV, one threshold was set to

50 keV. In the normal-dose case, I0 was 2� 106. To yield

reasonable comparisons, the normal dose was divided into

two parts with 10% of the normal dose used for the pre-

scan so that the pre-scan dose was 0:1I0 ¼ 2� 105. The

other 90% of the normal dose was used for imaging with

the optimal thresholds. The pre-scan thresholds and the

spectrum are shown in Fig. 2. The simulations used

E1 ¼ 25 keV, E3 ¼ 50 keV, and E5 ¼ 100 keV, and the

thresholds for E2 and E4 were determined for each ray.

Equations (8–10) were used to compute the line inte-

grals of the decomposition coefficients for each basis

function using the pre-scan data. The distribution of the

line integral AGd is shown in Fig. 3.

We could see that there are some line integrals of Gd

smaller than 0 because of noise. In theory, zero values of

AGd are expected for rays that avoid the contrast agent.

These negative values are considered to result from noise.

We set a threshold to pick AGd related to the contrast agent

as:

Thr ¼ �min AGdð Þ 8AGd: ð17Þ

Therefore, only ray paths satisfying the condition

AGd [Thr are taken into account for energy threshold

optimization. This strategy was applied to all our simula-

tions and practical experiments.

Then, the CRLB of the basis functions was calculated

for Gd using Eqs. (11–15). We could then obtain the

thresholds of E2 and E4, which responds to the minimum

CRLB value for each ray path taken into account. The

frequencies for the optimal thresholds of E2 and E4 for

each path were taken into account, as shown in Fig. 4. The

maximum frequencies for E2 and E4 were 39 keV and 60

keV. The optimized thresholds are shown in Fig. 2 for this

imaging case. With these thresholds, the number of emitted

photons in each energy bin from low to high was

4:3619� 105, 4:0593� 105, 4:0216� 105, and

5:2595� 105. These photon counts in each energy bin

differ by about 30%. The phantom was then scanned with

the optimal thresholds and an incident photon flux of

0:9I0 ¼ 1:8� 106. The results are compared with a normal

scan with a non-optimal energy threshold in Fig. 5. New-

ton’s method was used for decomposition with the FBP

reconstruction for each basis function. The results show

that the image quality is significantly improved in all the

coefficient images. The results were validated quantita-

tively by calculating the standard deviation (SD) over the

regions of interest (ROI) indicated in Fig. 5. These ROIs

were all circular regions containing a uniform material with

the edge pixels excluded. The standard deviations are listed

in Table 2, where ‘‘PE’’ denotes the basis component of the

photoelectric effect function, and ‘‘Cmp’’ denotes the basis

component of the Compton effect function. The results

show that the decomposed images of the Gd contrast agent

obtained with this method contain less noise, even though

only they used only 90% of the dose of the non-optimal

energy thresholds. The noise with the photoelectric effect

and Compton effect functions are also lower than the non-

optimal-threshold case.

Fig. 2 Spectrum and energy thresholds for the Gd phantom. The

dashed lines are the non-optimal thresholds. The solid lines are the

optimal thresholds

Fig. 3 The distribution for the line integral of Gd component

Fig. 4 Frequency of the optimal values for E2 and E4 for the Gd

phantom
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We further tested our method on a more complex

FORBILD head phantom [19]. Four Gd solutions were

inserted, as shown in Fig. 6. All the percentages refer to

mass fractions. The settings were the same as before. The

pre-scan used a dose of 0:1I0 ¼ 1� 105. The source

spectrum with pre-scan thresholds is shown in Fig. 7. E2

and E4 are optimized for each ray and the distributions of

the resulting optimal values are shown in Fig. 8. E2 and E4

were set to 39 keV and 60 keV (with maximum frequen-

cies) by frequency voting. The decomposed component

images for the non-optimal energy thresholds cases were

reconstructed using data with a 100% dose, while the

optimal energy thresholds cases used a 90% dose. The

reconstruction results are shown in Fig. 9. Standard devi-

ations within the ROIs were again calculated to evaluate

the reconstruction image quality (listed in Table 3). The

results show that this method is much less noisy, even

though only 90% of the dose was used to determine the

non-optimal energy thresholds.

3.1.2 Optimized energy thresholds for imaging contrast

agent I

In this section, contrast agent I was the target material;

hence, I was used as a basis function. The phantom is

shown in Fig. 1b. Since the K-edge of I is 33 keV and the

minimum threshold is 25 keV, the analysis did not use

another threshold between those two limits, as was the case

with Gd. The analysis fixed E1 ¼ 25 keV, E2 ¼ 33 keV,

Fig. 5 Decomposed component images of the three basis functions.

The left panel shows the non-optimal energy threshold case with

100% dose, and the right panel shows the optimal energy threshold

image with 90% dose. a Component images of Gd (display window:

[- 0.015, 0.015]). b Component image of the photoelectric effect

(display window: [- 6000, 12,000]). c Component image of the

Compton effect (display window: [- 0.1, 0.12])

Table 2 Noise of decomposed component image for every basis

function

Material Component SD

Non-optimal Optimal

50 mg/mL Gd Gd 3.14e-3 1.44e-3

100 mg/mL Gd 3.22e-3 1.60e-3

150 mg/mL Gd 3.34e-3 1.67e-3

Bone PE 1.60e3 1.42e3

Cmp 2.20e-2 1.61e-2

Fig. 6 FORBILD head phantom with contrast agent added

Fig. 7 Spectrum and energy thresholds for the FORBILD phantom.

The dashed lines are the non-optimal thresholds. The solid lines are

the optimal thresholds
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and E5 ¼ 100 keV, and only E3 and E4 were optimized.

The pre-scan thresholds are shown in Fig. 10. The pre-scan

dose was again 0:1I0 ¼ 2� 105. The optimal thresholds

were then computed for each ray. The results are shown in

Fig. 11. The optimal thresholds are 39 keV and 52 keV for

E3 and E4, respectively. The number of emitted photons in

the four energy bins is 2:1562� 105, 4:8548� 105,

2:0730� 105, and 8:6094� 105, which is a rather unbal-

anced division of photon counts. A spectral CT scan was

then performed with a dose of 0:9I0 ¼ 1:8� 106 using the

optimized threshold shown in Fig. 10. The result is com-

pared with the non-optimal-threshold case with a dose of

I0 ¼ 2� 106. The reconstructed material component ima-

ges shown in Fig. 12 show visually lower noise levels in

Fig. 8 The frequency of the optimal values for E2 and E4

Fig. 9 Decomposed component images of the three basis functions

for the FORBILD phantom. The left panel shows the non-optimal

energy threshold case with 100% dose, and the right panel shows the

optimal energy threshold result with 90% dose. a Component images

of Gd (display window: [- 0.03, 0.1]). b Component image of the

photoelectric effect (display window: [- 20,000, 90,000]). c Compo-

nent image of the Compton effect (display window: [- 0.08, 0.38])

Table 3 Noise in the decomposed component images for each basis

function with the FORBILD phantom

Material Component SD

Non-optimal Optimal

1% Gd Gd 8.13e-3 2.74e-3

2% Gd 6.33e-3 2.35e-3

3% Gd 5.88e-3 2.45e-3

4% Gd 5.67e-3 2.35e-3

Bone PE 6.79e3 6.53e3

Cmp 2.28e-2 2.25e-2

Fig. 10 Spectrum and energy thresholds for the I phantom. The

dashed lines indicate the non-optimal energy thresholds. The solid

lines are the optimized energy thresholds

Fig. 11 The frequency of the optimal value for E3 and E4 for the I

phantom
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the reconstructions using these methods with 90% dose.

The standard deviations are listed in Table 4. Similar to the

Gd contrast agent imaging, the image quality with the

decomposed coefficients is significantly improved, though

not as much as in the Gd case.

These three simulations show that energy threshold

optimization is an important issue in spectral CT imaging.

Moreover, the optimal energy thresholds vary greatly for

different imaging tasks. Thus, real applications require

case-by-case optimization of the energy thresholds.

3.2 Practical experiments

The energy threshold optimization method was further

validated by imaging Gd and I solutions. All the solution

percentages indicated here refer to mass fractions.

The measurements used an XCounter Flite X1 photon

counting detector. Its energy response function hðE0;EÞ
was calibrated with fluorescence signals using a hybrid

model combining Monte Carlo predictions with a linear

correction [20, 21]. The X-ray source was 100 kVp, and the

current was 1 mA. The source spectrum was then measured

using the pre-calibrated detector response function by a

blank scan with threshold scanning [22]:

nBlanki ¼
Z þ1

0

I0ðEÞ
Z Eiþ1

Ei

hðE0;EÞdE0dE; ð18Þ

where Ei are the discretized thresholds with small steps.

This equation was calculated numerically.

Since the detector response is calibrated to be a dis-

cretized function with step-size 1.8 keV, the resolution of

the optimized energy threshold was no better than 1.8 keV.

The exposure time per view for the pre-scan was 0.33

second with data collected for 72 views over 2p during the

pre-scan. The normal-dose imaging used a 1-s exposure

time per view, with projections using 360 views over 2p.
The optimal energy threshold scans with the reduced dose

used projections with 360 views over 2p and 0.93 second

exposure time per view. This ensures that the total pre-scan

dose plus the optimal energy threshold scan were nearly

equal to the dose used in normal imaging. The analyses

used the same Newton’s method decomposition and FBP

reconstruction as in the simulations.

3.2.1 Optimized energy thresholds for the Gd contrast

agent imaging

The measurements used the phantom shown in Fig. 13.

The materials that were placed in the phantom are listed in

Table 5.

The measured data were analyzed using the photoelec-

tric effect function, Compton effect function, and attenu-

ation function of 50 lm Gd as basis functions. The non-

optimal pre-scan energy thresholds shown in Fig. 14 were

Fig. 12 Decomposed component images of each basis function for

different energy thresholds. The left side shows the non-optimal

energy thresholds with 100% (normal) dose, while the right side

shows the optimal energy thresholds with 90% dose. a Component

images for I (display window: [- 0.008, 0.011]). b Component

images for the photoelectric effect (display window: [- 5000,

12,000]). c Component images for the Compton effect (display

window: [- 0.06, 0.11])

Table 4 Standard deviation of the decomposed component images

for each basis function

Material Component SD

Non-optimal Optimal

10 mg/mL I I 1.73e-3 1.57e-3

20 mg/mL I 1.84e-3 1.68e-3

30 mg/mL I 2.03e-3 1.88e-3

Bone PE 1.85e3 1.75e3

Cmp 1.96e-2 1.77e-2
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used to optimize the energy thresholds for each ray. The

optimal E2 and E4 frequencies are shown in Fig. 15.

The optimal energy thresholds shown in Fig. 14 were

then used to record reduced dose scans. The ring-artifact

reduction (RAR) method was used during reconstruction

due to strong non-uniformities in the detector response.

The decomposition coefficient images are shown in

Fig. 16. The noise is significantly reduced, both with and

without RAR. The improvement is further confirmed by the

ROI standard deviations listed in Table 6.

As in the simulation study, the optimized energy

thresholds significantly improve the image quality of the

Gd-decomposed image, which is the optimization target.

The image qualities with the photoelectric effect compo-

nents and the Compton effect components are also slightly

better than the images obtained with the non-optimized

thresholds and with a normal dose. The gains due to energy

threshold optimization with and without RAR are similar.

Therefore, only the results with RAR from the other

experiment will be shown.

3.2.2 Optimize energy thresholds for contrast agent I

imaging

These measurements used the phantom shown in Fig. 17

with the materials listed in Table 7.

The analyses used the photoelectric effect, Compton

effect, and I mass attenuation functions as basis functions.

The pre-scan thresholds and spectrum are shown in Fig. 18.

The energy thresholds E1, E2, and E5 were fixed, while

only E3 and E4 were optimized as in the simulations. The

optimized energy threshold frequencies are plotted in

Fig. 19 for the optimal threshold settings shown in Fig. 18.

The reconstructions from the optimal energy and non-op-

timal energy threshold scans are shown in Fig. 20. The ROI

standard deviations for the component images are listed in

Table 8. The results show reduced component noise for the

I contract agent. The results show that using the photo-

electric and Compton effect basis functions also improves

the images.

Thus, there is a clear upgrade of the image quality of

decomposed I component. The image quality of the pho-

toelectric effect and Compton effect components are also

better than the non-optimized results.

3.3 Influence from the accuracy of coefficient

projections to optimal energy thresholds

The line integrals of the decomposition coefficients for

the material basis functions could be noisy in the low-dose

pre-scan so that we would obtain a noise-affected distri-

bution for the ray-by-ray optimal energy thresholds. Fre-

quency voting will find the location of the maximum

frequency value to remove this noise effect. For demon-

stration, we compared the optimal energy thresholds results

Fig. 13 Phantom used in the measurements

Table 5 Materials in the

phantom
Region ID Material

1 1.5% Gd

2 1% Gd

3 0.5% Gd

4 0.4% Gd

5 Water

6 10% CaCl2

7 Air

8 PMMA

Fig. 14 Spectrum and thresholds for the Gd phantom. The dashed

lines are the non-optimal energy thresholds used in the pre-scan. The

solid lines are the optimal energy thresholds

Fig. 15 Frequency of the optimal values for E2 and E4
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from a low-dose scan and a normal-dose scan for the

simulation study of I imaging. The dose is 2e5 for the

normal-dose situation and 2e4 for the low-dose situation.

The ray-by-ray optimal energy thresholds for E3 and E4

are shown in Figs. 21 and 22, respectively. We can see that

the optimal energy thresholds may be different in some ray

paths due to the larger amount of noise in low-dose pre-

scan. The location of the frequency maximum is the same

for both E3 and E4. Hence, the frequency voting strategy

can mostly remove the influence of noise from a low-dose

scan. This tells us that a low-dose pre-scan is sufficient to

find the comprehensive optimal energy thresholds.

Fig. 16 Reconstruction results of the decomposed components. The

images in the left two columns are without RAR for the non-optimal

and optimal thresholds. The images in the right two columns are

shown with the RAR corrections. First row: images of the Gd contrast

agent after threshold optimization. Second row: images of the

photoelectric effect component. Third row: images of the Compton

effect component. Images from the optimal-threshold scan have lower

noise than images obtained from the non-optimal-threshold scan

Table 6 Standard deviations of

the decomposed component

images for the various basis

functions

Material Component SD w/o correction SD w/o correction

Non-optimal Optimal Non-optimal Optimal

0.4% Gd Gd 7.61e-3 7.16e-3 7.59e-3 7.14e-3

0.5% Gd 7.78e-3 7.33e-3 7.82e-3 7.31e-3

1% Gd 8.18e-3 7.62e-3 8.19e-3 7.59e-3

1.5% Gd 8.22e-3 7.72e-3 8.22e-3 7.65e-3

10% CaCl2 PE 107.80 107.36 99.32 98.80

Water 95.63 95.16 83.74 82.95

10% CaCl2 Cmp 2.78e-3 2.60e-3 2.62e-3 2.59e-3

Water 2.72e-3 2.50e-3 2.59e-3 2.44e-3
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Fig. 17 Phantom used in the measurements

Table 7 The materials in the

phantom
Region ID Material

1 0.5% I

2 1% I

3 1.5% I

4 2% I

5 10% NaCl

6 10% CaCl2

7 Water

8 PMMA

Fig. 18 Spectrum and energy thresholds for the I phantom. The

dashed lines indicates the non-optimal energy thresholds, and the

solid lines indicate the optimal energy thresholds

Fig. 19 Frequency of the optimal value for E3 and E4

Fig. 20 Decomposed component images of the phantom measure-

ments. The left column shows the non-optimal energy thresholds,

while the right column shows the optimal energy thresholds.

a Component images of I with display window [- 0.0025, 0.002].

b Component images of the photoelectric effect with display window

[- 1000, 3000]. c Component images of the Compton effect with

display window [- 0.005, 0.025]

Table 8 SD of decomposed component images

Material Component SD w/o RAR

Non-optimal Optimal

2% I I 2.74e-4 2.34e-4

1.5% I 2.63e-4 2.28e-4

1% I 2.58e-4 2.26e-4

0.5% I 2.54e-4 2.22e-4

10% CaCl2 PE 250.24 203.87

10% NaCl 239.00 197.04

10% CaCl2 Cmp 1.35e-3 1.29e-3

10% NaCl 1.37e-3 1.30e-3

123

Optimized energy thresholds in a spectral computed tomography scan for contrast agent imaging Page 11 of 13 38



4 Discussion and conclusion

This work presents a method for optimizing the energy

thresholds in a spectral CT for contrast agent imaging. The

optimization problem minimizes noise in the contrast agent

components. The method is based on CRLB and basis

function decomposition in the projection domain. The basic

FBP reconstruction method is used to avoid bias in the

spatial CT reconstruction. The optimization is customized

for each scan using an ultra-low-dose pre-scan. Scans using

the optimal thresholds then use slightly reduced doses so

that the total dose is no higher than for a normal scan. The

method was tested in simulations and practical

experiments.

We notice that there would be an unavoidable error in

the estimations of hðE0;EÞ and I0ðEÞ, which are required in

our CRLB computation. This could affect our optimal

thresholds and reconstructions. Hence, improvements in

practical experiments could be affected by accuracy of the

estimated hðE0;EÞ and I0ðEÞ functions. The reconstructed

image qualities are much better. The level of improvement

is related to the distance between the optimal and non-

optimal energy thresholds. Non-target component images

can also be improved by optimizing the energy threshold,

though not as much as the targeted components. Thus,

energy threshold optimization can improve the image

quality, with task-oriented optimization yielding the best

results. Moreover, we would like to point out that the

optimal energy thresholds in our study do not form uniform

photon counts among different energy windows, which is a

common choice in the field. We observe a difference of

more than 300% between photon counts in the optimal

setting. We think this is because noise in the reconstruc-

tions is mainly affected by the detected signals, which are

affected by the source spectrum, energy bin separation, and

scanned object. Uniform incident photon counts for dif-

ferent energy bins do not necessarily yield an optimal noise

distribution of the detected signals. Therefore, optimal

thresholds are task dependent and could be very different

from an even incident photon distribution in energy bins.

We also performed tests on freeing the thresholds at K-

edge points and optimizing these thresholds. Without

exception, setting thresholds at K-edge points of the con-

trast agents gives us optimal results. Therefore, we can

conclude that optimizing the two energy thresholds in our

four energy windows case is sufficient to produce images

with improved quality.

This study presents a method for optimizing the energy

thresholds in multi-energy spectral CT. This method can be

computationally expensive because it calculates the prob-

ability distribution of the optimal thresholds for all rays. A

lookup table could be developed for the decomposition

coefficients of various material compositions for the ray

paths based on a large set of clinical data. Further work will

consider practical implementations of this method.
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