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Abstract
In γ-ray imaging, localization of the γ-ray interaction in the scintillator is critical. Convolutional neural network (CNN) 
techniques are highly promising for improving γ-ray localization. Our study evaluated the generalization capabilities of a 
CNN localization model with respect to the γ-ray energy and thickness of the crystal. The model maintained a high posi-
tional linearity (PL) and spatial resolution for ray energies between 59 and 1460 keV. The PL at the incident surface of the 
detector was 0.99, and the resolution of the central incident point source ranged between 0.52 and 1.19 mm. In modified 
uniform redundant array (MURA) imaging systems using a thick crystal, the CNN γ-ray localization model significantly 
improved the useful field-of-view (UFOV) from 60.32 to 93.44% compared to the classical centroid localization methods. 
Additionally, the signal-to-noise ratio of the reconstructed images increased from 0.95 to 5.63.
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1  Introduction

Gamma-ray (γ-ray) imaging can obtain the spatial distribu-
tion of γ radioisotopes, which has unique advantages for 
radioactivity monitoring. This technology is widely used 
for homeland and public safety, as well as in the nuclear 
industry, medicine, and other fields. Considering the pro-
cess of the scintillator detector in γ-ray imaging, the light-
field distribution of scintillation generated by the interaction 
between the rays and scintillators is an essential step that is 
used to estimate the position of the interaction of the inci-
dent γ-rays. Localization algorithms have aimed to expand 
the useful field-of-view (UFOV) of a crystal, increase the 
spatial resolution (SR) of the detector, and decrease the 

image distortion caused by hardware nonuniformity [1–4]. 
Localization algorithms used for γ-imaging mainly include 
lookup tables, the maximum likelihood, classical center-of-
gravity (COG), threshold-center-of-gravity (TCOG), and 
raise-to-power (RTP) methods [5–7]. The lookup table and 
maximum likelihood methods significantly improve imag-
ing; however, they require several experiments to obtain the 
response function of optical photons in the early stage. The 
COG and TCOG methods have become widely used owing 
to the availability of rapid computing and simple electronic 
systems. The COG method estimates the location of inter-
action by determining the center of gravity of the scintilla-
tion light, which can be affected by the light-field shrinkage 
effect, resulting in a poor resolution at the edge of the image 
and a reduced UFOV of the detector [8]. Artificial intelli-
gence technology has been used in γ-ray imaging systems.

K-nearest neighbor (KNN) networks have been used to 
calculate the position of photon interactions in PET and 
Compton cameras with a resolution of up to 3 mm [9, 10]. 
However, the long computation time and calibration meas-
urements limit the application of KNN [11]. Feed-forward 
neural networks (FFNNs), such as the multilayer perceptron 
(MLP) and radial basis function (RBF), have also been used 
for γ ray localization [12–18]. Compared to the KNN, the 
FFNN has a higher SR and can be calculated quickly.
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The convolutional neural network (CNN) offers more 
advantages compared to the FFNN, such as the computing 
speed and storage scale. The CNN used in radiation imaging 
has achieved an excellent SR, demonstrating its substan-
tial potential for further development in the nuclear field 
[19–25].

In a previous study, we developed a gamma imag-
ing system based on monolithic LaBr3(Ce) crystals [26]. 
Because the transport process of the optical photons inside 
a LaBr3(Ce) crystal is accurately described, we obtained a 
response based on the distribution of the scintillation pho-
tons and developed the CNN γ-ray localization model. This 
study investigates the generalization ability of the CNN 
γ-ray localization model for thick crystals and various ener-
gies and establishes an imaging detector model based on the 
parameters of a physical detector, a CNN γ-ray localization 
model, and a modified uniform redundant array (MURA) 
imaging system. The CNN γ-ray localization model signifi-
cantly weakens the shrinkage effect and improves the signal-
to-noise ratio (SNR) of an image in imaging systems using a 
thick-crystal detector, demonstrating a strong generalization 
ability over a wide range of γ-ray energies.

2 � Materials and methods

Geometry And Tracking 4 (Geant4) and PyTorch were used 
to build a Monte Carlo detector model, MURA imaging 
system, and CNN γ-ray localization model. First, we used 
Geant4 to establish an LaBr3(Ce) detector model based on 
a physical detector, including accurate electromagnetic and 
optical processes. Second, a detector response matrix for the 
neural network dataset was obtained and the CNN model 
was trained for γ-ray localization using PyTorch. Third, 
the trained CNN network was used to locate γ rays and the 
localization results were analyzed.

2.1 � Model of imaging detector

In this study, we used Gean4 and PyTorch for the imag-
ing experiments and for training the neural network. The 
Gean4 simulation code contains the following two systems: 
flood-field irradiation and MURA imaging. The flood-field 
irradiation system consists of an imaging detector model and 
flood-field irradiation, which are used to obtain the dataset 
for training the neural network and testing the generalization 
ability of the neural network. The MURA imaging system 
consists of an imaging detector model, a MURA collimator, 
and a circular source to test the imaging results of different 
localization algorithms. Based on PyTorch, we built a CNN 
γ-ray location model for training the weight parameters and 
for localization of the interaction points of the rays.

2.1.1 � Flood‑field irradiation system

The detector model consisted of a monolithic LaBr3(Ce) 
crystal (51 mm × 51 mm × 5 mm) combined with a sili-
con photomultiplier (SiPM) array. The 16 × 16 SiPM array 
(Micro-30035-TSV, ONSEMI) had sensitive and pack-
age areas of 3.07mm × 3.07mm and 3.16mm × 3.16mm , 
respectively, as shown in Fig. 1a. Teflon (0.3 mm thick) was 
used as a diffuse reflective layer, which was encapsulated in 
aluminum foil (0.5 mm) as the reflective mirror layer, and 
3 mm of thick glass was at the bottom of the crystal. Optical 
grease, which was 0.1 mm thick with a reflectivity of 1.41, 
was used as a light guide for the glass and SiPM array.

Accurate optical processes must be included in the model 
in addition to physical electromagnetic processes because 
the detector response must be obtained through the SiPM 
array. If the wavelength of a photon is significantly greater 
than the typical atomic spacing, the rays are considered 
optical photons. In Geant4, optical photons are distinct 
from high-energy γ photons and are not subject to energy 
conservation; their energies must not be tallied as part of 
the balance of a physical event. Electromagnetic and opti-
cal processes occur in a detector. The electromagnetic pro-
cesses include the photoelectric effect, Compton scattering, 
electron-pair effect, ionization, bremsstrahlung, and multiple 
scattering. The optical processes include scintillation, Cher-
enkov radiation, Rayleigh scattering, Mie scattering, bulk 
absorption, refraction, and reflection [specular spike (SS), 
specular lobe (SL), Lambertian (L), and backscatter (BS)].

The transport process of optical photons is divided 
into two categories: the transport process of optical pho-
tons inside the material, for which the simulation program 
requires the user to specify the material parameters, and 
the transport behavior of optical photons between different 
media, for which the simulation program requires the speci-
fication of the surface parameters. The material parameters 
control the generation and transport of the optical photons 
in a material. The surface parameters control the physical 
processes of the optical photons on the surface between the 
media. The material parameters mainly refer to the intrinsic 
parameters of the scintillator, namely, the emission spectrum 
(EMISSION SPECTRA), light yield (SCINTILLATION 
YIELD), intrinsic resolution (INTRINSIC RESOLUTION), 
and time constant (FASTCOMPONENT). The surface 
parameters mainly include the surface type (TYPE), surface 
finish (FINISH), detection efficiency (EFFICIENCY), reflec-
tivity (REFLECTIVITY), and reflection type (REFLECTIV-
ITY TYPE).

The transport of optical photons between the boundaries 
depends on the boundary type (TYPE) of the two dielec-
tric materials. The primary types of boundaries are dielec-
tric–dielectric and dielectric–metal. The dielectric–die-
lectric boundary is that between two dielectric materials. 



Generalization ability of a CNN γ‑ray localization model for radiation imaging﻿	

1 3

Page 3 of 13  185

Fig. 1   (Color online) Flood-field irradiation system, MURA imaging system, and CNN structure
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Depending on the wavelength of the optical photons, angle 
of incidence, and refractive index of each dielectric, the 
optical photons are refracted and reflected by the boundary 
between the two materials. The dielectric–metal boundary 
is that between the transparent media and metals. Optical 
photons can be absorbed by the metal surface or reflected 
into the transparent media. The absorbance of photons by 
the metal surface is recorded based on the photon detec-
tion efficiency (PDE) of the metal. In this study, the Tef-
lon, SiPM, and LaBr3(Ce) surfaces had dielectric–metal, 
dielectric–metal, and dielectric–dielectric boundaries, 
respectively.

During the simulation of the imaging experiment with 
flood-field irradiation, 122, 365, 662, and 1332 keV γ rays 
vertically irradiated the incident surface of the detector. 
When the γ rays interacted with the detector, the detector 
emitted isotropic scintillation photons at the point of inter-
action according to the energy that the rays transferred to 
the detector. For the scintillation photons transported to 
the surface of the encapsulation material (aluminum foil 
or Teflon), the total reflection, refraction, or reflection of 
the photons was simulated according to the wavelength and 
incident angle of the photons and the refraction coefficients 
of the materials on either side of the boundary. The scintil-
lation photons reach the SiPM surface and the conversion to 
electron–hole pairs was determined by the wavelength of the 
photons and PDE of the SiPM. The number of electron–hole 
pairs was recorded [24]. The scintillation photons generated 
during each event were recorded by the SiPM array to form 
a response matrix, as shown in Fig. 1a. The detector model 
outputs the corresponding matrix and the two-dimensional 
coordinates of the incident γ rays for each event. The matrix 
was normalized and used to train the neural network, and the 
coordinates were used as labels.

2.1.2 � MURA imaging system

Figure 1b demonstrates the MURA imaging system. The 
MURA-coded aperture collimator in the imaging system was 
composed of tungsten and was 72.7 mm × 72.7 mm × 5 mm 
in size. The γ-ray energies emitted from the circular source 
were as follows: 59 (241Am), 122 (57Co), 59 (241Am), 140 

(99mTc), 365 (131I), 662 (137Cs), 779 (152Eu), 1332 (60Co), 
and 1460 keV (40 K). The distance from the source to the 
collimator was 180 mm and that from the collimator to the 
detector surface was 50 mm. The source, coding plate, and 
detection planes were parallel and coaxial.

During the γ imaging simulation, the rays from the radia-
tion source passed through the collimator, deposited energy 
in the detector, and emitted scintillation photons. These pho-
tons, which were absorbed by the SiPM array after reflec-
tion and refraction inside the detector, represent the scintil-
lation distribution and produced a response. Finally, we used 
several algorithms (CNN, Anger, RTP, TCOG (θ = 0.2%), 
TCOG (θ = 0.5%)) based on the detector response matrix to 
calculate the coordinates of the position of interaction and 
counted the events needed to obtain the encoded image. The 
MELM algorithm was then used to decode the coded image 
and reconstruct the shape of the radiation source [27].

2.1.3 � CNN structure

The CNN was implemented by using PyTorch, which con-
tained nine convolutional layers and three fully connected 
layers, with two average pooling layers connecting the 
convolutional layers of different dimensions, as shown in 
Fig. 1c. In the CNN, the response matrix of each event that 
was output by the SiPM array was represented by a 16 × 16 
tensor input to the CNN. The 2-D coordinates were output 
following feature extraction by a convolution layer and using 
fitting calculations by a fully connected layer. The relevant 
hardware parameters used for developing the CNN are listed 
in Table 1.

2.2 � CNN model training and testing

To improve the generalization ability, 1 × 10
6 samples 

(response matrices of events) were used to train the CNN, 
2 × 10

4 samples were used to validate the performance of 
the CNN and prevent overfitting, and 3.6 × 10

5 samples were 
used to test the localization ability. To train the CNN γ-ray 
localization model, we used 122, 365, 662, and 1332 keV γ 
rays to vertically irradiate a 5-mm-thick crystal and obtain the 
response matrices. We used the mean square error (MSE) as 

Table 1   Hardware parameters 
related to CNN

Parameters Version

Operating System (OS) Ubuntu 20.04.4 LTS
Graphics Card NVIDIA GeForce RTX 3080
Central Processing Unit (CPU) AMD Ryzen Threadripper Pro 3995wx
Integrated Development Environment (IDE) PyCharm 2020
Deep Learning Frameworks Pytorch 1.6.0
Computer Programming Language Python 3.8.3
General Parallel Computing Architectures Cuda 11.0
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the loss function, and the weights of each layer were iteratively 
updated using the Adam algorithm. The learning rate was set 
to 1 × 10

−4 , and the batch size was 16. The MSE function was 
defined as follows:

where i is the sample number, m is the total number of sam-
ples, yi and ŷi are the label and predicted values of sample 
i , respectively, and D is the length of the incident surface 
of the detector.

The MSEs of the different datasets are listed in Table 2, 
which range between 0.51 and 0.58; the MSEs of the test and 
training sets are close, which indicates the strong generaliza-
tion ability of the CNN.

2.3 � Classical localization algorithm

The COG proposed by Anger, which is a classical localization 
algorithm for γ-imaging, uses the center coordinates of the 
photoelectric device as linear weights to calculate the position 
of the interaction of the photon, as expressed by the following:

where XAnger is the coordinate of the incident photon in the x 
direction, xk represents the coordinate of the center position 
of the kth SiPM in the x direction, ck is the signal collected 
by the kth SiPM, and n is the number of SiPMs in the x 
direction. The same equation applies to the y-direction.

The localization results of the COG method demonstrate 
a strong shrinkage effect in γ-imaging devices owing to the 
limitations imposed by the nonuniformity of the scintillators 
and photoelectronic devices [28]. The localization results were 
compressed toward the center of the image, which reduced the 
UFOV and enhanced the nonuniformity. Wojcik et al. pro-
posed a truncated center-of-gravity (TCOG) method to reduce 
the shrinkage effect by setting a threshold [7], where only the 
signals above the threshold were used to calculate the localiza-
tion position, whereas those below the threshold were set to 
zero, as shown in Eq. (3) [8]:

(1)MSE =

∑m

i=1
(yi − ŷi)

2

m
× D,

(2)XAnger =

∑n

k=1
xkck

∑n

k=1
ck

,

(3)XTCOG =

∑n

k=1
xk × (ck − �×ck)

∑n

k=1
(ck − � × ck)

,

where � is the threshold. In this study, �1 = 0.002 and 
�2 = 0.005 . The same formula is applied in the y-direction. 
To improve the TCOG method, a raise-to-power (RTP) algo-
rithm was proposed based on the TCOG as follows:

where � is a power operation; in this study � = 2 and 
� = 0.005 . The RTP algorithm performs a power operation 
on the signal; therefore, the position weights are nonlinear. 
The position weights increase for large signals and decrease 
for small signals. Thus, the calculated coordinates are near 
the strong signals [2]. Compared to the TCOG, the RTP 
algorithm can eliminate the influence of small signals and 
reduce the shrinkage effect more effectively.

3 � Results and discussion

We evaluated the energy generalization ability (EGA) and 
thickness generalization ability (TGA) of the CNN γ-ray 
localization model by changing the energy of the rays and 
thickness of the crystal.

For the EGA evaluation, γ rays of 59, 122, 140, 365, 662, 
779, 1332, and 1460 keV were used to test the positional 
linearity (PL) and spatial resolution (SR). Several locali-
zation algorithms, including CNN, Anger, RTP, TCOG 
(θ1 = 0.002), and TCOG (θ2 = 0.005), were employed to 
evaluate the TGA of the CNN model as well.

3.1 � EGA of the CNN γ‑ray localization model

The PL represents the deviation of each event measured 
from the mechanical points; PL is quantified using the 
L-factor [2] as follows:

where ΔXmeasurement is the displacement of the measured 
point, ΔXmechanical is the displacement of the mechanical 
point, and the L-factor is the slope of the linear curve at 
each measurement point. In a linear graph, the coordi-
nates of the measured and mechanical points follow the 
y = slope ⋅ x + intercept relationship, and the PL can be 
represented by L on the line. In this study, the lower left 
corner of the detector is considered the origin, and a coor-
dinate system with a minimum scale of 1 mm and a coordi-
nate axis ranging between 0 and 51 mm was established. We 
step-scanned the detector along the scan path using gamma 
rays of different energies. In Fig. 3a, the red dotted-line 
represents the scanning path, the black dots represent the 

(4)XRTP =

∑n

k=1
xk×(ck − � × ck)

�

∑n

k=1
(ck − � × ck)

�
,

(5)L =
ΔXmeasurement

ΔXmechanical

,

Table 2   MSE values in different datasets

Training sets Validation sets Test sets

MSE 0.57 0.51 0.58
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mechanical points, and the distance between two adjacent 
mechanical points is 2.5 mm.

The positions of the interaction points of the γ-rays with 
different energies at each scanning point were calculated 
by the CNN model. A PL map of the positions of all the 
mechanical points (2.5 mm step-scanning) was obtained, as 
shown in Fig. 2b.

The dashed line in Fig. 2b represents the ideal PL curve, 
where the measured and mechanical points coincide and 
the slope of the curve is 1. As shown in Fig. 2b, the PL of 
all the energy rays between the 2.5 and 50 mm range are 
near the dashed line, and the slopes range between 0.98 and 
0.99. The positioning results of the CNN for the rays ranging 
between 59 and 1460 keV exhibit good PL values. The CNN 
model demonstrates sufficient EGA values for predicting the 
position of an interaction point for energies between 59 and 
1460 keV.

Figure 3 presents the step scan images of γ-rays with 
different energies. As shown in Fig. 3b–f, the SR of the 
mechanical points varied between 0.52 and 0.76 mm when 
the energy of the γ-rays ranged between 122 and 779 keV. 

The SR of the mechanical points varied from 1.05 to 
1.19 mm when the γ-ray energy was 59 keV and between 
1332 and 1460 keV, as shown in Fig. 3a, g, h. The SR at the 
mechanical points was considered as the SR of the crystal 
(SRcrystal ) [22]. The CNN model can accurately locate the 
position of interaction of the γ-ray with the energy varying 
from 59 to 1460 keV. The CNN model exhibited a good 
energy response and strong EGA.

Figure 4 presents the images reconstructed using the 
MURA system. The circular sources emitting rays of differ-
ent energies had diameters of 10 mm. The signal-to-noise 
ratios (SNRs) of the reconstructed images were high, rang-
ing between 5.8 and 15.5 when the ray energies ranged 
between 59 and 779 keV. When the ray energies were 1332 
and 1460 keV, the SNRs of the reconstructed images were 
1.0 and 0.84, respectively.

When the energy of the incident ray is low, the cross 
section of the photoelectric effect is larger than that of the 
Compton effect, and the collimator can effectively absorb 
the rays. Hence, the amount of ray scattering is low, and 
the imaging SNR is high. As the energy increases, the cross 

Fig. 2   (Color online) Positional linearity of the mechanical points
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section of the Compton effect increases. The γ-ray interacts 
with the MURA-coded aperture collimator, producing sev-
eral scattered rays that the detector can absorb. The point of 
interaction between the scattered rays in the detector inter-
feres with the encoded image and decreases the SNR.

In the 1332–1460 keV range, the cross sections of the 
Compton effect and electron-pair effect continue to increase, 
and the SNR decreases. This is because the scattered photons 
generated by multiple scatterings and the electrons generated 
by the electron-pair effect can change the scintillation light 
distribution of the detector, affect the accuracy of the CNN 
positioning, reduce the accuracy of the encoded images, and 
decrease the SNR. When the energy of the incident γ-ray 
increases, the MURA-coded aperture collimator cannot 
effectively absorb the rays, and numerous high-energy rays 
directly penetrate the collimator and are partly or entirely 
absorbed by the detector, which significantly disturbs the 
encoding process and reduces the accuracy of the encoded 
image.

As shown in Fig. 4i–l, we obtained the reconstructed 
images by tracking the transport of rays in the model and 
ignoring the events generated by the Compton scattering 
rays from the collimator. Compared to Fig. 4e–h of the scat-
tering events, the SNR of the reconstructed image for the 
1332 keV rays improved from 1.0 to 5.7, and the SNR of the 
reconstructed image for the 1460 keV rays improved from 

0.84 to 5.0. This indicates that the scattered high-energy rays 
significantly affect the SNR of the reconstructed image. The 
influence of scattered rays in a γ-ray imaging system should 
be considered. The thickness and material of the collimator 
significantly impact the absorption of rays, notably affecting 
the imaging quality.

In addition to the E� of the incident ray, the imaging reso-
lution SRdetector of the MURA system is related to the detec-
tor resolution SRcrystal and collimator resolution SRcollimator , 
as shown in Eq. (6) [29]:

The energy of the rays and the SRcrystal are the main fac-
tors influencing the resolution of the MURA imaging sys-
tem. We calculated the relative error ( R ) of the diameter 
in the reconstructed source ( Dreconstructed ) and simulated a 
source ( Dsimulated ) using Eq. (7) to evaluate the SRdetector of 
the MURA imaging system, as listed in Table 1.

As shown in Table 3, compared to the 365 keV γ-ray, the 
SR of the crystal is greater than 1 mm when the energy of 
the γ-ray is 59 keV, and a poorer SR of the system leads to 
a larger relative geometric error of the radioactive source 

(6)(SRdetector )
2 = (SRcollimator )

2 + (SRcrystal)
2
.

(7)R =
Dreconstruted

Dsimulated

× 100%.

Fig. 3   (Color online) Location of the mechanical points of γ rays with different energies
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in the reconstructed image. When the energy of the γ-ray 
ranges between 122 and 365 keV, the collimator effectively 
absorbs the incident ray; however, the SR of the crystal is 
also high. Consequently, the relative error of the diameter of 
the circular source in the reconstructed image is the small-
est. When the energies of the rays range between 662 and 
1460 keV, the γ- and scattered rays are directly absorbed 

by the detector owing to the high energy, which strongly 
affects the projected image; therefore, the relative error of 
the reconstructed image increases as the energy of the radia-
tion increases.

Although only four types of γ rays were used to train the 
CNN γ-ray localization model in this study, the model can 
accurately locate rays of unknown energies ranging between 
59 and 1460 keV with a good PL and SR, indicating that 
the CNN γ-ray localization model demonstrates good locali-
zation and EGA characteristics. A MURA imaging system 
based on a neural network model can reconstruct the shape 
of a radiation source with energies ranging between 59 and 
1460 keV, which indicates that this localization method can 
be easily applied to imaging systems.

3.2 � Thickness generalization ability of the CNN 
γ‑ray localization model

We applied the CNN γ-ray localization model to crystals that 
were 5 and 10 mm thick. The PL and SR of the mechanical 
points were calculated to evaluate the thickness generali-
zation ability of the model. In addition to the CNN γ-ray 

Fig. 4   (Color online) Reconstruction of circular γ-ray source, with and without scattering

Table 3   Relative error in the diameters of the reconstructed and sim-
ulated sources

E� (KeV) SRcrystal (mm) Dreconstruted 
(mm)

Dsimulated 
(mm)

R (%)

59 1.05 8.8 10 − 12
122 0.73 9.5 10 − 5
140 0.67 9.4 10 − 6
365 0.52 10.3 10 + 3
662 0.62 12.4 10 + 24
779 0.69 12.6 10 + 26
1332 1.15 15.8 10 + 58
1460 1.19 17.5 10 + 75
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localization model, we used TCOG-0.002, TCOG-0.005, 
RTP, and Anger for comparison.

The PL of the mechanical points was calculated as shown 
in Fig. 5a, b. When the thickness of the crystal was 5 mm, 
the PL values of the CNN, RTP, and TCOG-0.005 were 

higher than those of TCOG-0.002 and Anger. When the 
thickness of the crystal increased to 10 mm, the slopes of 
RTP, TCOG-0.005, and TCOG-0.002 algorithms decreased 
from 0.97 to 0.92 , 0.94 to 0.92 , and 0.42 to 0.38, respectively. 
Furthermore, the slope of the Anger algorithm decreased 

Fig. 5   (Color online) The PL and SR of the mechanical points in crystals that are 5 and 10 mm thick
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from 0.37 to 0.33, whereas that of the CNN remained nearly 
unchanged. By comparing Fig. 5a, b, the CNN model appar-
ently has the best PL for the same thickness, and under the 
same localization algorithm, the PL of a thick crystal is 
worse than that of a thin crystal. This is because the shrink-
age effect increases as the thickness of the crystal increases; 
therefore, the range of the light distribution changes as the 
thickness of the crystal changes, which decreases the locali-
zation ability of the traditional algorithm. In contrast, the 
CNN γ-ray localization model can reduce shrinkage and 
maintain a high PL in thick crystal detectors.

The SR of the scanned points at different thicknesses are 
shown in Fig. 5c, d. As shown in Fig. 5c, the SRs of the four 
algorithms based on the Anger localization method were 
not significantly different at the central region for the same 
thickness of the crystal. At the edge, the spatial resolution 
of the CNN γ-ray localization model is higher than Anger 
because it can better reduce the shrinkage effect. Using the 
same thickness of the crystal, the CNN γ-ray localization 
model obtained a better SR at both the center and edge, 
where the accuracy determined was significantly higher than 
that obtained by using other algorithms.

Comparing Fig. 5c, d, for the same localization algo-
rithm, the shrinkage effect caused by the boundary reflection 
layer becomes increasingly evident owing to the increase in 
the thickness of the crystal, and finally deteriorates the SR. 
As the thickness of the crystal increases from 5 to 10 mm, 
the SR values obtained by using the Anger, TCOG-0.002, 
TCOG-0.005, RTP, and CNN methods decrease from 2.92 
to 3.72 mm, 0.99 to 1.29 mm, 0.98 to 1.33 mm, 0.95 to 
1.31 mm, and 0.62 to 0.72 mm, respectively. Compared to 
the Anger method and its related algorithms, the decrease 
in the SR of the CNN is lower and is less affected by the 
shrinkage effect.

Although we trained the CNN model based on the data 
of a crystal that was 5 mm thick, the CNN can predict the 
interaction positions of the rays in a crystal with a thick-
ness of 10 mm, which indicates that in addition to the CNN 
model being used for thick crystals, it can also be used for 
a strong TGA.

A high positional linearity is significantly helpful for 
obtaining a large UFOV and high SR. The proposed CNN 
γ-ray localization model with a high PL can accurately 
obtain the position of an incident ray, including at the edges, 
instead of being compressed to the center, which can signifi-
cantly reduce the shrinkage effect, thus improving both the 
spatial resolution and UFOV.

The UFOVs of the detector with crystals that were 5 and 
10 mm thick were calculated using different algorithms, as 
shown in Fig. 6. The CNN γ-ray localization model presents 
the largest UFOV, whereas that of the Anger algorithm is the 
smallest at the same thickness. As shown in Fig. 6a3–a5, the 
UFOV of the CNN γ-ray localization model increased by 
26.48 and 17.83% compared to the UFOV of TCOG-0.002 
and TCOG-0.005, respectively, indicating that the CNN 
γ-ray localization model effectively improved the UFOV of 
the detector.

Compared to other algorithms, the edges of the images 
were less affected by the shrinkage effect when using the 
CNN γ-ray localization model, and the vertex and center 
counts were significantly close, indicating that the uniform-
ity was significantly improved. Compared to the 5 mm 
crystal, the UFOV obtained by RTP and TCOG-0.005 in 
the 10 mm crystal detector decreased by 10.24 and 9.77%, 
respectively, while that of the CNN model decreased by 
3.60%. This demonstrates that the CNN γ-ray localization 
model can more effectively reduce the influence caused by 
the shrinkage effect.

Fig. 6   (Color online) UFOV of crystals that are 5 and 10 mm thick under different algorithms
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Figure 7 presents the reconstructed images of a circular 
source (6 mm in diameter) obtained by using a detector with 
crystals of two different thicknesses.

As shown in Fig. 7a1, a2, for the detector with the 5 mm 
crystal, the UFOV area is significantly small for the col-
limator to obtain a full projection on the detector because 
the Anger and TCOG-0.002 algorithms are severely affected 
by the shrinkage effect. Therefore, imaging systems based 
on these two algorithms cannot reconstruct radioactive 
sources. As shown in Fig. 6a3–a5, the UFOVs calculated by 
TCOG-0.005, RTP, and the CNN γ-ray localization model 
are 70.56, 79.21, and 97.04%, respectively; these three algo-
rithms have a relatively large UFOV. Therefore, the complete 
projection obtained by the MURA collimator is available 
in the encoded image of the detector and can image the 
circular source, as shown in Fig. 7a3–a5. Regarding image 
quality, the CNN γ-ray localization model has a better PL 
and less distortion and aberration in the MURA-projected 
image compared to TCOG-0.005 and RTP, thus the CNN-
based reconstructed image has the highest SNR. Considering 
the shape of the circular source in the reconstructed image, 
the CNN-based reconstructed image presents the smallest 
error among the three algorithms in its diameter, which is 
because the CNN γ-ray localization model has the highest 
SR and smallest error in the projected image, which indi-
rectly reduces the error in the circular source of the recon-
structed image.

As shown in Fig. 7b1–b5, when the thickness of the 
crystal increased to 10 mm, the shrinkage effect reduced 
the accuracy of the localization algorithm and increased 
the distortion of the MURA projection. In addition to the 
CNN γ-ray localization model, imaging systems based on 
other algorithms cannot perform image reconstruction on 

the ray source. Considering the 10 mm crystals, only the 
CNN γ-ray localization model can effectively reduce the 
shrinkage effect on the reconstructed image and recon-
struct the image with a high SNR and small error in the 
diameter of the circular source. The imaging results dem-
onstrate that the detector can be used with thick crystals in 
the MURA imaging system if the CNN γ-ray localization 
model is used.

3.3 � Advantages of the CNN localization model

Compared to classical algorithms, the CNN γ-ray localiza-
tion model proposed in this study has the following two 
advantages.

First, because the CNN γ-ray localization model can 
effectively improve the PL and SR of the detector, the 
CNN can significantly improve the UFOV of the detector. 
In a MURA imaging system, a larger UFOV can increase 
the integrity of the projected image, increase the SNR of 
the reconstructed image, and reduce reconstruction errors.

Second, the CNN γ-ray localization model can effec-
tively reduce the impact of the shrinkage effect, thus it 
has a strong EGA and thickness generalization ability. The 
EGA of the CNN γ-ray localization model can enable the 
imaging system to have wide-energy imaging capabilities, 
and the thickness generalization energy enables the imag-
ing system to use thick crystals for imaging. Classical γ 
cameras use thin crystals to avoid image distortion and 
aberrations caused by shrinkage effects, thus resulting in 
lower detection efficiency, poor energy resolution, and 
longer imaging time. The CNN γ-ray localization model 
can be used with crystals having a larger thickness to over-
come the shortcomings of thin crystals.

Fig. 7   (Color online) MURA imaging results obtained by using different algorithms for the 5 and 10 mm crystals
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4 � Conclusion

This study evaluated the generalization ability of the 
CNN γ-ray localization model for the energy of incident 
γ rays and the thickness of the detector crystal. We used 
the CNN γ-ray localization model to predict the interac-
tion positions of the γ-rays with energies ranging between 
59 and 1460 keV in the detector crystal and obtained 
high PL (0.98–0.99) and SR (0.52–1.19 mm) values. The 
CNN γ-ray localization model can effectively enhance the 
positional linearity and improve the UFOV of the imag-
ing system. Compared to the classical Anger algorithm, 
the UFOV can be improved from approximately 10% to 
greater than 90%. The SR of the edge of the detector was 
effectively improved and remained consistent with the 
central region by using the CNN γ-ray localization model.

Moreover, the imaging performance of the MURA sys-
tem using the CNN model was significantly improved, 
and the SNR of the reconstructed images was 5.92 times 
greater than the TCOG-0.005 algorithm. The CNN γ-ray 
localization model demonstrated significant generalization 
capabilities of the energy and thickness of the crystal in 
imaging systems with thick continuous crystals. The SNR 
of the images was significantly improved, demonstrating 
significant development potential.
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