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Abstract On-the-fly Doppler broadening of cross sections

is important in Monte Carlo simulations, particularly in

Monte Carlo neutronics-thermal hydraulics coupling sim-

ulations. Methods such as Target Motion Sampling (TMS)

and windowed multipole as well as a method based on

regression models have been developed to solve this

problem. However, these methods have limitations such as

the need for a cross section in an ACE format at a given

temperature or a limited application energy range. In this

study, a new on-the-fly Doppler broadening method based

on a Back Propagation (BP) neural network, called hybrid

windowed networks (HWN), is proposed to resolve the

resonance energy range. In the HWN method, the resolved

resonance energy range is divided into windows to guar-

antee an even distribution of resonance peaks. BP networks

with specially designed structures and training parameters

are trained to evaluate the cross section at a base temper-

ature and the broadening coefficient. The HWN method is

implemented in the Reactor Monte Carlo (RMC) code, and

the microscopic cross sections and macroscopic results are

compared. The results show that the HWN method can

reduce the memory requirement for cross-sectional data by

approximately 65%; moreover, it can generate keff, power

distribution, and energy spectrum results with accept-

able accuracy and a limited increase in the calculation

time. The feasibility and effectiveness of the proposed

HWN method are thus demonstrated.

Keywords Monte Carlo method � Reactor Monte Carlo

(RMC) � On-the-fly Doppler broadening � BP network

1 Introduction

With the increase in the computing power of high-per-

formance computing platforms, Monte Carlo neutronics-

thermal hydraulics coupling has become an ideal approach

for obtaining accurate results for the design and analysis of

reactors. Traditional methods of linear interpolation with

point-wise nuclear data require a large amount of memory

resources to provide temperature-dependent microscopic

cross sections for simulations [1]. On-the-fly Doppler

broadening methods have been introduced to reduce the

memory cost and enable thermal-hydraulics coupled reac-

tor analysis [2]. Several on-the-fly Doppler broadening

methods have been proposed to meet both the efficiency

and memory requirements. Three methods, namely, Target

Motion Sampling (TMS) [3, 4], windowed multipole [5],

and a method based on regression model and fitting [6]

have been proposed for the evaluation of cross sections

across the resolved resonance energy range. Walsh studied

an on-the-fly Doppler broadening method for the unre-

solved resonance energy range [7]. Pavlou and Ji proposed

a thermal energy range method [8].
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For heavy nuclides such as U-235, the data in the

resolved resonance energy range account for most of the

nuclear data. Among the methods applicable in this range,

the TMS method requires cross-sectional data at a given

temperature, such as 0 K [9, 10], while the windowed

multipole method divides the resolved resonance energy

range into energy windows and uses approximations to

evaluate cross sections [1], Yesilyurt et al. used thirteen

parameters for broad cross sections at 0 K to perform

Doppler broadening for any temperature in the range of

77–3200 K [6]. This method was further developed by Liu

et al., and the number of parameters was made flexible

[11]. Both the TMS method and the method proposed by

Yesilyurt et al. require ACE data in their processes, and the

latter requires a larger memory for storing the broadening

parameters. The range of nuclides for which the windowed

multipole method is applicable is limited.

In this paper, a new on-the-fly Doppler broadening

method based on BP neural networks, called hybrid win-

dowed networks (HWN), is proposed. The total memory

requirements are reduced by approximately 65% compared

with ACE data at the expense of efficiency over the

resolved energy range. The BP neural networks are used to

evaluate the cross sections. The neural network method,

which is a type of machine learning method, simulates the

structure of biological neurons through establishing artifi-

cial neural networks [12]. By relying mainly on multi-layer

neuron nodes with various weights and biases, neutron

networks can be used to solve complicated problems such

as image [13] or audio [14] processing. Neural networks

with simple structures also exhibit a satisfactory perfor-

mance in data fitting [15]. The structures and training

parameters of the networks reported herein were carefully

determined to meet the needs of cross-sectional training.

In this method, the resolved resonance energy range is

divided into windows. The networks trained for each

window can be used independently so that the method can

be easily combined with other on-the-fly Doppler broad-

ening methods. The application range of this method can

be set by the users to avoid unacceptable losses of

efficiency.

The results confirm the feasibility of evaluating complex

cross-sectional parameters through the use of neural net-

works. The potential of neural networks for memory saving

is demonstrated in this work. Neural networks can be used

to evaluate some of the parameters in the calculation of

other developed on-the-fly Doppler broadening methods.

Larger memory savings and higher accuracy might be

achieved by incorporating the physics of Doppler broad-

ening into the method.

The principle of BP neural networks and the HWN

method are introduced in Sect. 2. In Sect. 3, the results of

numerical tests conducted to verify the effectiveness,

accuracy, and efficiency of the method are reported and

discussed.

2 HWN Method

In the HWN method, the resolved energy is divided into

energy windows based on the number of extreme points in

the cross section. In each window, two BP networks are

used to calculate the cross section at 200 K and broaden the

cross section to temperatures in the range of 250–1600 K.

ACE data are used to train the BP networks. The networks

for each window can be used independently; thus, the

scope of the method can be set easily.

Section 2.1 reviews the principle of BP neural networks.

Section 2.2 describes the training and calculation process

of the two networks within a window. Section 2.3 intro-

duces the division of the resolved energy range and the

parameter determination process.

2.1 BP Neural network

An efficient and memory-saving method for evaluating

cross sections is needed for on-the-fly Doppler broadening.

Neural networks, which are widely used in machine

learning, need to be trained before they are used. Once the

parameters of the networks are determined, the networks

can be used to calculate the output from the given input.

After training, the amount of calculations required is

greatly reduced; therefore, this method can be used for on-

the-fly Doppler broadening. A combination of the input and

expected results is used in the training process, during

which the weights and biases of all the neurons are

adjusted. The deviation between the outputs of the network

and the expected results is gradually reduced during

training until the network meets the requirements.

Many studies on neural networks such as convolutional

neural networks [16] and deep neural networks [17] have

been conducted. Such networks have many hidden layers

and neurons, as well as complex structures, resulting in low

computational efficiencies. Because computing speed is

important in Monte Carlo codes, a neural network with a

simple structure is more suitable.

In this study, the back propagation (BP) network was

used. The error back propagation algorithm proposed by

Rumelhart [18] introduced in the following paragraphs is

used for training this network. As shown in Fig. 1, a BP

network consists of an input layer, hidden layers, and an

output layer. Each layer contains a certain number of

neurons. The simplicity of the structure and calculation

steps of this type of network ensures its high computational

efficiency.
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The hidden and output layer nodes of the BP neural

network are, respectively, described by

Oj ¼ f1
X

i

xijxi � bj

 !
; ð1Þ

Yk ¼ f2
X

j

xjkOj � bk

 !
: ð2Þ

In equations, Oj is the output of the hidden layer node; Yk is

the output value of the output layer node. f1 and f2 are the

transfer functions of the hidden and output layer nodes,

respectively. In general, f1 is a nonlinear function, and f2
can be a linear or nonlinear function. wij is the weight from

the previous node to the hidden layer node. wjk is the

weight from the node of the last hidden layer to the node of

the output layer. bj and bk are the biases of the hidden layer

node and output layer node, respectively.

The weights and thresholds of the BP neural network in

calculations are generally expressed in matrix form.

Equations (1) and (2) are therefore expressed as Eqs. (3)

and (4), respectively.

Oh ¼ f1 WpretohXpre � Bh

� �
ð3Þ

Y ¼ f2 Wh to oOh � Boð Þ ð4Þ

The subscript ‘‘pre’’ means the previous layer, which can

be a hidden layer or an input layer. Subscript ‘‘h’’ and ‘‘o’’

means hidden layer and output layer, respectively. In

Eq. (3), Oh is the output value of the hidden layer. Wpretoh

is the matrix of weights from the previous layer to the

hidden layer. Xpre is the matrix of output values of the

previous layer and Bh is the matrix of bias of the hidden

layer. In Eq. (4), Y is the matrix of output value of the

output layer, and it is also the output value of the network.

W and B in Eq. (4) have similar meanings to those in

Eq. (3). The bias and output data of each layer are column

vectors with lengths equal to the number of nodes in the

layer. The weight is a matrix where the first and second

dimensions are the number of nodes in the previous and

current layers, respectively. The matrix elements corre-

spond to those in Eqs. (1) and (2).

The neural networks in this study were trained using

MATLAB. The output of the neural networks approached

the target value over successive iterations. All the weights

and biases in the network were adjusted during the training

process, while the structure of the network, including the

number of hidden layers and nodes in each layer, and the

transfer function, remained unchanged.

The error back propagation algorithm was used for

training the network. The error between the result in the

training data and the corresponding result calculated by the

network for a given input in the training data was propa-

gated back to the parameters of each layer. The process is

briefly described as follows.

The set of input vectors and the corresponding target

vectors are denoted as

P ¼ p1; p2; . . .; pnð ÞT ; ð5Þ

T ¼ t1; t2; . . .; tkð ÞT : ð6Þ

The square of errors between P and T are summed to

defined R, which is the error of the network. The factor 1=2

is to simplify the following process.

R ¼ 1

2

X

k

Yk � tkð Þ2 ð7Þ

The goal of the training is to reduce the error. R is therefore

expanded using Eq. (4) into the node parameters of the

output layer as follows:

R ¼ 1

2

X

k

f2
X

j

wjkOj � bk

 !
� tk

" #2
: ð8Þ

Fig. 1 Structure of BP neural network
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Equation 8 can be further expanded using Eq. (1) as

follows:

R ¼ 1

2

X

k

f2
X

j

wjkf1
X

i

wijxi � bj

 !
� bk

 !
� tk

" #2
:

ð9Þ

The expansion ends here if the network has one hidden

layer. Otherwise, R can be expanded layer by layer. The

algorithm is illustrated for a one-hidden-layer network for

which the transfer function of the output layer is given by

f2 xð Þ ¼ x: ð10Þ

The partial derivatives of R in Eq. (8) are

oR

obk
¼ �

X

j

wjkOj � bk � tk

 !
; ð11Þ

oR

owjk
¼ Oj

X

j

wjkOj � bk � tk

 !
: ð12Þ

The partial derivatives are called the gradient values of the

error. The parameters are updated using the gradient values

in each training Iteration as follows:

bk nþ1ð Þ ¼ bk nð Þ � g
oR

obk

� �

nð Þ
; ð13Þ

wjk nþ1ð Þ ¼ wjk nð Þ � g
oR

owjk

� �

nð Þ
; ð14Þ

where g is the learning rate, which determines the ratio of

the correction to the parameters. The amplitude of a single

adjustment is directly proportional to g. The derivation

shown in Eqs. (1–14) is applied to each individual

parameter, and the end result of the derivation can be

expressed in the form of a matrix as

D ¼ Y � T: ð15Þ

The results of Eq. (13) and (14) for all the parameters can

be collectively expressed as

Bo nþ1ð Þ ¼ Bo nð Þ þ gD; ð16Þ

Wh to o nþ1ð Þ ¼ Wh to o nð Þ � gOhD: ð17Þ

The training of the other parameter matrices can be

described in a similar manner. The error plays a role in the

parameter adjustment of each layer through the result

deviation D and propagates to each parameter matrix.

2.2 Training and calculation

This section describes how the two networks were

trained and used in an energy window. The method for

dividing the resolved energy is introduced in the next

section. Both the energy division and the sequential com-

putation using two networks are designed to reduce the

complexity of the training target.

A temperature is chosen as the base temperature for the

cross section of a nuclide. The cross section at this tem-

perature, denoted as rT0 Eð Þ, is a function of the neutron

energy E. The cross-sectional broadening coefficient, K, is

introduced, which is defined as the ratio of the cross section

at a temperature not less than T0 to the cross section at T0.

K E; Tð Þ ¼ r E; Tð Þ
rT0 Eð Þ T � T0ð Þ ð18Þ

K is a binary function with the independent variables E and

T and denoted as K E; Tð Þ. The features of K E; Tð Þ are

much less complex than those of r E; Tð Þ. Thus, the ratio of

the maximum value of K E; Tð Þ to its minimum value is

much lower than that of r E; Tð Þ within an energy window

obtained by the method explained in Sect. 2.3. Therefore, it

is expected that better results can be obtained using

K E; Tð Þ as the input data for network training.

The HWN method is similar to the method proposed by

Yesilyurt et al. [6], which also uses fitting parameters for

on-the-fly Doppler broadening. However, the broadening

coefficient K in the proposed method applies for all the

energies in the corresponding energy window, whereas the

method proposed by Yesilyurt et al. requires individual

parameters for each energy point.

To reduce the memory required, a network denoted as

Network 1 is trained to calculate the cross section at tem-

perature T0. The upper and lower bounds of the energy

window are denoted as Emin and Emax, respectively. The

corresponding relationship between the input and output of

the network is expressed as

r
0

T0
Eð Þ ¼ F1 Eð Þ Emin �E�Emaxð Þ; ð19Þ

where r
0
T0
is the cross section calculated by Network 1 at T0

and F1 is the mapping relationship between the input

energy and output cross section of Network 1. It should be

noted that some errors exist between the results and the

actual cross section.

Network 2 is trained to calculate the broadening coef-

ficient, K. If K is used directly as the input data for training

Network 2 and Eq. (18) is used to calculate the broadened

cross section, the error of the calculation result will be the

superposition of the errors of the two networks.

To reduce the error, the K value calculated by the fol-

lowing formula is used as the training target.

K E; Tð Þ ¼ r E; Tð Þ
r0
T0

Eð Þ Emin �E�Emax; T � T0ð Þ ð20Þ
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The difference between Eqs. (20) and (18) is that the

cross section at T0 in Eq. (18) is replaced by the output of

Network 1 in Eq. (20). Therefore, the influence of the

accuracy of Network 1 on the final result can be eliminated.

However, the complexity of K will increase if the error of

Network 1 is extremely large, which may affect the accu-

racy of Network 2. It is therefore necessary to control the

error of Network 1.

K in Eq. (20) is used as the input data to train Network

2. The temperature range of the network fitting is limited

by the input data. A temperature range denoted as

Tmin � T � Tmax that could meet the actual requirements is

selected. Tmin should not be lower than T0. The corre-

sponding relationship between the input and output can

therefore be expressed as

K 0 E; Tð Þ ¼ F2 E; Tð Þ Emin �E�Emax; Tmin � T � Tmaxð Þ;
ð21Þ

where K 0 is the broadening coefficient calculated by Net-

work 2, and F2 is the mapping relationship between the

input energy and the output coefficient of Network 2. K 0 is
a function of the independent variables E and T and is

denoted as K 0 E; Tð Þ.
By rewriting Eq. (20), the equation for on-the-fly Dop-

pler broadening is obtained as

r E; Tð Þ ¼ r
0

T0
Eð ÞK 0 E; Tð Þ

¼ F1 Eð ÞF2 E; Tð Þ Emin �E�Emax; Tmin � T � Tmaxð Þ:
ð22Þ

Equation (22) describes the Doppler broadening process.

Network 1 is first used to calculate the cross section at the

given energy E and basic temperature T0. Then, the cross

section is broadened to the temperature T using the

broadening coefficient K calculated by Network 2.

The values of T0, Tmin, and Tmax were determined. The

temperature ranges and their corresponding fields of study

were summarized by Yesilyurt et al. [6] as shown in

Table 1. Monte Carlo codes for reactors should be able to

handle benchmarking calculations and reactor operation

problems. Thus, Tmin and Tmax were set as 250 K and

1650 K, respectively. It should be noted K approaches 1 as

T approaches T0, which affects the accuracy of the neural

network in the vicinity of T0. As a result, training using

data at T ¼ T0 should be avoided, and T0 should not be

close to Tmin. Considering the lower complexity of the

cross-sectional curve at higher temperatures, the base

temperature T0 was chosen as 200 K to reduce the diffi-

culty of the network training.

2.3 Window division and parameter determination

The cross-sectional curve in the resolved resonance

energy range of heavy nuclides at a single temperature is

very complex because of the large number of resonance

peaks. The addition of the temperature dimension further

increases the complexity. Therefore, it is impractical to

train the neural network directly using the ACE data over

the entire resolved resonance energy range as the input.

Dividing the resolved resonance energy range into

energy windows can significantly reduce the difficulty of

training in each window. Because similar processes are

carried out for each window, the data should be divided

evenly according to the training difficulty. Dividing the

resonant peaks equally between the different windows is an

easy and effective method. Each window has the same

number of maximum points that correspond mainly to the

positions of the resonance peaks within the resolved reso-

nance energy range. The edges of the windows are set as

the minimum points of the cross-sectional curve.

Because of the Doppler broadening effect, the resonant

peaks are broadened at temperatures above 0 K. At

T0 ¼ 200 K, some adjacent resonant peaks are combined

into single peaks, leading to a reduction in the number of

maximum points. The maximum points, rather than the

resonant peaks at 0 K, were used for the deviation of the

cross-sectional curve at T0. Because the distributions of the

resonant peaks differ for different heavy nuclides, the

number of windows and the positions of the edges deter-

mined by this process will also be different.

The number of maximum points in each window was

carefully determined. A smaller number of points for a

given network would result in a higher number of divided

windows and a corresponding increase in the memory

required. In addition, if large number of peaks are included,

the amount of data in each window will be extremely large,

and the accuracy of the networks will be decreased. The

number of points was set to 15 based on experience and

testing. The aforementioned process was applied to the

total cross-sectional curve at the base temperature of T0 ¼
200 K for window division.

Relatively large deviations near the boundary of the

windows were often observed during network training. To

avoid this, the windows were extended along both edges, as

is shown in Fig. 2. The data in the extended window were

used for neural network training, whereas the acquired

Table 1 Temperature ranges and their corresponding fields of study

Temperature range (K) Field of study

77–293.6 Cold neutron physics

293.6–550 Benchmarking calculations

550–1600 Reactor operation

1600–3200 Accident condition
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neural network was used only within the range of the

original window. The windows next to the unresolved

resonance energy range and thermal energy range were

only extended in the direction of the resolved resonance

energy range.

The training results were greatly affected by the struc-

ture of the neural networks and the training parameters.

The network parameters were determined according to the

test results.

The training function training was used in network

training. This approach has the advantages of a faster

convergence speed and better accuracies. The transfer

function of the hidden layer nodes is the tansig function in

MATLAB, which is defined as

f2 xð Þ ¼ 2

1� e�2x
� 1: ð23Þ

A BP network with one hidden layer is sufficient for

solving many problems. Networks with multiple hidden

layers may show better performance in some cases [19]. A

one-hidden-layer BP network was used for Network 1

(described in Sect. 2.2) to reduce the memory require-

ments. For Network 2, a two-hidden-layer network was

used to avoid overfitting in the training of K E; Tð Þ.
Tests were performed to determine the number of neu-

rons in each hidden layer. The number of neurons in the

hidden layer of Network 1 was determined first. The total

cross-sectional data of U-235 at 0 K were divided into 181

windows, and 19 equally spaced windows were selected.

Networks with 80, 90, 100, 110, 120, and 130 nodes in the

hidden layer were trained using the data in the windows.

Each network was trained with the data from each window

10 times, and the minimum value of the maximum absolute

relative error was calculated. The geometric means of the

error values for the 19 windows are shown in Fig. 3.

In general, the accuracy of the network increased with

the number of nodes, and it was at an acceptable level

when the number of nodes was 130. As shown in Fig. 3, a

further increase in the number of nodes had a limited effect

on the improvement of accuracy. Networks with 130 nodes

in the hidden layers were used for most windows. A larger

number of nodes were used in a few windows in which the

relative error was extremely large.

Training and comparisons were performed to determine

the number of nodes in the two hidden layers of Network 2.

A reasonable maximum epoch number, training time limit,

and accuracy target were set for training. Data from the

second window of the U-235 total cross section were used

to evaluate networks with different combinations of node

numbers. The performance was determined using the per-

centage of data points where the absolute relative error

with respect to the input data was less than 0.1%. The

results are compared in Table 2. The results indicate that

the best combination has 40 nodes in the first hidden layer

and 20 nodes in the second hidden layer.

3 Numerical tests of HWN method

The HWN method was implemented in the Reactor

Monte Carlo (RMC) code [20] for on-the-fly Doppler

broadening of U-235. Data from the ENDF/B-VII.0 data-

base were processed by NJOY [21] with an accuracy of no

less than 0.001 to obtain the training ACE data. The

resolved resonance energy range was divided into 80

energy windows, and the networks were trained for each

window. cross-sectional data at 25-K intervals in the range

of 250–1650 K were used to calculate the training target

K E; Tð Þ in each window. The microscopic cross sections

and macroscopic results were compared to prove the fea-

sibility and effectiveness of the HWN method.

In Sect. 3.1, the accuracy and memory requirements of

the HWN method are demonstrated by comparing the

calculated microscopic cross section with the ACE data. In

Sect. 3.2, the results of two macroscopic tests performed to

Fig. 2 Extension of window

Fig. 3 Relationship between the number of nodes in the hidden layer

and the mean minimum absolute relative error
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verify the accuracy and efficiency of the method are

presented.

3.1 Microscopic accuracy and memory requirement

comparison

The HWN method was applied to U-235 and U-238,

which are representative heavy nuclides with important

resonances. The total cross section, elastic scattering cross

section, absorption cross section of U-235, and total cross

section of U-238 were compared with the ACE data at the

same temperature. The cross-sectional results and absolute

relative errors with respect to the ACE data are plotted in

Fig. 4, where the comparisons were made in the energy

regions with strong resonances at 300 K and 700 K. It can

be observed that the errors are low for most data points and

that the cross sections evaluated are accurate at both tem-

peratures. The relative errors fluctuate with the energy. The

fluctuations are caused by the characteristics of neural

networks with many nodes.

The HWN method and the windowed multipole method

are both methods with new ways, which do not use con-

tinuous-energy data, of storing the cross-sectional data.

Therefore, their memory requirements are lower than that

of the ACE data. The relative errors of the HWN and

windowed multiple [1] methods are compared in Table 3.

The results show that the maximum relative errors are

similar and that the average relative errors of both methods

are within 0.1%.

The theoretical memory consumption of the network

parameters and ACE cross-sectional data are compared. In

the continuous-energy Monte Carlo code using the ACE

data, the cross sections are stored in the form of double-

precision floating-point numbers. Each double-precision

floating-point number occupies eight bytes of memory.

Both the energy grid and cross-sectional values are needed

for cross-sectional evaluation. For the total cross section,

elastic scattering cross section, and absorption cross sec-

tion, four double-precision floating-point numbers, which

occupy 32 bytes of memory, are needed for each energy

point. In comparison, most of the parameters in the HWN

method are stored in the form of double-precision floating-

point numbers, and a few parameters are integers. The

memory consumptions of the two methods are calculated

using the number of parameters and the memory space

needed for each parameter.

The ACE data at 0 K processed by NJOY were used for

comparison. If on-the-fly Doppler broadening is not intro-

duced to the Monte Carlo code, point-wise cross sections at

more than a dozen temperatures will be needed for thermal-

hydraulics coupled analysis. The method proposed by

Yesilyurt et al. uses parameters that require several times

the memory needed for the ACE data at 0 K. Point-wise

data are also needed in the TMS method. As a result, the

HWN method shows a significant reduction of the memory

requirement compared to the 0 K ACE data.

The comparison results are listed in Table 4. The results

show that for the three cross sections of U-235, the HWN

method could reduce the memory requirements of cross-

sectional data in the resolved resonance energy range by

66.1% as compared with the case of the 0 K ACE data. The

memory requirement reduction was 65.9% over the entire

energy range.

The networks for each window can be used indepen-

dently because the training process of each window is

independent. It is easy to set the scope of the method when

the method is implemented in a Monte Carlo code. It is not

necessary to store the 0 K ACE data within the selected

windows if the HWN method is used. However, the speed

of the cross-sectional evaluation in these windows will

decrease. The efficiency drop is described in Sect. 4.

Table 4 clearly shows that the resolved resonance energy

range accounts for most the nuclear data. The memory

optimization ratio is significant when the HWN method is

used in some of the windows. Users can decide the effi-

ciency to be compromised for saving memory.

Table 2 Performance comparison of networks with different combinations of node numbers

Number of nodes in the first hidden layer N1 Performance of networks with N2 nodes in second hidden layer (%)

10 13 15 20 25

35 57.1 55.9 61.1 58.6 58.5

40 56.9 59.8 57.0 64.8 59.6

45 56.1 57.6 58.5 59.5 56.8

50 59.2 57.7 61.6 56.0 58.1

55 57.7 61.4 63.4 59.6 52.6
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Fig. 4 (Color online)

Comparison of microscopic

cross sections at 300 K and

700 K. a Total cross section of

U-235. b Absorption cross

section of U-235 c Elastic

scattering cross section of

U-235. d Total cross section of

U-238
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3.2 Comparison of macroscopic test results

The HWN method was used for Doppler broadening in

all windows of the resolved resonance energy in the HWN

cases, while ACE data from the processed ENDF/B-VII.0

database at the same temperature were used in the ACE

case. All calculations were performed using an Intel i7-

9750H CPU without parallelism.

3.2.1 Concentric spheres

The first comparison example consisted of two con-

centric spheres, as shown in Fig. 5. The radii of the inner

and outer spheres were 6.782 cm and 11.862 cm, respec-

tively. The inner sphere was filled with Material 1. The

space between the two spheres was filled with Material 2.

The outside of the outer sphere was set to vacuum. The

nuclide compositions of the materials are listed in Table 5.

The temperature of each material was set to 300 K.

The calculation parameters are listed in Table 6, and the

results are presented in Table 7. The deviation in keff is

very small. There was a slight increase in the calculation

time. The accuracy of the HWN method was therefore

confirmed.

3.2.2 PWR assembly

The second comparison example is the PWR assembly

model shown in Fig. 6. The model comprised an infinite

cylinder with a cross section of 21.42 cm 9 21.42 cm.

There were 264 fuel rods and 25 pipes arranged in a

17 9 17 square. The fuel rods were cylinders with diam-

eters of 0.8192 cm. Each fuel rod was surrounded by a

0.082 mm air layer and a 0.572 mm zirconium wall. The

Table 3 Comparison of relative errors of HWN and windowed

multipole

Relative error HWN method (%) Windowed multipole (%)

Max relative error * 1 * 1

Average error \ 0.1 \ 0.1

Table 4 Theoretical memory requirements of HWN and ACE data

Data saving mode for cross section Theoretical memory requirement (MB) Optimization ratio (%)

0 K ACE data in resolved resonance energy range 7.38 –

HWN 2.50 66.1

0 K ACE data in the whole range 7.40 –

HWN and 0 K ACE data outside resolved resonance range 2.52 65.9

Fig. 5 (Color online) Concentric spheres example

Table 5 Nuclide composition of materials in concentric spheres

example

Materials Nuclides Atomic density

(1024atoms � cm�3)

Material 1 U-235 4.4917 9 10–2

U-238 2.5993 9 10–3

U-234 4.9210 9 10–4

Material 2 U-235 3.4428 9 10–4

U-238 4.7470 9 10–2

U-234 2.6299 9 10–6

Table 6 Calculation parame-

ters for the example of concen-

tric spheres

Parameters Value

Neutrons per cycle 100,000

Inactive cycles 400

Active cycles 1600
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inner and outer diameters of the pipes were 1.138 and

1.2294 cm, respectively. The pipes were filled with water,

and the material of their walls was zirconium. The

remainder of the assembly was filled with water. The

nuclide compositions of the fuels are listed in Table 8. The

temperature of all the materials was set to 700 K.

The calculation parameters are listed in Table 9, and the

results are presented in Table 10. The difference in keff
between the two cases is within twice the standard devia-

tion, indicating that there is no significant difference. The

calculation time of the HWN case is 1.39 times that of the

ACE case, which indicates that using the HWN method

will prolong the calculation time. The calculation time is

shorter if the method is not used in all the windows.

The neutron flux spectrum of the fuel in a fuel rod

adjacent to the central pipe and the neutron flux inside each

fuel rod and pipe were calculated for both the ACE and

HWN cases. The results are presented in Fig. 7. The blocks

in Fig. 7c do not represent the actual geometry, rather they

the corresponding positions.

Figure 7a shows that the neutron flux spectra of the fuel

rods are the same. Figure 7b shows that the relative devi-

ations of the fluxes in most statistical intervals are within

three times the standard deviation of the ACE case. Fig-

ure 7c compares the neutron fluxes of all the fuel rods in

the assembly. There is no significant difference between

the ACE and HWN cases. The blank grid squares represent

the pipes whose fluxes are not shown in this figure. A

numerical comparison shows that the deviation of most

fuel rods and pipes is within twice the standard deviation,

and the deviation of the remaining fuel rods and pipes is

within three times the standard deviation except for a few

fuel rods and pipes. The comparison results therefore

demonstrate the accuracy of the proposed HWN method.

4 Conclusion

In this study, a hybrid windowed networks method for

on-the-fly Doppler broadening was proposed and imple-

mented in the RMC code. The resolved resonance energy

range is divided into energy windows. In each window, two

BP networks are trained to calculate the cross section at the

base temperature and broaden the cross section to any

temperature within the range of 250–1600 K. The

Table 7 Calculation results of

the concentric spheres example
Case keff Standard deviation Calculation time (min) Time ratio

ACE 0.995747 0.000048 597.3738 1.00

HWN 0.995748 0.000048 601.7461 1.01

Fig. 6 (Color online) Schematic diagram of the PWR assembly

Table 8 Nuclide composition of fuel in the PWR assembly

Nuclide Atomic density (1024 atoms/cm-3)

U-235 6.9100 9 10–3

U-238 2.2062 9 10–1

O-16 4.5510 9 10–1

Table 9 Calculation

parameters of PWR assembly
Parameters Value

Neutrons per cycle 40,000

Inactive cycles 400

Active cycles 1600

Table 10 Calculation results of

PWR assembly
Case keff Standard deviation Calculation time (min) Time ratio

ACE 1.349355 0.000068 2174.0543 1.00

HWN 1.349255 0.000062 2961.4330 1.39
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Fig. 7 (Color online)

Comparison results of ACE and

HWN cases. a Flux spectrum of

fuel rod beside central pipe

b Relative error and standard

deviation of the flux spectrum

c Flux of fuel rods
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structures of the neural networks and training parameters

are determined through calculations. Networks for the total

cross section, absorption cross section, and elastic scatter-

ing cross section of U-235 were trained.

Microscopic cross-sectional comparison and macro-

scopic tests were performed to verify the utility and

effectiveness of the HWN method. A comparison between

the cross sections evaluated by this method and the ACE

data shows the high accuracy of the proposed method.

Macroscopic tests were conducted using RMC to verify the

accuracy and efficiency of the method. The calculation

time ratio between the HWN method and the ACE data for

the PWR assembly calculation was 1.39. If the method is

used with all the windows of the resolved resonance energy

range, the theoretical memory consumption for U-235

nuclide can be reduced to 33.9% of the memory needed for

ACE cross-sectional interpolation at 0 K. The theoretical

memory consumption is reduced to 34.1% of the ACE data

at 0 K if the ACE data outside the resolved resonance

energy range are also included.

The HWN can be combined with other on-the-fly

Doppler broadening methods or linear interpolation with

point-wise nuclear data. Using the HWN method, users can

compromise efficiency according to the memory saving

requirement. If the predicted neutron flux is high in some

windows, the use of this method in the remaining windows

can significantly reduce the memory cost without com-

prising efficiency to a great extent.

The method proposed in this study should be further

studied to improve its effectiveness. The calculation speed

may be greatly improved by optimizing the calculation

process, particularly the evaluation of the nonlinear transfer

function. The accuracy of this method can be further

improved by extending the training time or by choosing

more suitable training parameters.

The HWN method is applicable to any heavy nuclide

with a resolved resonance energy range. Because the

training is performed with point-wise data, the method can

also be applied to nuclides for which the windowed mul-

tipole method is inapplicable. The method can be applied

to more nuclides, especially those that are important in

reactor simulations or those for which it is difficult to apply

the windowed multipole method.

The potential of the neural networks used in the HWN

method for reducing the memory usage in the evaluation of

complex parameters was demonstrated. The introduction of

neural networks into other developed on-the-fly Doppler

broadening methods may result in greater memory savings

and higher accuracy.
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