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Abstract
Although seemingly disparate, high-energy nuclear physics (HENP) and machine learning (ML) have begun to merge in the 
last few years, yielding interesting results. It is worthy to raise the profile of utilizing this novel mindset from ML in HENP, 
to help interested readers see the breadth of activities around this intersection. The aim of this mini-review is to inform the 
community of the current status and present an overview of the application of ML to HENP. From different aspects and using 
examples, we examine how scientific questions involving HENP can be answered using ML.

Keywords  Heavy-ion collisions · Machine learning · Initial state · Bulk properties · Medium effects · Hard probes · 
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1  Introduction

Machine learning (ML) has a long history of development 
and application spanning several decades. It is a rapidly 
growing field of modern science and endows computers with 
the ability to learn and make predictions from data without 
explicit programming. It falls under the umbrella of artificial 
intelligence (AI) and is closely related to statistical inference 
and pattern recognition. Recently, ML technologies have 
experienced a revival and gained popularity—particularly 
after AlphaGo from DeepMind defeated the human cham-
pion in the game of Go. This resurgence can be attributed to 
the advancement of algorithms, the increasing availability of 

powerful computational hardware such as graphics process-
ing units (GPUs), and the abundance of data.

Nuclear physics seeks to understand the nature of nuclear 
matter, including its fundamental constituents and collective 
behavior under different conditions, as well as the funda-
mental interactions that govern them. Traditional nuclear 
physics—particularly for energies below approximately 1 
GeV/nucleon—focuses on nuclear structures and reactions, 
where the degree of freedom is the nucleon. However, in 
high-energy nuclear physics (HENP), the degree of freedom 
includes and is often dominated by quarks and gluons. Theo-
retical calculations and experiments or observations with 
large scientific infrastructures play a leading role but are 
reaching unprecedented complexity and scale. In the context 
of HENP—particularly nuclear collisions— researchers are 
already at the forefront of Big Data analysis. The detectors 

This work was supported in part by the National Natural Science 
Foundation of China under contract Nos. 11890714 and 12147101 
(Ma), 12075098 (Pang), and 12247107 and 12075007 (Song); the 
Germany BMBF under the ErUM-Data project (Zhou); and the 
Guangdong Major Project of Basic and Applied Basic Research No. 
2020B0301030008 (Ma).

 *	 Kai Zhou 
	 zhou@fias.uni-frankfurt.de

	 Wan‑Bing He 
	 hewanbing@fudan.edu.cn

	 Yu‑Gang Ma 
	 mayugang@fudan.edu.cn

	 Long‑Gang Pang 
	 lgpang@mail.ccnu.edu.cn

	 Hui‑Chao Song 
	 huichaosong@pku.edu.cn

1	 Key Laboratory of Nuclear Physics and Ion‑beam 
Application (MOE), Institute of Modern Physics, Fudan 
University, Shanghai 200433, China

2	 Shanghai Research Center for Theoretical Nuclear Physics, 
NSFC and Fudan University, Shanghai 200438, China

3	 Institute of Particle Physics and Key Laboratory of Quark 
and Lepton Physics (MOE), Central China Normal 
University, Wuhan 430079, China

4	 School of Physics and Center for High Energy Physics, 
Peking University, Beijing 100871, China

5	 Frankfurt Institute for Advanced Studies (FIAS), 
60438 Frankfurt am Main, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s41365-023-01233-z&domain=pdf
http://orcid.org/0000-0002-3854-4965
http://orcid.org/0000-0002-0233-9900
http://orcid.org/0000-0002-1279-7008
http://orcid.org/0000-0002-2757-7219
http://orcid.org/0000-0001-9859-1758


	 W.-B. He et al.

1 3

88  Page 2 of 33

used in high-energy nuclear collisions, such as the Rela-
tivistic Heavy Ion Collider (RHIC) and the Large Hadron 
Collider (LHC), can easily produce petabytes of raw data per 
year. A major challenge is to make sense of the vast amounts 
of data generated in experiments or simulated according to 
theory. These data are often highly complex and difficult to 
interpret. It is a daunting task to analyze this sheer volume 
of data using traditional methods of physics research. There-
fore, efficient computational methods are urgently needed to 
facilitate physics explorations in these computational and 
data-intensive research areas.

One of the primary physical goals of HENP is to under-
stand quantum chromodynamics (QCD) matter under 
extreme conditions. It is expected that at extremely high 
temperatures and/or high densities, nuclear matter, which 
is governed by the QCD dictated strong interaction, will 
turn into a deconfined quark–gluon plasma (QGP) state, 
which is with elementary particles—quarks and gluons—to 
be their basic degrees of freedom. The formation and prop-
erties of this new state of matter, as well as its transition 
to normal nuclear matter, are widely studied, but there are 
open questions in HENP. This deconfined QGP state was 
believed to exist in the early universe, a few microseconds 
after the Big Bang. Another way to study the QGP state is 
in terms of neutron stars (or binary neutron star mergers). A 
neutron star is a compact astrophysical object whose inte-
rior serves as a cosmic laboratory for cold and dense QCD 
matter. Increasing astronomical observations—particularly 
those arising from the progress of gravitational wave analy-
sis—will provide constraints on the extreme properties of 
QCD matter in this cold and dense regime, for which effec-
tive techniques for dealing with the associated inverse prob-
lem will be essential. Theoretically, first-principles lattice 
QCD calculations at vanishing and small baryon chemical 
potentials predict a smooth crossover transition from a dilute 
hadronic resonance gas to the deconfined QGP state. How-
ever, in the high-baryon density regime, direct lattice QCD 
simulations are currently hampered by the fermionic sign 
problem. On Earth, this new state of QGP matter can only be 
studied through heavy-ion collision (HIC) programs, where 
two heavy nuclei are accelerated and smashed to deposit 
the collision energy in the overlapping region for achieving 
extreme conditions, causing “heating and (or) compression” 
of the normal nuclear matter to be excited.

A significant challenge associated with HICs is that the 
collision of heavy nuclei is a highly dynamic, complex, and 
rapidly evolving process: although the deconfined QGP 
state may indeed be formed during the collision, it under-
goes rapid expansion and cooling, and at some point its 
degrees of freedom are reconfined into color-neutral had-
rons, which continue to interact and decay until the detector 
in the experiment receives its signals. The collision process 
is too short and too small to be resolved. Experimentally, we 

have no direct access to the early potentially formed QGP 
fireball but only indirect measurements of the final emit-
ted hadrons or their decay products. Furthermore, the theo-
retical description of the collision dynamics involves many 
uncertain physical factors that are not yet fully clear from 
theory or experimental comprehension. These uncertainties 
can interfere with final physical observables in the experi-
ment. Thus, from the limited and contaminated (i.e., heavily 
influenced by many uncertain factors) measurements, a reli-
able extraction of the physics of the produced extreme QCD 
matter is non-trivial and challenging. This severely hampers 
the extraction of physical knowledge in the HIC programs.

As a modern computational paradigm, ML has become 
increasingly promising in recent years for applications at 
the forefront of HENP research. ML algorithms can be used 
to automatically identify patterns and correlations in data, 
allowing knowledge to be extracted from data computation-
ally and automatically. It can thus help to extract meaningful 
information about the underlying physics or fundamental 
driving laws from the available data. In contrast to the tra-
ditional focus of ML, which is usually predictions based on 
pattern recognition from the collected data, the intersection 
of HENP and ML is concerned with the underlying patterns 
and causality for the purposes of uncertainty assessment and 
physical interpretation, which lead to discoveries. A collec-
tion of datasets from different areas of fundamental physics, 
including high-energy particle physics and nuclear physics, 
used for supervised ML studies was recently presented in 
Ref. [1].

For the purpose of physics identification, the intersec-
tion of HENP and ML goes beyond the mere application of 
existing learning algorithms to the dataset accessible in the 
physics problem. Paying special attention to the physical 
constraints or required fundamental laws or symmetries of 
the systems would increase the efficiency of ML in solving 
the specific physics problem. For example, when regressive 
or generative models are used to study quantum many-body 
systems or general quantum field theory (QFT), implement-
ing the symmetries of the system can significantly reduce the 
amount of training data needed and improve the recognition 
performance [2]. ML has been applied in various studies at 
low- and intermediate-energy HICs [3–11]; a recent mini-
review was presented in Ref. [12]. It has also been applied 
in hadron physics [13–15].

In addition, ML can be applied in the context of simula-
tions, which play a key role in fundamental physics research 
as well as in a wide range of other scientific fields such 
as biology, chemistry, robotics, and climate modeling. In 
HENP, for both experimental and theoretical studies, simu-
lation is an important tool, starting from the understand-
ing of the fundamental interactions involved, e.g., in HIC 
dynamics and detector simulation, as well as in lattice QFT 
simulation. Simulations are used to model the behavior of 
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nuclear matter and its constituents and the interactions that 
occur between them, which are typically highly complex, 
with detailed use of many involved physical laws and equa-
tions or empirical phenomenological models. Simulations of 
HICs and the associated detectors in HENP consume large 
amounts of computational resources because of the high 
statistics and high resolutions. A collision dynamics simu-
lation with extensive synthetic data is required to accurately 
interpret experimental measurements, which is enormously 
computationally and memory-intensive. ML can be used 
to improve the efficiency and descriptive power of these 
simulations to facilitate the physics discovery process. For 
example, researchers have proposed using ML to accelerate 
the simulation of hydrodynamics, to optimize the parameters 
involved in the model simulation, to make the model more 
robust to uncertainties, and to solve many-body problems 
directly by augmenting the conventional Monte Carlo simu-
lation method.

In brief, ML is an effective tool that can be employed to 
address many challenges in HENP. It can assist in analyzing 
large amounts of data from HENP, linking nuclear experi-
ments to physics theory exploration, optimizing simulations 
and calibrating models more efficiently, as well as develop-
ing new empirical and theoretical models. It is undeniable 
that ML technologies have the potential to make a significant 
impact, even transforming the field of HENP. Therefore, it 
is essential to acknowledge and recognize the importance of 
this new paradigm in advancing the field.

In the present review, focusing on HIC-related studies 
within HENP, we first provide a brief overview of the meth-
odology in Sect. 2. Then, we discuss the applications of ML 
to HIC physics with regard to the following aspects: initial 
condition inference in Sect. 3, decoding bulk matter prop-
erties in Sect. 4, in-medium effects in Sect. 5, hard probe 
sector in Sect. 6, and searching for different observables in 
Sect. 7. We summarize our review in Sect. 8.

2 � Methodology

2.1 � Taxonomy of machine learning

ML can be classified in several ways. One way is to clas-
sify it by its function, i.e., into classification, regression, 
generation, and dimensionality reduction. The other way is 
to classify ML by the type of training data, i.e., into super-
vised learning, unsupervised learning, semi-supervised 
learning, self-supervised learning, active learning, and 
reinforcement learning. For example, supervised learning 
requires data to be labeled in such a way that the model can 
be trained to build a mapping between the input and the 
labels. Unsupervised learning does not need labeled data; 
it can learn patterns from data, assuming that the machine 

makes self-consistent predictions on data that are perturbed 
or slightly augmented. Semi-supervised learning requires a 
small amount of labeled data along with a large amount of 
unlabeled data. Self-supervised learning works with specific 
data such as natural language or images that are sequential. It 
allows the machine to predict one part of the sequence from 
the other part. Active learning is a type of semi-supervised 
learning that employs two pools of data: a small pool of 
labeled data and a large pool of unlabeled data. The machine 
is trained on the labeled data and validated on the unlabeled 
data. The performance of the simply trained machine dif-
fers for different samples from the unlabeled data pool. For 
example, the machine may be uncertain on one sample, pre-
dicting that the label of the sample is A with 51% probability 
and B with 49% probability. This sample is assumed to be 
more difficult and more important for the trained machine 
than simple samples for which the machine’s predictions 
are certain. For efficiency, this sample is labeled and moved 
from the unlabeled pool to the labeled pool for further train-
ing. Reinforcement learning uses data generated by interac-
tions with the environment.

According to the previous description, the loss func-
tion for supervised learning in the regression task can be 
expressed as

where ypred = f (x, �) is the function represented by ML mod-
els such as decision trees or deep neural networks (DNNs), 
x represents the input data, � represents all trainable model 
parameters, and ytrue is the label of the input data x. || ⋅ || usu-
ally represents the l1 norm, which gives the mean absolute 
error, or the l2 norm, which gives the root-mean-square error.

The cross-entropy loss is widely used for classification. 
It is defined as

where K represents the number of possible categories of the 
input data x, pk = ytrue is the true label (probability), and 
qk = f (x, �) represents the network prediction. This loss is 
inspired by the Kullback–Leibler (KL) divergence, which 
quantifies the difference between two distributions p and q:

(1)l = ||ypred − ytrue||,

(2)l = −

K∑

k=1

pk log qk,

(3)KL(p||q) =
K∑

k=1

pk log
pk

qk

(4)=
∑

k

pk log pk − pk log qk

(5)= −H(p) + H(p, q),
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where H(p) represents the entropy of the distribution p and 
the cross entropy H(p, q) = −

∑
k pk log qk quantifies the 

average number of bits needed to encode the distribution p 
using the model q.

In binary classification, the cross entropy is reduced to

where pi is the true label of the ith sample, whose value is 
0 or 1. qi represents the network prediction obtained using 
the sigmoid activation function in the last layer to ensure 
0 < qi < 1 . m represents the number of samples in each mini-
batch. If the true label is pi = 0 , only the 2nd part contrib-
utes to the loss function.

For multi-categorical classification, the loss function is 
the cross-entropy loss, with the activation function in the 
last layer replaced by the softmax function:

For unsupervised learning, the loss function can generally 
be expressed as

where manipulate1,2 represents two manipulations on the 
same data. For example, in clustering tasks, the manipula-
tions on x are to compute the total distance s of samples to 
multiple centers. In image classification tasks, the manipu-
lations are to compute the network prediction over two dif-
ferent augmentations of the same image, e.g., cropping or 
rotation. This loss is also called self-consistent loss.

For semi-supervised learning, the loss function is the 
combination of the supervised loss and unsupervised loss:

For self-supervised learning, a widely used loss function is 
the reconstruction loss. For example, in computer vision, 
the reconstruction loss is defined as the difference between 
the original image and the image reconstructed by a neural 
network from a masked image.

Here, x represents the original image, M represents the 
binary mask used to remove M = 0 pixels from the image, 
and f represents a neural network used to reconstruct the 
image. The same method can be used to reconstruct natural 
language, by predicting the next sentence or missing words 
in a sentence. The pretrained network can be used in many 
downstream tasks, such as classification, regression, or 
generation.

(6)l = −
1

m

m∑

i=1

[
pi log qi + (1 − pi) log(1 − qi)

]
,

(7)Softmax(zi) =
ezi

∑K

k=1
ezk

.

(8)l = ||manipulate1(x) −manipulate2(x)||,

(9)l = lsupervised + lunsupervised.

(10)l = ||x − f ((1 −M) ⋅ x)||

In active learning, the loss function is essentially the 
same as that in supervised learning. The difference is that 
the trained network ranks samples from the unsupervised 
pool for annotation. Thus, the key is to rank the samples. 
There are two main methods for this. One is to rank the 
samples according to the entropy of the predictions made 
by the pretrained network:

where pi represents the predicted probability that the sam-
ple is in class i. The other method is to rank the samples 
according to the diversity of the training dataset, by giving 
the highest rank to the sample that has the longest distance 
from the training data.

For reinforcement learning, the data are generated by 
subsequent interactions between the network policy and the 
environment. The network receives an observation ot from 
the environment at time t, makes a decision, and performs 
an action at on the environment. The environment returns a 
new observation ot+1 , an immediate reward rt+1 , and a done 
signal. The data are thus {ot, at, ot+1, rt+1, done} trajectories. 
The loss function of reinforcement learning is similar to that 
of supervised learning, with data ot and true labels at, rt+1.

2.2 � Optimization

The goal of ML is to minimize the loss for the prediction 
of new data not used for training. In gradient-based models, 
this is achieved simply via stochastic gradient descent (SGD) 
and its variants:

where � represents all the trainable parameters of the ML 
model, � represents a small positive number called the learn-
ing rate, and m represents the size of the mini-batch. Updat-
ing � with the negative gradient −� 1

m

∑m

i=1

�li
��

 helps to gradu-
ally reduce the loss. This can be easily verified if there is 
only one trainable parameter � and the loss is l = �2 , whose 
negative gradient is −2�.

The possible values of � form a space called the param-
eter space. The initial value of � is usually a random number. 
Updating � using SGD is analogous to walking around the 
parameter space looking for the minimum value of the loss 
function. The loss function can be thought of as the potential 
surface whose negative gradients give the direction of accel-
eration a⃗ . Thus, in simple SGD, the position � in the parameter 
space is updated using the acceleration. Consequently, native 
SGD has two major drawbacks. First, if the gradient is 0, the 
optimization stops immediately. Second, the network update 
is far faster in the direction where the gradient is large r. These 

(11)s = −
∑

i

pi log pi,

(12)� = � − �
1

m

m∑

i=1

�li
��

,
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two drawbacks are partly solved using the momentum mecha-
nism [16] and the adaptive learning rate [17].

In reinforcement learning, the goal is to maximize the 
accumulated rewards. The optimization method is stochastic 
gradient ascent. In the popular policy gradient method, the 
parameters of the policy network are updated as follows:

where Gt =
∑T

k=t+1
�k−t−1rk is the return representing the 

accumulated rewards in the future with a discounting factor 
𝛾 < 1.

2.3 � Automatic differentiation

The number of trainable parameters in a DNN is large. To 
learn from the data, one must compute the negative gradients 
of loss with respect to each of the millions or trillions of model 
parameters − �l

��
 . This is intractable using finite difference or 

analytic differentiation. Finite difference has both truncation 
and round-off errors that cannot be controlled. Analytical dif-
ferentiation has exploding expressions for DNNs that are too 
complex to compute efficiently. In deep learning, the negative 
gradient is mainly computed using automatic differentiation 
(AD), which is computationally efficient meanwhile also has 
analytical precision.

AD has a forward mode and a backward mode. If the DNN 
is a R1

→ Rn mapping, a forward pass gives derivatives of 
all output variables yi with respect to the input variable x. In 
contrast, if the network is an Rn

→ R1 mapping, each forward 
pass returns only the derivative of the output variable y on one 
of the input variables xi . In the SGD algorithm, the backward 
mode is far more efficient because the mapping from � to the 
loss is an Rn

→ R1 mapping. In the following, the forward AD 
is briefly explained.

In the forward mode, AD is implemented by introducing a 
dual number for each variable:

where x and y are two variables that require gradients, and ẋ 
and ẏ are the derivatives of x and y, respectively, with respect 
to some variable. As mentioned previously, with ẋ = 1, ẏ = 0 
gives �l∕�x in one pass of the forward mode, and setting 
ẋ = 0, ẏ = 1 gives �l∕�y in another pass of the forward mode. 
d is an infinitesimal symbol satisfying d2 = 0 , which is anal-
ogous to the imaginary symbol I2 = −1 . With this definition, 
the traditional output z of each operator is a dual number 
z + żd whose coefficient ż is the derivative of z, as follows:

(13)� = � + �Gt∇ ln �(at|ot, �),

(14)x → x + ẋd,

(15)y → y + ẏd,

(16)x + ẋd + y + ẏd = (x + y) + (ẋ + ẏ)d,

The calculations of dual numbers can easily be extended to 
polynomial functions:

Using a computer, more complex functions such as sin(x) , 
log x , and ex can be approximated by polynomial functions. 
In principle, AD works for these functions as well. In prac-
tice, these functions can be overloaded to produce outputs in 
the form of dual numbers, e.g., sin(x + ẋd) → sin x + cos xẋd.

Because of the universal approximation capability of 
DNNs and the efficient and accurate auto-diff, DNNs are 
widely used to represent solutions of ordinary differential 
equations (ODEs) and partial differential equations (PDEs) 
that require gradients. Thus, many physical problems are 
translated into optimization problems. This method is 
commonly referred to as physics-informed neural networks 
(PINNs). Compared with traditional numerical solutions, 
PINNs are mesh-free, work for very high dimensions, and 
are easy to implement—particularly for multi-scale and 
multi-physics problems.

2.4 � Convolutional neural networks

Convolutional neural networks (CNNs) are distinguished 
from other neural networks by their superior performance 
for image, speech, and audio signal inputs. A naive CNN 
consists of three main types of layers, i.e., convolutional 
layers, pooling layers, and fully connected layers, as shown 
in Fig. 1.

(17)x + ẋd − (y + ẏd) = (x − y) + (ẋ − ẏ)d,

(18)(x + ẋd) ∗ (y + ẏd) = x ∗ y + (xẏ + yẋ)d,

(19)(x + ẋd)∕(y + ẏd) =
(x + ẋd)(y − ẏd)

y2 − ẏ2d2

(20)=
x

y
+

yẋ − xẏ

y2
d

(21)P(x + ẋd) = P(x) + P�(x)d.

Fig. 1   (Color online) CNNs
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The convolutional layer is the core building block of a 
CNN. The term convolution refers to the convolution opera-
tion between the input features and the filters (or kernels). In 
the mathematical view, a convolution operation is a special 
type of linear operation where two functions are multiplied 
to produce a third function that expresses how the shape of 
one function is modified by the other. In the ML view, the 
convolutional layer uses the filters to extract the features 
from the input data and combines the extracted features as 
the output. In a well-trained convolutional layer, a filter is 
only sensitive to one specific type of feature. Usually, there 
are many filters in a convolutional layer, to satisfy the com-
plex input features. After the convolution operation, a recti-
fied linear unit (ReLU) activation function is typically used, 
which introduces nonlinearity into the neural network.

After the convolutional layer, a pooling layer is applied 
to reduce the number of parameters, which is also known as 
downsampling. There are two main types of pooling: max 
pooling and average pooling. Max pooling selects the maxi-
mum value to be the output, and average pooling uses the 
average of the pixels covered by the pooling kernel. The 
fully connected layer is used to map the features extracted 
by the previous layers to the final output.

The convolutional layers can be stacked to make the neu-
ral network deeper. Earlier layers break down the complex 
features from the input data into individual simple features. 
As the features pass through the subsequent convolutional 
layers, the filters begin to capture larger elements or shapes. 
Owing to its ability to extract complex features, the CNN 
architecture became a foundation of modern computer 
vision.

However, when neural networks are deep, the vanishing 
gradient problem is severe. To overcome this problem in 
CNN architectures, many complex neural networks have 
been developed, such as AlexNet, VGGNet, InceptionNet, 
GoogLeNet, and ResNet.

2.5 � Recurrent neural networks

Recurrent neural networks (RNNs) are distinguished from 
other neural networks by their superior performance for 
sequence or time-series data.

Figure 2 shows the structure of a basic RNN, where U 
denotes the weights for the connection of the input layer to 
the hidden layer, V denotes the weights for the connection 
of the hidden layer to the hidden layer, and W denotes the 
weights for the connection of the hidden layer to the output 
layer. Using self-connection with weights V, the RNN takes 
information from previous inputs to influence the current 
input and output. This feature, which is often referred to as 
“memory”, makes the RNN good at processing sequential 
data. The loss function L of all timesteps is defined accord-
ing to the loss at each timestep, as follows:

The RNN uses the backpropagation through time (BPTT) 
algorithm to determine the gradients. The error is back-
propagated from the last timestep to the first timestep. At 
timestep T, the derivative of the loss L with respect to the 
weight matrix W is expressed as follows:

RNNs also suffer from the problems of gradient vanish-
ing and exploding. To deal with the gradient problems, 
variant networks have been developed, such as long short-
term memory (LSTM) networks and gated recurrent units 
(GRUs).

2.6 � Point cloud network

The final-state particles from HICs form a point cloud in 
the momentum space. The data must be manipulated to 
use CNNs and RNNs, as these networks were originally 
designed for images and natural language. For example, to 
use a CNN, density estimation (histogram) is typically used 
to convert the particle cloud into images. However, this does 
not work well for a few particles in a three-dimensional (3D) 
space, because the particles are dilute and the resolution is 
poor. To use an RNN, the particle cloud must be sorted to 
one dimension, which can only keep the local information 
in one dimension. The point cloud network is designed to 
preserve the permutation symmetry of a set of particles.

Figure 3 shows a simple demonstration of a point cloud 
network. The input to the network is a set of particles in 
the momentum space, including their 4-momenta, mass, 
and other quantum numbers. A fully connected neural 
network or multilayer perceptron (MLP) is applied to a 
particle to transform its m input features into 128 fea-
tures in the high-dimensional latent space. The MLP is 
shared by all the particles in the cloud and is also called 
a 1DCNN. This step preserves the permutation symmetry 
of all the particles. Then, global max pooling (GMP) or 
global average pooling (GAP) is applied to these latent 

(22)L(Ŷ , Y) =

T∑

t=1

L(Ŷ t, Yt).

(23)�L(T)

�W
=

T∑

t=1

�L(t)

�W
.

Fig. 2   (Color online) RNNs
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features of the particles to extract the global informa-
tion of the particle cloud. The GMP and GAP extract 
the boundaries of the input particle cloud in the high-
dimensional latent space, which learn the multi-particle 
correlation for the final decision. This extracted global 
information (128 features) is fed to another MLP for the 
final decision. The output neuron has a value in the range 
(0, 1) and uses 0.5 as the decision boundary.

The network shown in Fig. 3 is used to classify nuclear 
phase transitions [18]. Some point cloud networks apply 
a Euclidean rotation to the point cloud to preserve rota-
tional symmetry, i.e., the network should make self-con-
sistent prediction if the point cloud is rotated globally 
[19]. Other variants use k-nearest neighbors in the spatial 
or momentum space to extract the high-dimensional latent 
features of each particle, for keeping more local corre-
lation. The k-nearest neighbors of each particle can be 
calculated in the feature space to capture the long-range 
multiple particle correlation, because particles that are 
close in the feature space may be far apart in the spatial 
or momentum space. This technique is called dynamical 
edge convolution and was used to search for self-simi-
larity between particles in the momentum space, which 
is associated with critical phenomena that may occur in 
HICs [20]. The dynamical edge convolutional neural net-
work is a type of message-passing neural network that is 
also called a graph neural network.

2.7 � Generative modeling

In unsupervised learning, generative modeling is a class 
of techniques related to probability distribution learning. 
With regard to tasks, ML can generally be categorized into 
discriminative modeling and generative modeling. From 
probabilistic perspectives, discriminative modeling, such 
as pattern recognition, aims at learning a conditional prob-
ability p(y|x), which can be used to make predictions for 
a given input object (x) its associated properties or class 
identities (y), while the goal of generative modeling is to 
capture the joint distribution p(x, y), from which one can 
generate new data points following the same statistics as the 
training set. Generative modeling has achieved considerable 
success in numerous applications, including image synthe-
sis, inpainting, super-resolution, text-to-image translation, 
speech generation, and chat robots. Many of the generative 
models were developed with profound influence from and 
on physics. Generative modeling also has numerous direct 
applications in science, e.g., computational fluid simulation, 
drug molecule design, anomaly detection, many-body phys-
ics, and lattice field configuration generation for QCD.

The central purpose of generative modeling is to sample 
data ( ̃x ) from the same distribution of the training set pd(x) . 
Most of the generative modes construct parametric (explicit 
or implicit) models p�(x) to approach the desired data distri-
bution. From information theory, the KL divergence (Eq.(3)), 

Fig. 3   (Color online) Simple example of a point cloud network



	 W.-B. He et al.

1 3

88  Page 8 of 33

which measures the dissimilarity between the model and data 
distributions, provides an objective for this task. Per Jensen 
inequality, the KL divergence is non-negative and is zero only 
when the two distributions match exactly. The minimization 
of the KL divergence under given observational data for the 
system with the collected training set, i.e., D = {x} , is equiva-
lent to the minimization of the negative log-likelihood (NLL):

thus, maximum likelihood estimation (MLE) is performed.
In the following, we briefly review several representative 

and popular deep generative models, including the variational 
autoencoder (VAE), generative adversarial networks (GANs), 
autoregressive modeling, and normalizing flows (NF).

VAE [21], introduces a latent variable z to facilitate the 
generation process; thus, it constructs a trainable condi-
tional probability p�(x|z) (called the decoder or generator, 
usually modeled by a neural network). For generation con-
venience, the latent variable is assumed to follow an easy-
to-sample prior distribution p(z), such as the multivariate 
Gaussian distribution. However, the introduction of the 
latent variable makes the data generation distribution (thus 
the likelihood) intractable, because the required marginali-
zation is p�(x) = ∫ p�(x|z)p(z)dz . Thus, the posterior distri-
bution for the latent variable is intractable as well, because 
p(z|x) = p�(x|z)p(z)∕p�(x) . The VAE employs a variational 
inference approach to approximately perform MLE on the 
training data. Specifically, an encoder model q�(z|x) (also a 
neural network) is introduced to approach the real posterior 
p(z|x), and the KL divergence DKL(q�(z|x)||p(z|x) provides 
the training objective, which is derived as a variational lower 
bound (also known as an evidence lower bound (ELBO), 
which is the cornerstone of the VAE) of the likelihood:

The generative adversarial network, i.e., GAN, as another 
latent variable generative model, is developed to train the 
generator through an adversarial strategy. Intuitively, the 
GAN framework constructs two nonlinear differentiable 
functions (both represented by adaptive neural networks 
with dimensionality accordingly set). The first one—called 
the generator G(z)—maps latent variable z to the target data 
manifold x̃ = G(z) , which gives an implicit synthesized data 
distribution pG(x) when the latent variable follows a prior 
latent distribution p(z), e.g., multivariate uniform or Gauss-
ian, and the goal is training the generator to drive pG(x) 

(24)L =
1

|D|
∑

x∈D

log p�(x);

(25)
 = �q�(z|x)[log p�(x|z) + log p(z)

− log q�(z|x)] ≤ log p�(x),

(26)�,� = argmax
�,�

L.

approaching the target distribution ptrue(x) . The other one—
called the discriminator D(x)—maps the data manifold to a 
single scalar representing the fake-vs.-true distinguishing 
result of the discriminator for the input data. For a vanilla 
GAN, the discriminator is designed as a binary classi-
fier; i.e., for real and generated data, it is trained to output 
D(x) = 1 and D(x̃) = 0 , respectively. The generator and dis-
criminator are trained alternately to improve their abilities 
in competing against each other; this can be achieved by 
mimicking a two-player min-max game. Thus, the discrimi-
nator is trained to better distinguish the real data from the 
generated data, while the generator is trained to trick the 
discriminator into classifying generated data as “real” data.

It was proven mathematically that the adversarial training 
of a GAN is equivalent to minimizing the Jensen–Shannon 
divergence:

with pmix = (preal + pG)∕2 . Thus, the GAN is an implicit 
MLE-based generative model. The optimally trained GAN 
converges in the Nash equilibrium state, where the generator 
excels in synthesizing samples that the discriminator cannot 
differentiate from the real data; thus, the generator-induced 
distribution indeed captures the real data distribution after 
training. This technique has been utilized in various scien-
tific contexts, e.g., in condensed-matter physics [22, 23], 
particle physics [24, 25], cosmology [26, 27], and QFT study 
with lattice simulation [28, 29].

2.7.1 � Autoregressive model

There are also explicit MLE-based generative models, which 
are closely related to statistical physics. Among them, the 
simplest is the autoregressive model [30], which invokes the 
probability chain rule to decompose the full probability into 
products of a series of conditionals:

which are used as the generative model distribution to 
approach the desired data distribution. Specifically, neural 
networks can be used to parameterize each of the condi-
tional components in the above equation. Then, these neural 
networks can be viewed as a single general neural network 
(having a fully connected or CNN or RNN architecture) 
with a masked weight parameter matrix (e.g., triangular 
with matrix for the simple fully connected case) consider-
ing the autoregressive properties specified by Eq. 28. The 
use of a convolutional layer or recurrent layer—called Pix-
elCNN [31] or PexelRNN [32], respectively—for treating 
structured systems in autoregressive modeling can further 

(27)JS(preal||pG) =
1

2
(KL(preal||pmix) + KL(pG||pmix)),

(28)p�(x) =

N∏

i

p�(xi|x1, x2, ..., xi−1),
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account for the spatial or temporal translational invariance 
of the system. It has achieved state-of-the-art performance 
in speech synthesis with autoregressive networks such as 
WaveNet [33]. With the above autoregressive representation 
as a parametric generative model, MLE can be explicitly 
performed to optimize the p�(x) for approaching the targeted 
data distribution preal(x) , which as derived is minimizing 
the forward KL divergence KL(preal||p�) . This idea is also 
applied in many-body physics for the study of statistical 
mechanics and general continuous systems [34].

2.7.2 � Normalizing flow

The NF [35–37] combines the latent variable model and 
explicit MLE. It introduces bijective affine transformations 
to map a simple latent space variable z to the complex data 
manifold sample x = g(z) . The bijectivity requires the trans-
formation to have the same dimensionality in the input and 
output. This allows for the usage of the change of variable 
theorem to estimate the likelihood explicitly:

with the determinant of the Jacobian for the (inverse) 
transformation needed. Then, after the MLE training, the 
parameterized transformation serves as a generator for new 
sample generation x = g(z) . To simplify the evaluation of 
the needed Jacobian determinant in Eq. 29, special network 
structures are adopted, e.g., those holding the triangular 
Jacobian matrix, as used in Real NVP. Such flow-based 
generative models have been implemented in lattice QFT 
studies [38–40] and have proven to be useful indicators for 
QCD study in the past few years. Recently, such a flow-based 
model was generalized into the Fourier frequency space and 
used in generating Feynman paths for quantum physics [41].

2.8 � Principal component analysis

In ML, principal component analysis (PCA) is a statistical 
technique that involves transforming a set of correlated vari-
ables into independent variables through orthogonal trans-
formations. The principal components, which are associated 
with the obtained main eigenvectors (or non-negligible sin-
gular values), reveal the most representative configurations 
of the data. As one of the unsupervised learning techniques, 
PCA implements singular value decomposition (SVD) on a 
real matrix [42]:

where M is a matrix of size N × m ; � and � are two orthogo-
nal matrices of size N × N and m × m , respectively; and � 

(29)p�(x) = p(z)
||||
det

(
�z

�x

)||||
,

(30)M = ��� = ��,

is a diagonal matrix with the singular values arranged in 
descending order. Then, the ith row of the matrix M(i) can 
be expressed as

where ṽ(i)
j

 is the corresponding coefficient of zj for the ith row. 
In the last step, there is a cut on the indices, i.e., k, because 
PCA focuses n the most important components. Owing to 
its effectiveness for data mining, PCA has been widely used 
in various areas of physics research. For recent progress in 
HICs, please see Sect.7.

3 � Initial condition

In the traditional view, the nuclear structure manifests its 
significance only at low energy, because the high-energy 
nucleus–nucleus collisions are violent processes in which 
the whole nucleus is disassembled. However, recent findings 
have indicated that the initial nuclear structure information 
is very important for understanding the final observables in 
high-energy HICs. One of the examples is collective flows, 
e.g., elliptic flows and triangular flows, in which the initial 
participant shape and nucleon density distribution, as well as 
their initial state fluctuations, are relevant. In particular, the 
collision geometry, neutron skin, deformation, and �-cluster-
ing structure significantly affect the final observable. A mini-
review can be found in a chapter in the handbook of nuclear 
physics authored by Ma and Zhang [43]. ML is a powerful 
tool for discriminating such initial structure information. In 
this section, we discuss such applications.

3.1 � Impact parameter estimation

The impact parameter b describes the distance between the 
centers of the two colliding nuclei in the classical view, 
which is a crucial quantity determining the initial geometry 
of a collision. In experiments, the impact parameter is not 
directly measurable and is usually estimated from the multi-
plicity of final-state particles in track detectors or the energy 
deposited in calorimeters. ML approaches are proposed to 
determine the impact parameters from the final-state par-
ticles and exhibit better performance than conventional 
methods. Ref. [44] proposed the use of a DNN and CNN to 
reconstruct the impact parameters from the energy spectra 
of final-state charged hadrons of HICs at 

√
sNN = 7.7 to 

(31)

M
(i) =

m∑

j=1

x
(i)

j
𝜎jzj =

m∑

j=1

ṽ
(i)

j
zj

≈

k∑

j=1

ṽ
(i)

j
zj (i) = 1, ...,N
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200 GeV, which were simulated with a multiphase transport 
(AMPT) model. Both the DNN and CNN can reconstruct 
the impact parameters with an MAE of approximately 0.4 
fm. When the input feature is from a larger pseudorapidity 
window, the CNN has a higher prediction accuracy than the 
DNN. Ref. [45] reported the performance of a CNN and 
Light Gradient Boosting Machine (LightGBM) in recon-
structing the impact parameter from HICs at 

√
sNN = 0.2 to 1 

GeV, which were simulated with the Ultra-relativistic Quan-
tum Molecular Dynamics (UrQMD) model. The input fea-
tures are constructed from the proton spectra for transverse 
momentum and rapidity. The average difference between the 
true impact parameter and the estimated one can be less than 
0.1 fm. LightGBM has better performance than the CNN.

A model-independent Bayesian inference method for 
reconstructing the impact parameter distributions was pro-
posed in Ref. [46]. The impact parameter distributions are 
inferred from model-independent data. This method is based 
on Bayes’ theorem:

where P(X) represents the probability of the observable 
that can be measured in the experiment, and P(X ∣ b) rep-
resents the probability density distribution of X for a given 
impact parameter b. Fluctuation is taken into account by 
assuming P(X ∣ b) to be a Gaussian or gamma distribution, 
which can be determined by fitting the data with the formula 
P(X) = ∫ P(X ∣ b)P(b)db . P(X) can be multidimensional. In 
Ref.[46] two observables were used: X = {M, ptot

t
} , where 

M represents the multiplicity of the charged particles and 
ptot
t

 represents the total transverse momentum of the light 
particles.

3.2 � End‑to‑end centrality estimation for CBM

The compressed baryonic matter (CBM) detector is cur-
rently under construction for the Facility for Antiproton 
and Ion Research (FAIR) at Gesellschaft für Schwerionen-
forschung (GSI), which will study the properties of strongly 
compressed nuclear matter via HICs with beam energies 
ranging from 2 to 10 AGeV. A characteristic of the CBM 
experiment is its very high event rate and trigger rate, which 
will produce a large amount of raw data per second in real-
time and pose a challenge for online event characterization 
and storage. To address the online event characterization, 
it is essential to be able to work on the direct output of the 
detector, which has an inherent point cloud structure—a 
collection of points as an unordered list with particles or 
tracks’ attributes recorded. One important property of the 
point cloud is that they as a whole should be invariant under 
permutation. The PointNet structure  [47] was specially 
developed to respect this order invariance. Accordingly, for 

(32)P(b ∣ X) = P(b)P(X ∣ b)∕P(X),

HICs, PointNet-based models can perform real-time physics 
analysis on the detector output directly.

References [19, 48] proposed the use of PointNet-based 
models for event-by-event impact parameter determination 
for the CBM experiment using the direct output from the 
detector, where the trained model serves as an end-to-end 
centrality estimator. The supervised learning strategy is used 
for this regression task, where the training data are prepared 
from UrQMD followed by CBMRoot detector simulation 
to obtain the detector output, which are hits or tracks of 
the particles. A PointNet-based model is constructed and 
trained to capture the inverse mapping between the detector 
output and the impact parameter information. It was shown 
that PointNet-based models can perform accurate event-by-
event impact parameter determination using hits of charged 
particles in different detector planes and/or the tracks recon-
structed from these hits. With regard to both precision and 
accuracy, these models outperformed a baseline model using 
charged track multiplicity as the input inside a polynomial 
fit. While the baseline model had a similar resolution (rela-
tive precision) to the PointNet-based model in the semi-
central collision region, it had a lower accuracy and more 
fluctuations in the accuracy for impact parameters ranging 
from 3 to 16 fm, as indicated by the mean of the prediction 
error for the impact parameter. This trend was more evident 
for a realistic event distribution (i.e., ∼ bdb ), as shown in 
Fig. 4 for the mean prediction error. Considering the natural 
parallelizability and high speed, the PointNet-based model 
paves the way for real-time end-to-end event characterization 
for HIC studies.

Fig. 4   (Color online) Taken from Ref. [48]. Mean error in predictions 
as a function of centrality. Dataset Test2 is used, in which peripheral 
events are more likely to occur than other centralities. The track mul-
tiplicity is used for the centrality binning. The points at 90% centrality 
are results from events with no tracks reconstructed. Therefore, the 
Polyfit and MS-Tracks models do not have a data point at 90% central-
ity
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3.3 � Nuclear deformation estimation

The momentum distribution of final-state hadrons is sensi-
tive to nuclear shape deformation. For example, owing to 
the different collision geometry, the elliptic flow as a func-
tion of charge multiplicity differs significantly between 
Pb+Pb and U+U collisions. As shown in Fig. 5, the 208Pb is 
a doubly magic nucleus with an almost perfectly spherical 
shape, whose collision patterns depend only on the impact 
parameter b. In contrast, the shape of 238U is similar to a 
watermelon, and the corresponding collision patterns are far 
more complex than those of Pb+Pb collisions. For example, 
the U+U collisions have body–body aligned, body–body 
crossed, tip–tip, and tip–body collisions. Different collision 
patterns correspond to different charge multiplicities and 
elliptic flows. Both the fully overlapped body–body aligned 
and central tip–tip collisions correspond to most central col-
lisions with high charge multiplicity, but their elliptic flows 
differ significantly. This type of difference leads to a far 
larger variance in the elliptic flow for most central U+U col-
lisions, compared with high-multiplicity Pb+Pb collisions. 
In principle, the complex collision patterns lead to many 
differences in the elliptic flow compared with the charged 
multiplicity diagram. Deep learning can be used to identify 
these differences and predict the nuclear shape deformation 
parameters using these patterns.

It was demonstrated that by using nuclei with different 
deformation parameters �2 and �4 , high-energy HICs can be 
simulated using the TRENTo Monte Carlo model to obtain 
the event-by-event total initial entropy (which is proportional 
to the final charged multiplicity) and the corresponding geo-
metric eccentricity (which is approximately proportional to 
the elliptic flow). A deep residual neural network was trained 
to predict �2 and �4 using the two-dimensional (2D) images 
of total entropy vs. eccentricity [49]. The network accurately 
predicted the absolute values of �2 and �4 but failed to predict 
their signs using the information provided. Using the class 
activation map (CAM) method to map the last convolutional 

layer onto the input image, the authors found two regions in 
the image that are important for decision-making. One is 
the most central collision region, which is the most sensitive 
region to the variance of the elliptical flow.

Recently, Bayesian inference with a Gaussian process 
(GP) emulator was used for reconstructing the nuclear 
structure including deformation parameters based on HIC 
measurements [50]. As a first-step exploratory study, the 
collision observables (charged multiplicities Nch , elliptic 
flow v2 , triangular flow v3 , and mean transverse momentum 
⟨pT⟩ ) were estimated via Monte Carlo Glauber model cal-
culation (total energy E, elliptic eccentricity �2 , triangular 
eccentricity �3 , and energy density d

⟂
 ), can reasonably esti-

mate the ratio of observables in isobaric collision systems 
owing to the cancelation of dynamics’ uncertainties [51]. 
Under this setup, nuclear structure reconstruction based on 
both single collision system and contrast isobaric collision 
system measurements were discussed. For single collision 
systems, it was found that the Woods–Saxon parameters of 
nuclei can be precisely inferred from final-state observables 
estimated with (P,�2,�3,d⟂ ). For isobar collision systems, the 
simultaneous inference on the two set of nuclear structures 
fails with only the ratio of these final observables, while the 
further provision of the single collision system’s multiplicity 
distribution allows high-precision nuclear structure recon-
struction. Additionally, the ratio of radial flow was found 
to be redundant in the presence of the ratio of elliptic flow 
and vise versa.

3.4 �  ‑clustering structure

The clustering structure is an exotic phenomenon in nuclei, 
and it usually occurs in light nuclei [52]. In nuclear colli-
sions between light clustering nuclei and heavy ions, the 
clustering structure can make the final-state particles aniso-
tropically distributed [43, 53, 54]. It is crucial to extract the 
quantitative information about the clustering from the final 
observables.In the 12C / 16O + 197 Au collisions at relativistic 
energies, an ML method was used to obtain evidence of the 
cluster structures from the azimuthal angle and transverse 
momentum distributions of charged pions [55]. In this study, 
a Bayesian convolutional neural network (BCNN) was used. 
In addition to the input layer and output layer, there were hid-
den layers, consisting of four convolutional layers and three 
fully connected layers. The parameters of the three fully con-
nected layers were sampled from distributions learned via 
Bayesian inference. A 2D histogram of azimuthal angle vs. 
transverse momentum was used as the input. Considering 
the detection efficiency in the experiments, charged pions 
with rapidity ranging from −1 to 1 and transverse momen-
tum ranging from 0 to 2 GeV/c were selected. The dataset 
consisted of 1.6 × 106 histograms with 64 × 64 bins (pixels), 
with different labels to indicate different configurations.

Fig. 5   (Color online) Collision geometries for Pb+Pb and U+U col-
lisions
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The typical spectra of 4000 merged events are shown in 
Fig. 6. Even with merging, the samples of different con-
figurations are barely distinguishable to the naked eye. The 
number of merged events is denoted as NEvent, which is 
taken to be 1000, 2000, and 4000.

The learning curves are shown in Fig. 7. As more events 
were merged, the event-by-event fluctuations were reduced, 
and the network was able to learn the features of the final 
state for predicting the initial configuration. For 12C with 
NEvent = 4000 and 16O with NEvent = 2000, the validation 
accuracy reached 95% and 97%, respectively, and for 16O 
with NEvent = 4000, it reached 99%.

For the clustering phenomenon, it is extremely difficult 
to extract signals from the final particles, because fluctua-
tions play such an important role in relativistic HICs. By 
averaging over multiple events, the BCNN model can learn 
the features with good performance.

3.5 � Neutron skin estimation

The distribution of neutrons is important in determining 
the thickness of the neutron skin, the symmetry energy 
of the nucleus, the QCD equation of state (EoS) of dense 
nuclear matter, and astrophysical observables such as the 
mass–radius relationship of neutron stars and the gravita-
tional wave emitted during neutron star mergers. However, 
extracting the distribution of neutrons inside the nucleus is 
extremely difficult. The distribution of neutrons inside the 
nucleus differs from the distribution of protons. The pro-
ton distribution is far easier to measure than the neutron 
distribution because the former is equivalent to the charge 
distribution, whereas the latter is associated with the weak 
charge distribution. The neutron skin, which is the difference 
between the root-mean-square radii of neutrons and protons, 
can be used to determine the neutron (weak charge) distribu-
tion in the nucleus. PREX2 measured the parity-violating 
asymmetry by scattering longitudinally polarized electrons 
on 208Pb to obtain a neutron skin thickness of approximately 
Rn − Rp = 0.283 ± 0.071 fm [56]. The neutron skin is used 
as a constraint in the calculation of the positive and nega-
tive correlations between the symmetry energy and the slope 
parameter at the saturation density. With this constraint, the 
Bayesian analysis achieves a compromise between the “con-
flicting” data that lead to the famous “PREXII puzzle” and 
the “soft Tin puzzle” [57, 58].

There have been many attempts to determine the neutron 
skin thickness and the symmetry energy at low energy [59], 
e.g., by investigating the charge-exchange spin–dipole exci-
tation [60], the supernova neutrinos [61], nuclear fragmenta-
tion reactions [62], and parity-violating electron scattering 
[56, 63].

For high-energy HICs, it was proposed that the isobar 
ratios of the charge multiplicities of the mean transverse 

Fig. 6   (Color online) Taken from Ref. [55]. Two-dimensional azi-
muthal angle vs transverse momentum distributions of charged pions 
for non-clustered (Up) and clustered (Down) 12C from an AMPT-gen-
erated 12C+197Au collision event at 

√
SNN = 200GeV

Fig. 7   (Color online) Taken from Ref. [55]. Validation accuracy dur-
ing the training process for colliding systems 12C∕16O +197Au with 
NEvent = 1000, 2000, and 4000
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momentum and the net charge multiplicities between 
96
44
Ru +96

44
Ru and 96

40
Zr +96

40
Zr can be used to precisely deter-

mine the nucleon skin and the symmetry energy [64]. The 
authors claimed that the high-energy isobar collisions can 
significantly improve the result of the traditional low-
energy method. In another paper, the yields of spectator 
protons and neutrons at the forward velocity of ultra-
central collisions were proposed to be good probes of the 
neutron skin—sensitive to the neutron skin of 208Pb but 
insensitive to other parameters during the collision [65]. 
A more accurate method is to measure the free spectator 
neutron yield ratios between 96

44
Ru +96

44
Ru and 96

40
Zr +96

40
Zr 

in ultra-central collisions [66].
A large amount of data have already been collected 

from high-energy HICs. There may be a data-driven way 
to reuse these data to determine the neutron distribution 
and neutron skin thickness. It has been tested in [67] that 
nucleons sampled from nuclei with different neutron skin 
types can be classified with reasonable accuracy using 
deep CNNs and point cloud networks. However, once the 
nucleus is involved in HICs, it is almost impossible to 
distinguish the neutron skin types of the colliding nucleus 
using the momentum distribution of the final-state had-
rons. For this task, the signal is weak in minimum bias 
collisions, and DNNs fail to solve the difficult inverse 
problem. A new ML method is needed to search for weak 
signals in data with large statistical fluctuations.

4 � Bulk matter

4.1 � Shear and bulk viscosities

The shear and bulk viscosities are important proper-
ties that significantly affect the dynamical expansion of 
QGP and the momentum distribution of final-state had-
rons, as indicated by relativistic fluid dynamics simula-
tions [68–71]. In solving the inverse problem of HICs, it 
was found that the effects of viscosity are entangled with 
the initial thermalization time, the EoS of QGP, and the 
phase transition between QGP and HRG. Thus, determin-
ing the shear and bulk viscosities of hot nuclear matter is 
a notoriously difficult problem. Regarding the nucleonic 
degree of freedom, the shear viscosity has attracted con-
siderable attention because it is related to the nuclear EoS, 
phase change, and strong interaction [72–75]. A similar 
feature to the QGP viscosity has been demonstrated for the 
behavior �∕s(T) . Bayesian analysis plays an important role 
in determining the temperature dependence of the ratio 
of shear viscosity over the entropy density ratio �∕s(T) as 
well as the bulk viscosity over the entropy density ratio 
�∕s(T) [76–78].

Suppose that all the parameters in the theoretical model 
of HICs form a set {�} and all the experimental data from 
RHIC and LHC form another set {D} . Then, the posterior 
distribution of the model parameters is given by

where P(D|�i) represents the likelihood between the experi-
mental data D and model output using parameter combi-
nations �i ; P(�i) represents the a priori distribution of �i , 
which may be a belief based on past experience or physical 
considerations; and the denominator P(D) =

∑
j P(D��j)P(�j) 

is a normalization factor called evidence. Computing P(D) 
is too expensive because it requires the theoretical model to 
traverse the entire parameter space. Fortunately, in Bayesian 
analysis, the normalization factor is not needed, because the 
Markov chain Monte Carlo (MCMC) method can sample 
from the following un-normalized distributions:

The final output of the Bayesian analysis is a large number 
of different combinations of model parameters sampled from 
the above un-normalized posterior distribution function. Per-
forming a density estimation for each parameter, e.g., the 
slope of �∕s over Tc , gives a distribution (or histogram) of 
the slope parameter. The location of the maximum value in 
this distribution corresponds to the MAP estimate. Addition-
ally, the distribution has a variance that corresponds to the 
uncertainty in the slope parameter, which comes from the 
experimental data, the prior distribution, and the likelihood 
function. Thus, it is clear that the extracted model param-
eters are well constrained when their posterior distribution 
has a narrow peak.

To estimate the temperature dependence of the shear 
and bulk viscosities, two parameterized functions based on 
physical a priori are required. In a Nature Physics paper [77], 
the shear and bulk viscosities were parameterized as follows:

where (�∕s)min and (�∕s)max represent the minimum and 
maximum shear and bulk viscosity values to be determined, 
respectively, Tc = 154 MeV is the QCD transition tempera-
ture representing the location of the minimum in �∕s(T) , and 
(�∕s)T peak

 denotes the location of the maximum bulk viscosity 
to be determined. Other parameters to be determined are the 

(33)P(�i�D) =
P(D��i)P(�i)

P(D)
=

P(D��i)P(�i)∑
j P(D��j)P(�j)

,

(34)P(�i|D) ∝ P(D|�i)P(�i).

(35)(�∕s)(T) = (�∕s)min + (�∕s)slope
(
T − Tc

)( T

Tc

)(�∕s)crv

,

(36)
(�∕s)(T) =

(�∕s)max

1 +
(

T−(�∕s)T peak

(�∕s) width

)2
,
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slope (�∕s)slope and the curvature of the shear viscosity 
(�∕s)crv and the width of the bulk viscosity peak (�∕s) width.

Without considering other parameters, these six param-
eters form a six-dimensional parameter space. The above 
Bayes formulae are used to traverse this space, with the tra-
jectories forming a set of parameter combinations. This is 
equivalent to importance sampling using the posterior dis-
tribution of the six parameters. Density estimation indicates 
that the distribution of (�∕s)min is approximately normal, 
whose mean and variance give a quantitative estimate of 
(�∕s)min = 0.085+0.026

−0.025
 . An anti-correlation is observed 

between (�∕s)max and (�∕s) width , indicating that it is the inte-
gral of (�∕s)(T) that matters, not its specific form. The analy-
sis also indicates that the experimental data used can not 
constrain the parameters (�∕s)crv and (�∕s)T peak

 , as there are 
no obvious peaks in the posterior distributions of these two 
parameters.

4.2 � Crossover or first‑order phase transition

In general, as mentioned in the Introduction, the challenge 
faced by high-energy nuclear collision studies can essen-
tially be viewed as an inverse problem. Assuming that all 
related physical factors (e.g., initial condition/fluctuations, 
QGP bulk properties, transport coefficients, freeze-out 
parameter, hadronic interactions) are given, well-established 
theoretical models (e.g., relativistic viscous hydrodynamics 
with hadronic transport simulation) can be adopted to simu-
late the HIC process to give their final-state observables, 
and such a forward process is well understood. However, 
given instead only limited measurements of the final state 
of HICs, it is unclear how to disentangle those different 
influencing physical factors for decoding the corresponding 
early time dynamics. For high-energy HICs, there are two 
strategies for solving this inverse problem using statistical 
methods and ML: one is Bayesian inference with the task of 
parameter estimation for calibrating the chosen model (e.g., 
in Ref. [79]), and the other is supervised ML for directly 
capturing the inverse mapping from the final state to the 
corresponding physics of interest.

Reference [80] proposed the use of a deep CNN to cap-
ture the direct inverse mapping from the final-state infor-
mation to the types of QCD transition happened in early 

time. This is inspired by the success of image recognition in 
computer vision. Although the inverse mapping may be very 
implicit, DNNs can be used to decode it and represent it in 
the sense of Big Data in a supervised manner. The required 
training data can be prepared through well-established 
model simulation for HICs, e.g., using the state-of-the-art 
3+1-dimensional viscous hydrodynamics  [81–84], where 
diversity can be introduced by varying different physical 
factors (i.e., parameters in the simulation). As an explora-
tory study, a binary classification task was targeted, where 
the Deep CNN was trained to identify the QCD transition 
type embedded within the collision dynamics as crossover or 
first-order solely according to the final pion spectra �(pT,�) , 
as shown in Fig. 8. The EoS of the hot and dense matter is a 
crucial ingredient in the hydrodynamic simulations. Embed-
ded in it is the nature of the QCD transition (first-order or 
crossover), which can significantly affect the hydrodynamic 
evolution according to the shape of the pressure gradient. As 
the input to the deep CNN, the final charged pion’s spectra 
at mid-rapidity are obtained using the Cooper–Frye formula 
in each hydrodynamic simulation:

where Ni represents the particle number density, Y represents 
the rapidity, gi represents the degeneracy, d�� represents 
the freeze-out hypersurface element, and fi represents the 
thermal distribution. The training dataset of �(pT,�) was 
generated from the event-by-event hydrodynamic package 
CLVisc [81] with fluctuating AMPT initial conditions, with 
which supervised learning using the CNN is performed for 
binary classification in identifying the QCD transition types.

Figure 9 shows the space–time evolution histories of QGP 
expansion starting from the same initial condition model 
with different fluctuations, in relativistic hydrodynamic 
simulations using CLVisc. For EOSQ with a first-order 
phase transition, the pressure gradient is zero in the mixed 
phase. Multiple ridge structures are formed with a first-order 
phase transition in the EoS because the expansion of QGP is 
mainly driven by the pressure gradient and the acceleration 
is 0 in the mixed phase. However, the expansion histories 
are significantly different when the shear viscosity is not 

(37)�(pT,�) =
dNi

dYpTdpTd�
= gi ∫�

p�d��fi(p ⋅ u),

Fig. 8   (Color online) Schematic 
of QCD transition classification 
with HIC final particle spectra
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0. Different evolution histories lead to different final-state 
particle spectra in the momentum space.

To verify the robustness of the trained deep CNN in this 
QCD EoS recognition task, the test set was simulated from 
a different hydrodynamics package or with different initial 
fluctuating conditions (IP-Glasma or MC-Glauber) and dif-
ferent �∕s parameters. The conventional observables, such 
as the elliptic flows v2 and integrated particle spectrum, were 
shown to be insufficient for distinguishing the two QCD 
transition classes for these test set, whereas the trained deep 
CNN achieved an average classification accuracy of 95% , 
indicating that it was robust against contamination from fac-
tors such as the initial fluctuations and shear viscosity. For 
comparison, the best classification accuracy among tradi-
tional ML algorithms such as decision tree, random forest, 
support vector machine, and gradient boosting was approx-
imately 80% . The good performance of the trained deep 
CNN indicates that the imprint of the early time transition 
dynamics is not fully washed out by the collision evolution 
and is still embedded in the final-state information. Addi-
tionally, the inverse mapping from final-state observables to 

the QCD transition information can be well captured by the 
deep CNN from the supervised training strategy, providing 
a discriminative and traceable encoder for the dynamical 
information of QCD transition. Thus, the constructed deep 
CNN functions as an “EoS-meter" to efficiently bridge the 
HIC experiments to QCD bulk matter physics. This study 
paved a path to the success of experimental research on the 
QCD EoS and the search for the critical endpoint of the 
QCD phase diagram. In the study, the afterburner hadronic 
cascade effects were not considered; thus, the conclusion 
regarding the direct inverse mapping was drawn from the 
viewpoint of pure hydrodynamic evolution.

Later, this strategy was deepened in a series of studies 
for more realistic scenarios, e.g., to take into account the 
afterburner hadronic cascade by incorporating UrQMD fol-
lowing the hydrodynamics evolution [85, 86]; to consider 
non-equilibrium dynamics of the phase transition’s influ-
ence, e.g., spinodal decomposition [18, 87] or Langevin 
dynamics  [88]; to include more realistic experimental 
detector effects through detector simulation with hits or 
tracks as the input [48, 89]; to perform unsupervised outlier 

Fig. 9   Evolution history of QGP 
simulated using the relativistic 
hydrodynamic model CLVisc, 
starting from the same initial 
condition with four different 
parameter combinations. From 
top to bottom, each row presents 
four snapshots taken at different 
times, using different combina-
tions of the EoS and shear vis-
cosity over the entropy density 
ratio. Here, EOSL represents 
the lattice QCD EoS with a 
crossover transition between 
QGP and hadron resonance gas, 
and EOSQ represents an EoS 
with a first-order phase transi-
tion between QGP and hadron 
resonance gas



	 W.-B. He et al.

1 3

88  Page 16 of 33

detection for HICs [90]; and to determine the nuclear sym-
metry energy [91]. Specifically, in Ref. [89] it was shown 
that by using just the detector output directly, PointNet mod-
els can be employed to classify collision events simulated 
by an EoS associated with a first-order phase transition and 
those simulated by an EoS with a crossover transition. The 
PointNet models take the reconstructed tracks from the 
CBM detector (simulated with CBMRoot) followed by the 
hybrid UrQMD events. They achieved a binary classifica-
tion accuracy of approximately 96% when trained on colli-
sion events for impact parameters ranging from 0 to 7 fm. 
When the model training set was shrunk to the mid-central 
region with b = 0 ∼ 3 fm , the model accuracy increased to 
approximately 99% . A combination of training sets from 
both peripheral and mid-central collisions resulted in a clas-
sifier being able to identify the phase transition type across 
different centralities, while not compromising the accuracy 
for the central region.

4.3 � Active learning for QCD EoS

First-principles calculations using lattice QCD provide the 
EoS of hot nuclear matter at high temperatures and zero 
baryon chemical potential. Because of the fermionic sign 
problem, lattice QCD fails to compute the nuclear EoS 
at finite �B at present. Using Taylor expansion, it is pos-
sible to obtain the nuclear EoS at a small �B that is close 
to zero, approximately. The BEST collaboration formulated 
a nuclear EoS with a critical endpoint by mapping the 3D 
Ising model with the Tylor expansion result. However, the 
model contains four free parameters whose values determine 
the size and location of the critical endpoint. Some combina-
tions of these parameters lead to an unphysical, e.g., acausal 
or unstable, EoS.

Supervised learning can help to map unphysical regions 
of parameter combinations. However, labeling is computa-
tionally expensive in this task. For thermodynamic stability, 
one must check the positivity of the energy density, pressure, 
entropy density, baryon density, second-order baryon sus-
ceptibility �B

2
 , and heat capacity (�S∕�T)nB , as well as the 

causality condition:

where cs represents the speed of sound in hot nuclear matter.
Active learning was used to find the most informative 

parameter combinations before labeling them [92]. In active 
learning, the network is first trained using a small amount of 
labeled data. Then, the trained network is employed to make 
predictions on all samples from a large unsupervised pool. If 
the network is uncertain about one parameter combination, 
e.g., it predicts that this group of parameter combinations 
will lead to an EoS that is unphysical with probability 51%, 

(38)0 ≤ c2
s
≤ 1,

this sample lives on the decision boundary and should be 
informative and important for the network. Labeling this 
sample will improve the performance of the network more 
than labeling easy samples. The newly labeled sample is 
moved out of the pool and will be used in supervised learn-
ing later.

4.4 � Accelerated relativistic hydrodynamic 
simulation via deep learning

Relativistic hydrodynamics is a powerful tool for simulating 
the QGP expansion and studying the flow observables in rel-
ativistic HICs at the RHIC and LHC energies [95–100]. For 
ideal hydrodynamics with zero net charge densities, it solves 
the transport equations of the energy momentum tensor:

where T�� = (e + p)u�u� − pg�� , e represents the energy 
density, p represents the pressure, and u� represents the 
four-velocity. In traditional hydrodynamic simulations, 
these transport equations are numerically solved with an 
algorithm such as SHASTA or LCPFCT that transforms the 
initial conditions into final-state profiles through nonlinear 
evolutions  [97, 100–102].

Recently [93, 94], a DNN called stacked U-net (sU-net) 
was designed and trained to learn the initial- and final-state 
mapping from the nonlinear hydrodynamic evolution. The 
constructed sU-net has an encoder–decoder architecture, 
which contains four U-net blocks with residual connections 
between them. For each U-net block, there are three convo-
lutional and deconvolutional layers with Leaky ReLU and 
softplus activation functions employed for the inner and out-
put layers, respectively. By concatenating the feature maps 
along the channel dimension, the output of the first two con-
volutional layers is fed to the last two deconvolution layers. 
For details, please refer to [93, 94].

The training and test data (the profiles of the initial and 
final energy momentum tensor T�� , T�x , T�y ) were gener-
ated from VISH2+1 hydrodynamics [103, 104] with zero 
viscosity, zero net baryon density, and longitudinal boost 
invariance. In more detail, sU-net was trained with 10,000 
initial and final profiles from VISH2+1 with MC-Glauber 
initial conditions [105, 106], and then its prediction accuracy 
was tested using the profiles of four different types of initial 
conditions: MC-Glauber [105, 106], MC-KLN [106, 107], 
AMPT [81, 108, 109], and TRENTo [110]. Figure 10 pre-
sents the final energy density and flow velocity predicted by 
sU-net, together with a comparison with the hydrodynamic 
results. As shown, the trained sU-net captured the magni-
tudes and structures of both the energy density and the flow 
velocity. In particular, panels (b), (d), and (f) show that the 
network, which was trained with datasets generated with 

(39)��T
�� = 0,
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MC-Glauber initial conditions, was also capable of predict-
ing the final profiles of other types of initial conditions. In 
Refs. [93, 94], the eccentricity coefficients, which indicate 
the deformation and inhomogeneity of a large number of 
the energy density profiles, were calculated, and the predic-
tions from sU-net almost overlapped with the results from 
VISH2+1.

Compared with the 10∼20  min simulation time of 
VISH2+1 on a traditional CPU, sU-net took several seconds to 
directly generate the final profiles for different types of initial 
conditions on one P40 GPU, which significantly accelerated 
the traditional hydrodynamic simulations. However, the sU-net 
model designed and trained in Refs. [93, 94] mainly focuses 
on mimicking the 2+1-dimensional hydrodynamic evolution 
with a fixed evolution time. For more realistic implementa-
tion, it is important to explore the possibilities of mapping the 
initial profiles to the final profiles of the particles emitted on 
the freeze-out surface of the relativistic HICs.

5 � In‑medium effects

5.1 � Spectral function reconstruction

Accessing real-time properties of QCD (or a many-body 
system in general) remains a notoriously difficult problem, 
because the non-perturbative computations, such as lattice 
field simulations or functional methods, usually operate in 
Euclidean space–time (after a Wick rotation t → it ≡ � ) and 
thus can only provide Euclidean correlators (i.e., in imagi-
nary time). Thus, the analytic continuation of these discrete 
noisy data is often ill-posed. Quantitatively understanding 
the real-time dynamics determined by the Minkowski cor-
relator is important and interesting, e.g., for understanding 
scattering processes, transport, or non-equilibrium phe-
nomena that occur in HICs. The Minkowski correlator is 
usually accessed from the Euclidean correlator via spectral 
reconstruction.

Fig. 10   (Color online) Energy density and flow velocity profiles predicted by sU-net and calculated from VISH2+1 for six test initial profiles of 
MC-Glauber, MC-KLN, AMPT, and TRENTo. Taken from Refs. [93, 94]
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The associated ill-posed problem can be cast as a Fred-
holm equation of the first kind:

with the goal of retrieving the function �(s) given the ker-
nel function K(t, s) but limited information about g(t). It 
has been well shown that the required inverse transform 
becomes ill-conditioned if only a finite set of data points 
with non-vanishing uncertainty are available for g(t). In the 
context of QFT, one can simply approach this problem via 
the Källén–Lehmann spectral representation of the correla-
tors, taking the kernel function to be

where the �(s) functions involved are usually called spectral 
functions. The task of reconstructing the spectral function 
from the correlator measurements (from the lattice calcula-
tion) needs to be regularized to make sense of the inverse 
problem involved. Over the past few decades, many differ-
ent regularization techniques have been explored for this 
ill-conditioned inverse problem, such as Tikhonov regulari-
zation, maximum entropy methods, and Bayesian inference 
techniques.

Recently, deep learning-based strategies have also been 
explored to tackle spectral reconstruction, which can be 
mainly categorized into two schemes: data-driven super-
vised learning approaches and unsupervised learning-based 
approaches. The first application of domain-knowledge-free 
deep-learning methods to this ill-conditioned spectral recon-
struction (also called analytic continuation) was reported 
in Ref. [111] in the context of general quantum many-body 
physics. The results indicated the good performance of 
DNNs with supervised training in the cases of a Mott–Hub-
bard insulator and a metallic spectrum. In particular, a CNN 
was found to achieve better reconstruction than a fully con-
nected network, with performance superior to that of the 
MEM—one of the most widely used conventional methods. 
In Ref. [112], the authors adopted a similar strategy but also 
introduced PCA to reduce the dimensionality of the QMC-
simulated imaginary time correlation function of the posi-
tion operator for a harmonic oscillator linearly coupled to 
an ideal heat bath.

The authors of Ref. [113] also adopted a data-driven 
perspective. They adopted a strategy similar to spectral 
function reconstruction in the QFT context and consid-
ered the Källen–Lehmann spectral representation as the 
accessible propagator, i.e., G(p) = ∫ ∞

0

d�

�

��(�)

�2+p2
 , which 

takes the kernel in the Fredholm equation as the Käl-
len–Lehmann kernel. For the dummy spectral functions, 
the superposition of Breit–Wigner peaks was used, 
according to the perturbative one-loop QFT-derived 

(40)g(t) = ∫
b

a

K(t, s)�(s)ds,

(41)K(t, s) = s(s2 + t2)−1�−1,

parameterization �BW(�) = 4AΓ�∕((M2 + Γ2 − �2)2 + 4Γ2�2) . 
Two types of DNNs have been studied, both with a noisy 
propagator as the input, but with different outputs: one esti-
mates the parameters (e.g., Γi and Mi for the collection of 
Breit–Wigner peaks) of the spectral function (denoted as 
PaNet), and the other attempts to directly reconstruct the 
discretized data points of the spectral function (denoted as 
PoNet).

As another type of nonparametric representation, GPs 
were used in the reconstruction of the 2+1 flavor QCD ghost 
and gluon spectral function in Ref. [115]. In general, the GP 
can define a probability distribution over families of func-
tions, which is typically characterized by the chosen kernel 
function. In Ref. [115] the GP was assumed to describe the 
spectral function:

where the mean function �(�) is often set to zero, and the 
covariance C(�,��) is determined by the kernel function 
used, for which a common standard choice is the radial basis 
function (RBF) kernel

with tunable hyperparameters �C for the overall magnitude 
and l for the length scale. The prior represented by this 
GP can be plugged into the Bayesian inference procedure 
with lattice data for the ghost dressing function and gluon 
propagator for evaluating the likelihood. In Ref. [115], the 
lattice data were specifically extended. The ghost dressing 
function was extended to the deep infrared range, and the 
low-frequency behavior was constrained by spectral DSE 
results [116]. The gluon dressing function was extended 
to the ultraviolet range with previous fRG computation 
results [117]. This reduced the variance in the solution space 
and enhanced the stability compared with the inference with-
out such extensions. It was shown that while approximately 
fulfilling the Oehme–Zimmermann superconvengence 
(OZS) condition for gluons, the reconstruction with GP 
regression in this work accurately reproduced the lattice data 
within the uncertainties with deviations for a gluon propaga-
tor stronger in some regions than those for the ghost dressing 
function. For the spectral function, the reconstruction exhib-
ited a similar peak structure to a previous fRG reconstruction 
of the Yang–Mills propagator [117].

In Refs. [114, 118, 119], the authors developed an unsu-
pervised approach based on DNN representation for the 
spectral function together with automatic differentiation 
(AD) to reconstruct the spectral function, which does not 
need training data preparation for supervision (a similar 
DNN-based inverse problem solving strategy within the 
AD framework was used for reconstructing the neutron-star 

(42)�(�) ∼ GP(�(�),C(�,��)),

(43)C(�,��) = �Ce
−

(�−��)2

2l2 ,
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EoS from astrophysical observables [120, 121] and infer-
ring the parton distribution function of pions in lattice 
QCD studies [122]). The introduced DNN representation 
can preserve the smoothness of the spectral function auto-
matically, helping to regularize the degeneracy issue in this 
inverse problem. This is because, as analyzed in Ref. [119], 
the degeneracy is related to the null modes of the investi-
gated kernel function, which usually induce oscillation for 
the reconstructed spectral function. Specifically, the DNN-
represented spectral function, i.e., 𝜌 = [𝜌1, 𝜌2, ..., 𝜌N𝜔

] , 
can be converted into the propagator under the discretiza-
tion scheme as D(p) =

∑N�

i
K(p,�i)�iΔ� . Then, the loss 

function over the propagator relative to lattice data, i.e., 
L =

∑Np

i
(Di − D(pi))

2∕�i , can be evaluated and provide 
guidance for tuning over the DNN-represented spectral func-
tion. Taking gradient-based algorithms, the derivative of the 
loss with respect to network parameters can be derived as

∇��k is computed easily under standard backward propaga-
tion for the network.

For the DNN representation of the spectral function, two 
different schemes were investigated in this work: one uses 
the multiple outputs of an L-layer neural network to repre-
sent in list format the spectral function (denoted as NN), 
and the other directly uses a feedforward neural network 
for parameterization (denoted as NN-P2P) of the spectral 

(44)∇�L =
∑

j,k

K(pj,�k)
�L

�D(pj)
∇��k.

function as a function of frequency, i.e., �(�) . For the 
training, the Adam optimizer is adopted, and the L2 regu-
larization is set in the warm-up beginning stage under an 
annealing strategy until the regularization strength value 
is sufficiently small (set as < 10−8 in the calculation). This 
can relax the regularization to obtain hyperparameter-inde-
pendent inference results. For the direct NN list represen-
tation, a quenched implementation of smoothness condi-
tion �s

∑N�

i=1
(�i − �i−1)

2 is also performed with �s reduced 
from 10−2 to 0. This unsupervised spectral reconstruction 
method was validated with regard to the uniqueness of the 
solutions both analytically and numerically [119]. As shown 
in Fig. 11, for superposed Breit–Wigner peaks, this method 
outperformed the traditional MEM method—particularly 
for multi-peak spectra with large amounts of measurement 
noise.

In addition to Gaussian-like and Lorentzian-like spectral 
reconstruction tests, the newly devised framework presented 
in Refs.  [114, 118] was validated through two physics-
motivated tests. One was for non-positive definite spectral 
reconstruction, which is beyond the scope of classical MEM 
applicability but is often encountered for spectral functions 
related to confinement phenomenon of, e.g., gluons and 
ghosts, or thermal excitations with long-range correlation 
in strongly coupled systems. The other one was for the had-
ron spectral function encoded in the temperature-dependent 
thermal correlator with lattice QCD noise-level noises. For 
both of these physical cases, the proposed DNN and AD-
based method with NN representation consistently works 

Fig. 11   (Color online) Spectral functions reconstructed from MEM, NN, and NN-P2P under different amounts of Gaussian noises added to the 
propagator data with Np = 25 , and N� = 500 . Taken from Ref. [114]
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well, whereas traditional MEM based methods lose the peak 
information or fail to resolve the non-positiveness.

The spectral function can also be reconstructed from 
finite correlation data by implementing the radial basis 
function network (RBFN), which is an MLP model based 
on the RBF [127, 128]. The RBFN has been widely used in 
feature extraction, classification, regression, etc. [129–132]. 
In Ref. [123], the spectral function �(�) was approximately 
described by a linear combination of RBFs:

where � represents the active RBF with an adjustable weight 
wj and an adjustable center mj , which can take a Gaussian 
form �(r) = e

−
r2

2a2 or an MQ form �(r) = (r2 + a2)
1

2 . Here, a 
is the shape parameter, which is adjustable and essential for 
the regularization. Then, the inverse mapping problem of 
constructing the spectral function is transformed into calcu-
lating the linear weights of the RBF, which allows smooth 
and continuous reconstruction.

For calculating these parameters in Eq. (45), in 
Ref. [123], a neutral network called the RBFN was con-
structed, which is a three-layer feedforward neural network 
with the active RBFs in the hidden layer. After discretiza-
tion of the spectral function, Eq.(45) is converted to matrix 
form: [�] = [Φ][W] . Then, the correlation functions in the 
Euclidean space with the integral spectral representation 
G(�, T) = ∫ ∞

0

d�

2�
�(�, T)K(�, �, T) are converted to matrix 

form:

where K̃ is a N̂ ×M matrix associated with the integration 
kernel, and N̂ represents the number of data points for the 
correlation function Gi . The spectral function �(�i) has been 
discretized into N parts with mi = �i, i = 1...N , and M is set 
to M = N = 500 . To obtain wj , one can use the truncated sin-
gular value decomposition (TSVD) method or a DNN [123]. 
Compared with other ML approaches based on supervised 
learning [113, 133, 134], this method allows faster training 
and is free from the overfitting problem.

Figure 12 shows a comparison of the spectral functions 
reconstructed using RBFN, TSVD, Tikhonov, and MEM, 
using the correlation data generated by a mock SPF. The 
mock SPF was obtained by mixing two Breit–Wigner dis-
tributions: �Mock(�) = �BW(A1,Γ1,M1,�) + �BW(A2,Γ2,M2,�) with 
�BW(Ai,Γi,Mi,�) =

4AiΓi�

(M2
i
+Γ2

i
−�2)

2
+4Γ2

i
�2

 . The parameters for 

the mock SPF in Fig.  12 were set to A1 = 0.8,M1 = 2,

Γ1 = 0.5;A2 = 1,M2 = 5,Γ2 = 0.5 . Here, 30 discrete cor-
relation data were generated using the Euclidean 

(45)�(�) =

N∑

j=1

wj�
(
� − mj

)
,

(46)Gi =

M∑

j=1

N∑

k=1

KijΦjkwk ≡
M∑

k=1

K̃ikwk, i = 1...�N,

correlation functions of the mock SPF, with noise added, 
i.e., Gnoise(�i) = G(�i) + noise.

Compared with the results of traditional methods, the 
RBFN provided a better description of the spectral func-
tions—particularly for the low-frequency part. It almost 
reproduced the first peak of the mock SPF using the cor-
relation data with a small amount of noise � = 0.00001 . In 
contrast, Tikhonov, TSVD, and MEM exhibited oscillation 
behavior at a low frequency. For such a task of extract-
ing the transport coefficients from the Kubo relation, an 
improved reconstruction of the spectral functions at a 
low frequency is important. Although the RBFN failed 
to reconstruct the second peak of the mock SPF, it was 
the only method that reduced the oscillation at the low 
frequency, among the methods tested. In Ref. [123], the 
Gaussian and MQ RBFs used in the network were com-
pared, and it was found that the Gaussian RBF provided 
better construction of the SPF, including the location and 
the width of the peak. Additionally, with mock data gener-
ated from the spectral function of the energy momentum 
tensor, it was demonstrated that the RBFN method allows 
precise and stable extraction of the transport coefficients.

5.2 � In‑medium heavy quark potential

As an important probe for the properties of the created QGP 
in HICs, heavy quarkonium (the bound state of a heavy 
quark and its anti-quark) has been intensively measured in 
experiments and analyzed in theoretical studies [135, 136], 
wherein the investigation and calculation require an under-
standing of the in-medium heavy quark interaction. The 
heavy quarkonium provides a calibrated QCD force, because 
in vacuum the simple Cornell potential can well reproduce 
the spectroscopy of heavy quarkonium, and when we put 
the bound state into the QCD medium, the color screening 
effects naturally occur and weaken the interactions between 
the heavy quarks, beyond which a non-vanishing imaginary 
part manifested as thermal width is argued to appear accord-
ing to both one-loop hard thermal loop (HTL) perturbative 
QCD calculations [137, 138] and recent effective field the-
ory (EFT) studies, e.g., those on PNRQCD [139, 140]. How-
ever, a non-perturbative treatment similar to that of lattice 
QCD is necessary because it is difficult to obtain a satisfac-
tory description of the strong interaction dictated in-medium 
heavy quarkonium solely from perturbative calculations. 
These EFT studies suggested that a potential-based pic-
ture can provide a good approximation of the quarkonium, 
under which the Schrödinger equation can be employed to 
study the spectroscopy of the bound state. Recent lattice 
QCD studies involved quantification of the in-medium spec-
trum–mass shift and thermal widths of bottomonium ( bb̄ ) up 
to 3 S and 2P states in QGP [125], where it was found cannot 
be reproduced by the one-loop HTL-motivated functional 
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form of the heavy quark in-medium potential, i.e., VR(T , r) 
and VI(T , r) . Note that the mass shift may affect the quarko-
nium production in HICs [141].

In Ref.  [124], the authors developed a model-inde-
pendent DNN-based method for reconstructing the tem-
perature and inter-quark distance-dependent in-medium 
heavy quark potential according to the aforementioned 
lattice QCD results for bottomonium. Inspired by the uni-
versal approximation theorem, the authors introduced 
the DNN to parameterize the potential in an unbiased yet 
flexible manner (can be named as potential-DNN). The 
DNN-represented heavy quark potential is coupled to the 
Schrödinger equation solving process to be converted into 
complex valued energy eigenvalues En , which are related to 
the bound state in-medium mass and thermal width through 
Re [En] = mn − 2mb and Im [En] = −Γn . Through compari-
son with the lattice QCD “measurements”, the correspond-
ing �2 provide the loss function for optimizing the param-
eters of the potential-DNN:

w i t h  T ∈ {0, 151, 173, 199, 251, 334}  M e V  a n d 
n ∈ {1 S, 2 S, 3 S, 1P, 2P} according to the lattice QCD eval-
uation conditions. Gradient descent with backpropagation 
can be applied for the DNN optimization here, where the 
gradient is estimated efficiently from perturbative analysis 
based on the Schrödinger equation with respect to the per-
turbative change of the potential and just arrived at the Hell-
man–Feynman theorem. Furthermore, the uncertainty of the 
reconstructed potential is quantified via Bayesian inference; 
thus, the posterior distribution of the DNN parameters is 
evaluated. With the outlined approach, in Ref. [124], good 
agreement with the lattice QCD results for the masses and 
thermal widths of bottomonium was achieved simultane-
ously; see the left and middle panels of Fig. 13. Additionally, 
the temperature- and distance-dependent heavy quark poten-
tial was obtained, as shown in the right panel of Fig. 13. 
Clearly, the color screening effect emerged for the recon-
struction with a flatter structure appearing in VR(T , r) with 

(47)L =
1

2

∑

T ,n

(
mT ,n − m

LQCD

T ,n

�m
LQCD

T ,n

)2

+

(
ΓT ,n − Γ

LQCD

T ,n

�Γ
LQCD

T ,n

)2

,

Fig. 12   (Color online) Con-
structed spectral functions 
obtained from RBFN, TSVD, 
Tikhonov regularization, and 
MEM, using the correlation 
data generated by the mock SPF 
acquired by mixing two Breit–
Wigner distributions. From 
left to right, different Gaussian 
noises are added to the cor-
relation data with � = 0.001 , 
0.0001, and 0.00001. Taken 
from Ref. [123]
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the increasing temperature at a long distance, but the temper-
ature dependence was mild compared with the perturbative 
analysis-based results in the same temperature range. In con-
trast, the imaginary part, i.e., VI(T , r) , exhibited significant 
growth with respect to both temperature and distance and 
also exhibited a larger magnitude than the one-loop HTL-
motivated results.

5.3 � Deep learning for quasi‑particle mass

The EoS of hadron resonance gas in the QCD phase diagram 
can be calculated using a simple statistical formula with the 
following partition function:

where Zhi(T) is the partition function for one of the several 
hundred hadrons in HRG, assuming that there is no interac-
tion between different hadrons. The obtained EoS agrees 
with lattice QCD calculations. It is impossible to obtain the 
lattice QCD EoS for QGP using the same formula, as quarks 
and gluons interact with each other and form a many-body 
quantum system. However, if one assumes that the quarks 
and gluons are non-interacting quasi-particles whose masses 

(48)lnZ(T) =
∑

i

ln Zhi(T),

depend on the local temperature, the lattice QCD EoS can be 
reproduced using the following simple statistical formula:

where Zg represents the partition function of quasi-gluons; 
Zqi represents the partition function of quasi-quarks; dg and 
dqi represent the spin and color degeneracy for gluons and 
quarks, respectively; p represents the magnitude of momen-
tum; and T represents the local temperature. Gluons, along 
with up, down, and strange quarks, are considered in this 
calculation. It is assumed that the temperature quasi-particle 
masses mu∕d(T) are the same for up and down quarks but dif-
ferent for gluons mg(T) and strange quarks ms(T) . Thus, there 
are three variational functions whose forms are unknown 
and must be determined by mapping the following EoS to 
the lattice QCD EoS:

(49)

ln Z(T) = ln Zg(T) +
∑

i

ln Zqi(T)

ln Zg(T) = −
dgV

2�2 ∫
∞

0

p2dp

ln
[
1 − exp

(
−
1

T

√
p2 + m2

g
(T)

)]

lnZqi (T) = +
dqiV

2�2 ∫
∞

0
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[
1 + exp

(
−
1

T

√
p2 + m2

qi
(T)

)]
,

Fig. 13   (Color online) Picture taken from Ref.  [124]. Left and mid-
dle: In-medium mass shifts with respect to the vacuum mass (left) 
and the thermal widths (right) of different bottomonium states 
obtained from fits to LQCD results of Ref.  [125] (lines and shaded 
bands) using weak-coupling-motivated functional forms  [126] (open 
symbols) and DNN-based optimization (solid symbols). The points 
are shifted horizontally for better visualization. Υ(1 S) , �b0

(1P) , 

Υ(2 S) , �b0
(2P) , and Υ(3S) states are represented by red circles, 

orange pluses, green squares, blue crosses, and purple diamonds, 
respectively. Right: The DNN-reconstructed real (top) and imaginary 
(bottom) parts of the heavy quark potential at temperatures of T = 0 
(black), 151 (purple), 173 (blue), 199 (green), 251 (orange), and 
334 MeV (red). The uncertainty bands represent the 68%(1�) confi-
dence region
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Several deep residual neural networks were constructed 
to represent the variational functions mu∕d(T),ms(T) , and 
mg(T) . The mass functions of these quasi-partons are used 
in Eq. 49 to compute the partition function. The resulting 
partition function is used in Eq. 50 to compute the pressure 
and energy density as a function of the temperature. This 
procedure involves both numerical integration and differ-
entiation. The integration is implemented using Gaussian 
quadrature with the TensorFlow library, while the differen-
tiation is given by auto-differentiation. The loss function is 
designed as

where s = (� + P)∕T  represents the entropy density, and 
Δ = (� − 3P)∕T4 represents the trace anomaly. The Lconstrain 
contains physical constraints in the high-temperature region 
whose theoretical function form is given by HTL calcula-
tions. The learned quasi-partons reproduce the lattice QCD 
EoS. Using these mass functions, the authors calculated 
�∕s(T) and found that its minimum was located at approxi-
mately 1.25Tc [142].

6 � Hard probe

Energetic partons lose energy as they pass through the hot 
QGP. This process is quantified by the jet transport coeffi-
cient q̂ , which is defined as the transverse momentum broad-
ening squared per unit length [143–147]. The temperature-
dependent jet transport coefficient for heavy quarks was 
extracted using Bayesian analysis with the D-meson v2 and 
RAA data from different experiments [148]. Bayesian infer-
ence was used to extract the jet energy loss distributions, 
and the observed jet quenching was dominated by a few 
out-of-cone scatterings [149]. The JETSCAPE collaboration 
extracted q̂ with a multi-stage jet evolution model[150]. In 
these studies, parametrized forms were typically used for the 
unknown q̂(T) function. An information field is proposed to 
provide nonparametric functions for global Bayesian infer-
ence to avoid long-range correlations and human biases 
[151, 152].

Deep learning has been widely used in high-energy parti-
cle physics to analyze the substructures of jets and to classify 
jets using the momentum of final-state hadrons in jets [153, 
154]. In HICs, deep learning is used not only to classify 
quark and gluon jets but also to study the jet energy loss, 

(50)
P(T) = T

(
� ln Z(T)

�V

)

T

�(T) =
T2

V

(
� ln Z(T)

�T

)

V

(51)loss = |sdnn − slattice|2 + |Δdnn − Δlattice|2 + Lconstrain,

the medium response, and the initial jet production positions 
[155–157].

Constraining the initial jet production positions will allow 
more detailed and differential studies of jet quenching. For 
example, one task in the field of HICs is to search for Mach 
cones in QGP produced by the supersonic parton jets. The 
difficulty is that the jets are produced at different locations 
in the initial state and travel in different directions in the 
QGP. Consequently, the shape of the Mach cone depends 
on the path length and is distorted by the local radial flow 
and temperature gradient. Predicting jet production posi-
tions using deep learning will help to select jet events whose 
Mach cones have similar shapes, enhancing the signal of the 
Mach cones in the final-state hadron distribution.

In these studies, the training data are usually generated by 
jet transport models [158, 159]; e.g., in the linear Boltzmann 
transport model (LBT), the jet parton loses energy through 
elastic scattering with thermal partons in QGP and inelastic 
gluon radiation. This process is described by a linearized 
Boltzmann equation:

where fa∕c are the distribution functions of the jet partons 
before and after scattering in the forward process, and 
fb∕d = 1∕

[
e

p⋅u

T ± 1
]
 are the Fermi–Dirac and Bose–Einstein 

distributions for thermal quarks and gluons, respectively, in 
QGP. On the right-hand side, fcfd corresponds to the gain 
term and −fafb corresponds to the loss term of elastic scat-
tering, whose amplitude is squared as |Mab→cd|2 from lead-
ing-order perturbative QCD calculations. �b represents the 
color and spin degeneracy of the thermal parton b, and the 
term Ŝ2 = 𝜃(ŝ > 2𝜇2

D
)𝜃(−ŝ + 𝜇2

D
≤ t̂ ≤ −𝜇2

D
) is used to regu-

larize the collinear divergence. The inelastic part comes 
from the gluon radiation described by higher-twist 
calculations.

The lost energy is deposited in QGP as represented by 
source terms of the relativistic hydrodynamic equations:

where T�� represents the local energy momentum tensor of 
the QGP and J� is the source term. In practice, if the energy 
deposited on the recoiled thermal parton exceeds 2 GeV, it 
is removed and placed into the LBT. This leaves a negative 
jet source in the QGP. If the deposited energy is less than 
2 GeV, this corresponds to a positive jet source. Recoiled 
partons in the LBT do not interact with each other, which 
explains why the LBT solves a linearized Boltzmann equa-
tion. Recently, the LBT was extended to the QLBT, which 

(52)
pa ⋅ �fa = ∫

∏

i=b,c,d

d3pi
2Ei(2�)3

�b
2
(fcfd − fafb)||ab→cd

|

|

2

× S2(ŝ, t̂, û)(2�)4�4(pa + pb − pc − pd) + inelastic.

(53)∇�T
�� = J� ,
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treats quarks and gluons as quasi-partons to constrain vari-
ous transport parameters [160].

The initial jet production positions are sampled from the 
distribution of hard scattering, which is proportional to the 
distribution of binary collisions. The initial entropy density 
distribution is provided by the TRENTo Monte Carlo model, 
from which the initial T�� can be calculated. Simultaneously 
solving Eqs. 52 and 53 provides both the jet energy loss and 
the medium response in each simulation. Typically, 10 ∼ 100 
thousands jet events are needed to predict the initial jet pro-
duction positions. Of course, a larger amount of training data 
is better, provided that there are sufficient computational 
resources.

One may ask whether there is a type of DNN that is best 
suited to studying jet energy loss and predicting jet production 
positions. In practice, CNNs, point cloud neural networks, and 
graph neural networks have been used in different projects. 
Typically, the performance of different neural-network archi-
tectures is tested, and the one that works best for the specific 
task is selected. The simplest yet most powerful CNN should 
be the first to be tested in jet shape and jet energy loss studies. 
To capture the full information in jets, a point cloud network 
and a message-passing neural network can be used.

7 � Observables in HICs

7.1 � PCA for flow analysis

In relativistic HICs, the collective flow provides important 
information about the properties of the QGP and its initial 
state fluctuations [95–100]. The flow observables are generally 
defined by a Fourier decomposition of the produced particle 
distribution in the momentum space, such as

where V⃗n = vne
inΨn is the flow vector of order n, vn represents 

flow harmonics of order n, and Ψn represents the correspond-
ing event plane angle. Additionally, the flow coefficients can 
be obtained from the two-particle correlations associated 
with a Fourier decomposition:

where VnΔ(pT1, pT2) is a symmetric covariance matrix 
and Δ� = �a − �b represents the relative azimuthal angle 
between two emitted particles. Under the assumption of flow 
factorization, VnΔ(pT1, pT2) is related to the flow harmonics 
vn(pT) as follows: VnΔ(pT1, pT2) ≈ vn(pT1)vn(pT2)  [161] (For 
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(55)
⟨
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VnΔ(pT1, pT2) cos(nΔ�),

other flow methods and flow measurements, see [97, 100, 
162–164]).  

Recently, an ML technique called PCA based on SVD has 
been used to study the collective flow in relativistic HICs. 
For the two-particle correlations with the Fourier expan-
sion [166–169], the event-by-event flow fluctuations have 
been investigated via PCA, revealing the substructures of the 
flow fluctuations [166–168]. Using PCA, VnΔ(pT1, pT2) can be 
expressed as [167]

where v(�)
n
(pT) are the eigenvectors of the two-particle covar-

iance matrix, and w(pT) is the weight for the particle. � = 1 
denotes the leading modes, � = 2 denotes the subleading 
modes, � = 3 denotes the subsubleading modes, and so on. 
It was found that the leading modes correspond to the tradi-
tional flow harmonics and that the subleading modes lead to 
the breakdown of the flow factorization. In Ref. [167, 168], 
a linear relationship V (�)

n
∝ E

(�)
n

 was demonstrated for the 
leading, subleading, and subsubleading modes via hydro-
dynamic simulations. In Ref. [169], PCA was used to study 
the mode coupling between flow harmonics, which revealed 
hidden mode-mixing patterns that had not been previously 
discovered. Recently, the CMS collaboration extracted the 
subleading flow modes for Pb+Pb and p+Pb collisions at the 
LHC, reporting qualitative agreement between experimen-
tal measurements and theoretical calculations [170]. Using 
AMPT and HIJING simulations, Ref. [171] showed that the 
PCA modes depend on the choice of the pT range and the 
particle weight w. In addition, the leading modes are influ-
enced by non-flow effects, and the mixing between the non-
flow and leading flow modes leads to fake subleading modes. 
Therefore, it is important to carefully handle the non-flow 
effects and the choice of the weight and phase space when 
implementing PCA to extract the subleading flow modes in 
both experimental and theoretical studies.

The aforementioned PCA studies on collective 
flow [166–171] were all based on the correlation data obtained 
with a Fourier expansion. Recently, PCA has been applied 
directly to single particle distributions dN∕d� without prior 
treatment with a Fourier transform, for exploring whether it 
can be used to directly discover flow without the guidance 
from humans [165]. Specifically, with PCA matrix multiplica-
tion, the ith row of a particle distribution matrix with N events 
generated from VISH2+1 hydrodynamics can be expressed as

(56)VnΔ(pT1, pT2) =
∑

�

v(�)
n
(pT1)v

(�)
n
(pT2),

(57)with ∫ dpTw
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(pT)v

(�)
n
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Here, (i) = 1, 2, ...,N is the index of the event. j is the index 
for the azimuthal angle, where the total azimuthal angle 
[−�,�] is divided into m bins to count the particles in each 
bin. After SVD, dN∕d�(i) can be expressed by a linear com-
bination of the eigenvectors zj with the corresponding coef-
ficient ṽ(i)

j
 (where j = 1, 2, ...,m ), and �i represents the diago-

(58)

dN∕d𝜑(i) =

m∑

j=1

x
(i)

j
𝜎jzj =

m∑

j=1

ṽ
(i)

j
zj

≈

k∑

j=1

ṽ
(i)

j
zj (i) = 1, ...,N

nal elements (singular values) of the particle distribution 
matrix, which are arranged in descending order. In the spirit 
of PCA, in the last step, a cut is made at the indices k to 
focus only on the most important components.

Figures 14 and 15 show the first 12 eigenvectors zj and the 
first 20 singular values �j of the PCA in descending order for 
the final-state matrix constructed from 2000 dN∕d� distribu-
tions with the azimuthal angle [−�,�] equally divided into 
50 bins. Such dN∕d� distributions are generated from the 
VISH2+1 hydrodynamics with event-by-event fluctuating 
TRENTo initial conditions for 2.76 A TeV Pb+Pb colli-
sions at 10–20% centrality. Figure 14 shows that the PCA 
eigenvectors are similar to the traditional Fourier bases. For 
example, the 1st and 2nd eigenvectors are close to sin(2�) 
and cos(2�) , and the 3rd and 4th eigenvectors are close to 
sin(3�) and cos(3�) . The corresponding singular values in 
Fig. 15 are arranged in pairs, which correspond to the real 
and imaginary parts of the anisotropic flow. It was found that 
for n ≤ 6 , the values of these PCA flow harmonics were very 
close to those of the traditional event-averaged flow harmon-
ics obtained from the Fourier expansion but not exactly the 
same. Figure 16 presents a comparison of the event-by-event 
flow harmonics obtained from PCA and from the traditional 
Fourier expansion. As shown, the elliptic flow with n = 2 
and the triangular flow with n = 3 from the two methods 
agreed well. However, for higher flow harmonics with n ≥ 4 , 
the PCA and Fourier expansion results differed significantly 
owing to the mode-mixing effects. In Ref. [165], with these 
PCA flow harmonics v′

n
 , the symmetric cumulants SC�(m, n) 

were calculated. Except for SC�(2, 3) , these PCA symmetric 
cumulants were significantly reduced compared with the tra-
ditional Fourier ones, because of the significantly increased 
linearity between the PCA flow harmonics and the initial 
eccentricities. These results indicated that PCA could define 
the collective flow on its own basis. Compared with the tra-
ditional ones obtained from the Fourier decomposition, the 
PCA method reduces the mode coupling effects between 
different flow harmonics [165].

7.2 � CME detection

In the presence of a magnetic field, the chiral magnetic effect 
(CME) can occur when the system has a chiral imbalance, 
i.e., the numbers of left- and right-handed particles differ. 

Fig. 14   (Color online) PCA eigenvectors zj for the final-state matrix 
of particle distributions, generated from VISH2+1 hydrodynamics in 
2.76 A TeV Pb+Pb collisions at 10–20% centrality [165]

Fig. 15   (Color online) Singular values of PCA for the final-state 
matrix of particle distributions in Pb+Pb collisions at 10–20% cen-
trality [165]

Fig. 16   (Color online) Com-
parison between the event-by-
event flow harmonics v′

n
 from 

PCA and vn from the Fourier 
expansion in Pb+Pb collisions 
at 10–20% centrality [165]
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Essentially, a current of electric charge (known as chiral 
magnetic current) can be induced to flow along the direc-
tion of the magnetic field. The use of the CME to reveal the 
vacuum structure of QCD has been proposed. In HICs, a 
strong magnetic field can be created by the motion of the 
colliding ions, and it is predicted that in the formed hot and 
dense QGP, the topological fluctuations of gluon fields may 
cause chiral imbalance for quarks. Accordingly, the CME 
may occur, which can manifest as a separation of electric 
charge along the magnetic-field direction. However, several 
challenges hinder the detection of the CME in HICs, among 
which the chief difficulty is disentangling the CME signal 
from other possible sources of charge separation (CS), e.g., 
elliptic flow, the global polarization, and other background 
noises, although multiple observables are proposed.

Despite the challenges, there is long-term and continuing 
interest in the search for the CME in HICs because of its 
general importance to QCD. Recently, Ref. [172] proposed 
the use of deep learning to construct an end-to-end CME-
meter that can efficiently analyze the final-state hadronic 
spectrum as a whole in the sense of Big Data with a deep 
CNN to reveal the fingerprints of the CME. For supervised 
learning, the training set was prepared from the string melt-
ing AMPT model with CME implemented under a global 
CS scheme. Essentially, the CME events are generated by 
switching the y-components of momenta of a fraction of a 

downward moving light quark and its corresponding anti-
quarks with upward moving direction. The fraction defines 
the CS fraction f, which separates the events into the “no 
CS” (label as “0”) class for those with f = 0% and the “CS” 
class (label as “1”) for those with f > 0% . Each event is rep-
resented as 2D transverse momentum and azimuthal angle 
spectra of charged pions in the final state, i.e., ��(pT,�) . 
Then, the deep CNN is trained to perform binary classifica-
tion on the labeled events with the spectra to be the input. 
Figure 17 shows the architecture of the developed deep CNN 
for CME-meter construction.

As shown in Fig. 17, the output of the network has two 
nodes, each of which is naturally interpreted as the prob-
ability resulting from the network decision in recogniz-
ing any given input spectrum as CME ( P1 ) or non-CME 
( P0 = 1 − P1 ) events. The training set contains multiple 
collision beam energies and centralities for diversity con-
sideration. The pion spectrum is obtained by averaging over 
100 events with the same collision condition to reduce the 
fluctuations, which also reduces the backgrounds and thus 
should be considered a prerequisite for realistic application 
in experiments. For the training, different levels of the CS 
fraction are used, and it is found that the classification vali-
dation accuracy is lower for a smaller number of CS frac-
tion training events. This indicates that a larger CS fraction 
can be identified more easily, which is expected. Despite 

Fig. 17   (Color online) Taken 
from  [172]. The CNN archi-
tecture with �+ and �− spectra 
�±(pT,�) as inputs
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the different induced discernibility, the trained deep CNNs 
all exhibited robust performance against varying collision 
centrality and energy. One can conclude that at least under 
the AMPT modeling level, the CS signals can survive into 
the final state of the collision dynamics at different collision 
conditions, which can be recognized by the deep CNN-based 
CME-meter.

Note that the network was trained only on Au+Au col-
lision systems, while the extrapolation to other collision 
system was validated. Specifically, the obtained CME-
meter was applied to isobaric collisions of 96

40
Zr+96

40
 Zr and 96

44

Ru+96
44

Ru, which were proposed for the search of the CME. 
Because Ru contains more protons than Zr, which induce a 
stronger magnetic field, there is expected to be a stronger 
CS signal in Ru+Ru collisions. To reveal this difference and 
also the distinguishable difference of the CME-meter for 
the two isobaric collision systems from PRu

1
> PZr

1
 , the Riso 

was evaluated, and the results validated the developed CNN-
based CME-meter:

where the function logit(x) = log[x∕(1 − x)] is used to restore 
the derivative in the saturation region of the activation in the 
last layer of the NN, i.e., softmax. From Tab. 1 on Riso , the 
trained CME-meter was well validated beyond the training 
collision system, indicating its robust capture of the general 
CME signal in the collisions.

The CME-meter was also validated through a different 
model simulation, i.e., anomalous-viscous fluid dynamics 
(AVFD). P1 exhibited a consistent positive correlation with 
N5∕S , which controlled the CME strength, while the con-
tamination from local charge conservation (LCC) up to 30% 
did not augment the performance of the CME-meter on the 
testing events from AVFD. In Ref. [172], to reveal the under-
lying account for the trained CME-meter, the network out-
put P1 and �-correlator were compared. The �-correlator—a 
conventional CME probe—can measure the event-by-event 
two-particle azimuthal correlation of charged hadrons. It was 
shown that for averaged events, both the CME signal and the 
background from �� (difference between correlations within 
particles of the same charge and within particles of opposite 
charge) are suppressed. Being differently, the CME-meter 
output P1 works well in classifying CS and no-CS classes 
on the averaged events.

(59)Riso = 2 ×
⟨logit(PRu

1
)⟩ − ⟨logit(PZr

1
)⟩

⟨logit(PRu
1
)⟩ + ⟨logit(PZr

1
)⟩
,

The direct implementation of this trained CME-meter in 
real experiments would require reconstructing the reaction 
plane of each collision event to form the averaged events 
as input for the meter. In general, the reaction plane recon-
struction can be achieved by measuring correlations of final-
state particles, and it inevitably contains finite resolution 
and background effects. It was shown that even in restricted 
event plane reconstruction, the trained CME-meter can rec-
ognize the CS signals. For the deployment of the trained 
CME-meter on single event measurements, Ref. [172] pro-
posed a hypothesis test perspective.

Another way to interpret the trained deep-learning 
algorithm is the DeepDream method, which was used in 
Ref. [172] to reconstruct the network most responding input 
pion spectrum, manifesting the “CME pattern” that the 
CNN-based CME-meter essentially captured for its further 
CME signal recognition. The key idea is to perform vari-
ational tuning on the input pion spectrum with the trained 
and frozen network to maximize its output (i.e., pushing 
P1 → 1 ), driven by the gradient �P1(��(pT,�))∕���(�T,�) . 
The resultant “CME pattern” from the trained network is dis-
played in Fig. 18, where the charge conservation and a clear 
dipole structure appear, both being CME-related features.

8 � Summary and outlook

8.1 � Summary

As a modern computational paradigm, AI—particularly 
machine- and deep-learning techniques—has introduced 
a wealth of applications and new possibilities in scientific 
research. Owing to its special ability to recognize patterns 

Table 1   The results of the (0% + 10%) model on the isobaric collision systems (Ru+Ru and Zr+Zr at 200 GeV)

Centrality 0–10% 10–20% 20–30% 30–40% 40–50% 50–60%

Riso 9.95% 12.99% 8.13% 13.84% 19.67% 10.47%

Fig. 18   (Color online) DeepDream map for the (0% + 10%) 
model [172]
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and structures hidden in complex data, these learning-based 
strategies make physics exploration with a Big Data or smart 
computation mindset feasible. In the context of HENP 
revolving around HIC programs to understand nuclear matter 
properties under different conditions, various research fields 
have benefited from the incorporation of these techniques.

In this mini-review, we presented the recent progress in 
the field of HICs, including initial state physics inference, 
QCD matter transport and bulk properties, thermal medium 
modifications for partons or hadrons, and recognition of 
physical observables in HICs.

We first reviewed different loss functions l used in super-
vised learning, unsupervised learning, semi-supervised 
learning, self-supervised learning, and active learning. Dur-
ing training, the negative gradients − �l

��
 are used to optimize 

the network in SGD-like algorithms. AD is employed to 
efficiently compute the derivatives of the loss with regard 
to model parameters � . As auto-diff has analytical preci-
sion for the variational function represented by the neural 
network, it has been widely used in physics-informed neural 
networks to solve ODEs and PDEs. We then introduced the 
widely used neural-network architectures, such as the MLP, 
CNN, RNN, and point cloud network. Next, we explained 
the generative models, such as the autoencoder, GAN, flow 
model, and diffusion models, in detail. These models are 
widely used in lattice QCD to generate field configurations.

For the initial condition, ML has been widely used to 
determine the centrality classes and impact parameters using 
the final-state hadrons in the momentum space, for extract-
ing the initial nuclear structures, such as the nuclear defor-
mation, the � clustering, and the neutron skin. In general, it 
is easier to extract the nuclear deformation than the � clus-
tering and neutron skin according to the current literature.

For bulk matter, Bayesian parameter estimation has been 
successfully used to determine the temperature-dependent 
shear and bulk viscosities of QGP. An unsupervised autoen-
coder was used to reconstruct the charged multiplicity dis-
tributions, which helps to determine the source temperature 
and the temperature of the nuclear liquid gas phase transi-
tion. Deep CNNs, point cloud networks, and event-averaging 
techniques are employed to classify the crossover and first-
order phase transition regions in the QCD phase diagram, 
using data generated by relativistic hydrodynamic models 
and hadronic transport models. Active learning is used to 
map out thermodynamically unstable regions near the criti-
cal endpoint in the QCD phase diagram. For hydrodynamic 
evolution, a well-designed network called sU-net can capture 
the nonlinear mapping between the initial and final profiles 
with sufficient precision, which is also far faster than the 
traditional hydrodynamic simulations.

For QGP in-medium effects, we first reported some of 
the recently proposed ML-based methods for spectral func-
tion reconstruction, which is a notorious ill-posed inverse 

problem. Both supervised and unsupervised methods have 
been discussed for the inference of spectral out-of-Euclid-
ean correlator measurements from Monte Carlo simulations 
(e.g., lattice study). Then, in-medium heavy quark inter-
action inference based on in-medium heavy quarkonium 
spectroscopy was introduced. A novel DNN representation 
integrated inside the forward problem-solving pipeline with 
AD was proposed. This strategy is also used for in-medium 
quasi-particle effective model construction from the lattice 
QCD EoS.

For hard probes, Bayesian analysis is widely used to 
extract the temperature-dependent jet (or heavy quark) trans-
port coefficient q̂(T) and the jet energy loss distributions. 
Recently, deep learning-assisted jet tomography was devel-
oped to locate the initial jet production positions. This is 
important for the study of jet substructures and the medium 
response. Using this technique, it was observed that the sig-
nal of jet-induced Mach cones is amplified by selecting jet 
events.

For the observables, PCA has been implemented to study 
the collective flow in relativistic HICs. This revealed the 
substructures of the flow fluctuations, which can potentially 
be used to extract the subleading modes of flow with efforts 
from both the experimental and theoretical sides. When 
applied directly to the single particle distributions, PCA 
can directly discover flow with a basis similar to the Fourier 
expansion ones, which significantly reduces the mode cou-
pling between different flow harmonics.

8.2 � Outlook

Despite the impressive progress, the interplay between 
HENP and ML is still inducing hectic evolution. Many ques-
tions and challenges remain and deserve further exploration. 
In addition to the aforementioned applications of ML in the 
field of HICs, several other topics can be explored with ML, 
e.g., critical endpoint searching for eRHIC and the Electron 
Ion Collider (EIC) regime [173], spin polarization study, 
the upcoming FAIR program, Nuclotron-based Ion Collider 
facility (NICA) experiments, nuclear structure inference, 
and High Intensity Heavy-ion Accelerator Facility (HIAF) 
experiments in China. Regarding the future prospects of 
applying ML techniques for HIC physics research, because 
this field is rapidly evolving, we present questions that we 
consider worthy of future investigation:

•	 Can ML provide more efficient "observables” to pin 
down the desired physics?.

•	 Can the algorithms provide new physical knowledge to 
advance our understanding of nuclear matter?.

•	 How can we make the ML algorithms to be confronted 
with realistic experiments? Is on-line analysis possible? 
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How can experimental raw data be accessed to test neural 
networks pretrained with model simulations?.

•	 Is it possible to accelerate HIC dynamical simulations 
for performing high statistics measurements or Bayesian 
inference?.

•	 How can Bayesian inference be combined with ML to 
advance our field and better connect experiment to the-
ory?.

•	 How can symmetries be fully incorporated into the analy-
sis using ML, e.g., Lorentz Group Equivariant Autoen-
coders [174]? How can dimensionality analysis (con-
straints) be incorporated into the ML methods properly 
and consistently?.

It is also important to consider how we can adopt potentially 
useful approaches from other fields, e.g., particle physics, 
condensed-matter physics, and astrophysics, and how the 
community can better organize with joint efforts, e.g., for 
maximizing the potential of these novel computational tech-
niques to advance the field of HENP.
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