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Abstract
The inter-cycle correlation of fission source distributions (FSDs) in the Monte Carlo power iteration process results in vari-
ance underestimation of tallied physical quantities, especially in large local tallies. This study provides a mesh-free semi-
quantitative variance underestimation elimination method to obtain a credible confidence interval for the tallied results. This 
method comprises two procedures: Estimation and Elimination. The FSD inter-cycle correlation length is estimated in the 
Estimation procedure using the Sliced Wasserstein distance algorithm. The batch method was then used in the elimination 
procedure. The FSD inter-cycle correlation length was proved to be the optimum batch length to eliminate the variance 
underestimation problem. We exemplified this method using the OECD sphere array model and 3D PWR BEAVRS model. 
The results showed that the average variance underestimation ratios of local tallies declined from 37 to 87% to within ± 5% 
in these models.

Keywords  Monte Carlo algorithm · Power iteration process · Inter-cycle correlation · Variance underestimation · Sliced 
Wasserstein distance

1  Introduction

The Monte Carlo (MC) algorithm is commonly used in high-
resolution modeling and high-fidelity analysis of reactor 
core models and other nuclear facilities. The Power Iteration 
(PI) process was adopted to solve the k-eigenvalue equations 
[1] and transient fixed-source equations [2]. Physical quan-
tities such as k-eigenvalue and power densities are tallied 
cycle by cycle after source convergence. Commonly, these 
tally results are processed by assuming that they are inde-
pendent and uncorrelated between cycles. However, in the 
PI process, the Fission Source Bank is transmitted between 
cycles, resulting in an inter-cycle correlation of the fission 

source distributions (FSDs). This inter-cycle correlation of 
the FSDs further led to the inter-cycle correlation of the tally 
results [3]. Thus, the calculated variance of the tally results 
is lower than the real variance owing to this inter-cycle cor-
relation. This phenomenon is also called the MC variance 
underestimation phenomenon. In the PWR full-core power 
distribution calculations, the inter-cycle correlations can 
result in a variance underestimation ratio of 90%. Local tal-
lies with relatively large sizes suffer the most from this prob-
lem [4]. The variance underestimation phenomenon belongs 
to the MC source convergence problem. Researchers have 
attempted to solve these problems [5–9].

To solve the variance underestimation problem, there 
are various proposed methods in literature, which can be 
divided into three categories. The first category involves 
modifying the PI process to reduce the inter-cycle correla-
tions of the tally results. Brissenden and Garrick (1986) 
proposed the super history method [10]. This method sim-
ulates neutrons for i generations per cycle, and the physical 
quantities are tallied at the cycle end. This method is intui-
tively effective, but the number of neutron generations per 
cycle is set based on experience. Herman et al. (2014) pro-
posed using CMFD feedback to adjust the neutron weight 
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in the PI process to reduce FSD inter-cycle correlations 
[11, 12]. However, it changes the fundamental mode of 
the FSD in the MC simulations. Gelbard and Prael (1990) 
proposed a batch method to de-correlate tally results by 
combining a certain number of active cycles into batches 
[13, 14]. The physical quantities were tallied at the end of 
each batch. As observed with the super history method, 
setting an appropriate batch length is difficult. The sec-
ond category quantifies the underestimation ratio by post-
processing the auto-correlated tally results. Several math-
ematical models are used to analyze the auto-correlated 
tally results, such as the ARMA(2,1) model, orthonormal 
weighted standardized time series model (OWSTS), and 
fractional Brownian motion process [15–17]. These math-
ematical models are efficient in variance underestimation 
correction but lack a theoretical basis in the MC PI theory. 
The third category theoretically predicts the inter-cycle 
correlation. The prediction methods approximate MC 
simulations by using a surrogate model, calculating the 
correlation coefficients, and correcting the calculated vari-
ances. These methods are typically based on specific mesh 
grids or homogenized models [18, 19].

Thus, the approaches to solving the variance underesti-
mation problem are always demanding for users by setting 
appropriate mesh grids or tricky coefficients. This study 
proposes a mesh-free semi-quantitative variance underes-
timation elimination (SeVUE) method to obtain a cred-
ible confidence interval for the tallied results. This method 
comprised two procedures: Estimation and Elimination. 
The FSD inter-cycle correlation length was estimated in 
the Estimation procedure using the Sliced Wasserstein 
(SW) distance algorithm, the batch method was used in 
the Elimination procedure, and the FSD inter-cycle cor-
relation length was set as the batch length. Local tallies 
with relatively large sizes were of interest in this study. 
The research was conducted on the RMC platform [20].

The paper proceeds as follows: Sect. 2 briefly intro-
duces the batch method and SW-based FSD inter-cycle 
correlation observation method; Sect. 3 illustrates the 
SeVUE algorithm; Sect. 4 presents the validation calcu-
lations for the OECD sphere array model and the 3D PWR 
BEAVRS model; and Sect. 5 presents the conclusions.

2 � Theory

The batch method is summarized in Sect. 2.1, and the SW 
distance algorithm and mesh-free FSD inter-cycle correla-
tion observation method are introduced in Sects. 2.2 and 
2.3. The optimum batch length is related to the FSD inter-
cycle correlation length, discussed in Sect. 2.4.

2.1 � The batch method

The batch method de-correlates the tally results by com-
bining a certain number of active cycles into batches. In 
the MC simulation, Q is assumed to be the physical quan-
tity of interest. Next, its conventional MC estimate value 
Q and estimate variance �2

s

(
Q
)
 are assumed to be [3]

where Q(i) is the estimate in cycle i, and N is the number of 
active cycles.

The apparent variance of Q , �2
a

(
Q
)

 is defined as the 
mathematical expectation of the estimated variance.

If we define �2
(
Q(i)

)
= E

((
Q(i)

)2)
− E2

(
Q(i)

)
 , then 

Eq. (3) can be simplified as

The true variance �2
r

(
Q
)
 of Q is expressed by Eq. (5).

The difference between �2
r

(
Q
)
 and �2

a

(
Q
)
 is

Thus, the correlation between the tally results of every 
cycle is the direct cause of the variance underestimation 
problem.

Furthermore, we used the batch method by combining 
a certain number of active cycles into batches and tallying 
the physical quantities at the end of each batch. Suppose 
that the batch length is lb and the number of batches is nb . 
The coefficients confront Eq. (7).

We defined Q(j)

b
 as the estimate in batch j and Qj(i)

b
 as the 

estimate of cycle i in batch j. The estimated value Qb and 
sample variance �2

bs

(
Qb

)
 can be as Eq. (8–9).
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The apparent variance of Qb , �2
ba

(
Q
)
 is defined as the 

expected value of the sample variance.

where �2
(
Q

(i)

b

)
= E

((
Q

(i)

b

)2
)
− E2

(
Q

(i)

b

)
.

Then, the difference between �2
br

(
Q
)
 and �2

ba

(
Q
)
 is

The correlation among batch tally results is generally less sig-
nificant than that among cycle tally results in the PI process, 
owing to the weaker FSD inter-batch correlation. Thus, the dif-
ference between �2

br

(
Q
)
 and �2

ba

(
Q
)
 was smaller than that 

between �2
r

(
Q
)
 and �2

a

(
Q
)
 . However, setting an appropriate 

batch length is challenging. A large batch length can almost 
eliminate underestimation, whereas the computational cost can 
be too high because it requires a minimum number of batches in 
common practice.

A small batch length is appropriate for practical use, but 
the magnitude of variance underestimation elimination is 
unknown. Determining the optimum batch length was of inter-
est in this study.

2.2 � Sliced Wasserstein distance algorithm

The Sliced Wasserstein (SW) distance was developed from 
Optimum Transport theory [21]. Its initial definition is the 
minimum "cost" to transform the 1D distribution p into q , as 
shown in Fig. 1. It can be efficiently calculated by

where k is the X/Y/Z direction, p, q are two 1D distributions, 
xi ∈ p , yi ∈ q are the coordinates after sorting the neutron 
points in the X/Y/Z direction, and N is the number of parti-
cles per cycle in the MC simulations.

In this paper, the 1-norm distance is used to calculate d(x, y)
:
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The SW distance algorithm is a commonly used mesh-
free algorithm for measuring the difference between dis-
crete vectors. Guo et al. (2021) introduced this algorithm 
into the scope of MC source convergence diagnosis [22]. 
Shen et al. (2022) adopted this algorithm to measure fission 
source error in the MC PI process [23]. In the calculation, 
the sorting procedure uses the fast sorting algorithm costs 
O(Nlog(N)) operations, and the SW distance calculation 
costs O(N) operations. Thus, the total cost is O(Nlog(N)) . 
The efficiency penalty is approximately 2% in MC criticality 
calculations for the PWR full-core model [22].

2.3 � SW‑based FSD inter‑cycle correlation 
observation method

The PI method in the MC algorithm is expressed by Eq. (14) 
in the discretization.

where s(i) is the fission source vector in cycle I, H is the fis-
sion matrix, �(i) is the stochastic error component, and k(i) is 
the estimation of fundamental mode eigenvalue in cycle i.

The number of particles per cycle is defined as m, the 
fundamental mode eigenvalue, and the normalized eigenvec-
tor of fission matrix H is defined as k0 and s0 . Equation (15) 
can be expressed as

The fission source error in cycle i is introduced as

(14)s(i+1) =
Hs(i)

k(i)
+ �

(i),

(15)Hs0 = k0s0.

(16)e(i) = s(i) − ms0.

Fig. 1   Minimum "cost" to transform distribution p into q
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By substituting and considering the magnitude of the 
error terms [10], we disregarded some terms and obtained

where � is (1, 1, …, 1), and A is the noise propagation 
matrix, written as Eq. (18).

We iterated Eq. (17) i times and obtained Eq. (19).

The fission source error consists of three components: 
the initial error, bias error, and random error terms. The 
FSD random error term is the dominant component after the 
source convergence, as expressed in Eq. (20) [24].

where e(i)
R

 is the fission source random error term of cycle i, 
A is the error propagation matrix, and �(j) is the stochastic 
error component induced in cycle j.

The FSD random error term is inter-cycle correlated 
because it is composed of stochastic error components 
induced in adjacent cycles. This is the theoretical basis of 
the FSD inter-cycle correlation.

The fission error difference between adjacent cycles can 
be written as

where I is the identity matrix.
In fission systems, noise propagation matrix A is similar 

to the identity matrix. By comparing the scalar error differ-
ences, we obtained

where �(i) is the scalar fission source error in cycle i.
Furthermore, the fission error difference between cycles 

can be written as

Similarly, the scalar error differences are expected to be
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The scalar error differences increase with the interval j. 
When E
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 , the FSD inter-cycle 

correlation can be ignored after n cycles.
The SW-based FSD inter-cycle correlation observation 

method uses the combined Sliced Wasserstein distance in 
three directions to measure the scalar fission source error 
�
(i) , as expressed in Eq. (25).

where s(i) is the fission source distribution in cycle i.
The combined SW distance is calculated in Eq. (26).

We combined Eqs. (24) and (25), and the average SW 
distance between the FSD of adjacent cycles increased along 
with the adjacent cycle number, as expressed in Eq. (27).

The FSD inter-cycle correlation can be ignored when the 
average FSD SW distance fluctuates.

2.4 � Inter‑cycle correlation length and optimum 
batch length

We defined the interval cycle length n0 where the aver-
age FSD SW distance starts to fluctuate as the FSD inter-
cycle correlation length. The interval length n0 conforms to 
Eq. (28).

According to Eq. (25), the FSD SW distance was used to 
measure the scalar fission source error. Thus, Eq. (29) can 
be expressed as

If the interval cycle length j is greater than n0 , the cor-
relation between the FSDs of cycle i and cycle i − j declines 
statistically to negligible.

According to the Law of large numbers, we can obtain

where l is group length.
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group length l is set as the FSD inter-cycle correlation 
length n0 , Eq. (31) can be expressed as

The cumulative scalar fission error of n0 . cycles is sta-
tistically uncorrelated after n0 cycles. The flux results {
Q

(i)

b

}
 are then statistically uncorrelated using n0 as the 

batch length. The variance underestimation problem can 
be solved consequently, as expressed in Eq. (32).

In conclusion, the FSD inter-cycle correlation length is 
the optimum batch length.

3 � Semi‑quantitative variance 
underestimation elimination (SeVUE) 
method

We used the SeVUE method to observe the FSD inter-
cycle correlation length and eliminate the variance under-
estimation problem. Sections 3.1 and 3.2 describe the 
workflow of the SeVUE method and the implementation 
scheme, respectively (Fig. 2).
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3.1 � Workflow

The SeVUE method comprises two procedures: the Estima-
tion procedure and the Elimination procedure.

In the Estimation procedure, the SeVUE method 
requires an MC calculation to estimate the FSD inter-cycle 
correlation length of each model. This calculation should 
be in the criticality mode with no tallies. The number of 
particles per cycle can be set to a relatively small value 
because the FSD inter-cycle correlation is almost inde-
pendent of it. For example, setting 10,000 neutrons per 
cycle is sufficient for a full-core model. By contrast, the 
number of active cycles should be relatively large. Thou-
sands of active cycles are recommended for models with 
a high dominance ratio. The SW distances between FSDs 
can be calculated using external scripts (Fig. 4) or embed-
ded codes. At the end of this procedure, the relationship 
between the average FSD SW distances and the interval 
cycle length can be plotted (Fig. 3). The FSD inter-cycle 
correlation length is the point at which the average FSD 
SW distance starts to fluctuate.

In the Elimination procedure, the batch method was 
used to eliminate variance underestimation. According to 
Eq. (19–22), the FSD inter-cycle correlation length was set 
as the batch length. The number of active cycles should be 
at least 10 times the FSD inter-cycle correlation length. The 
calculated variances of the tally results were close to the 
actual variances.

3.2 � Implementation

The SeVUE method was implemented using the MC code 
RMC [20]. RMC is a neutron photon–electron transport 

Fig. 2   Two procedures in the SeVUE method
Fig.3   Relationship between FSD average SW distances and interval 
cycle length
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code developed by the Reactor Engineering Analysis Lab 
(REAL) of Tsinghua University. RMC has been applied for 
nuclear reactor criticality, burnup, shielding, and neutronics-
thermal coupling calculations [25–28].

In the Estimation procedure, an external script was used to 
calculate the SW distances between FSDs of different cycles. 
In the RMC code, the fission source distribution is the output 
for each cycle. The external script can run independently and be 
easily coupled with other MC codes. The coupled workflow is 
illustrated in Fig. 4.

In the Elimination procedure, the batch method is 
implemented in the RMC code. Tally results were pro-
cessed at the end of each batch.

4 � Validation and discussion

To validate the SeVUE method and study its character-
istics, we calculated the flux distribution of the sphere 
array model from the OECD/NEA source convergence 

benchmark and the power distribution of the BEAVRS 
full-core model from the BEAVRS benchmark [29, 30]. 
The platform used was an AMD Ryzen 9 3990X. The base 
RMC version was V3.5.0.

Fig. 4   Coupled workflow to 
estimate FSD inter-cycle cor-
relation length

Fig. 5   Geometric configuration of sphere array model
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4.1 � Flux distribution of sphere array model

The sphere array model was obtained from the OECD/NEA 
source convergence benchmark, with a dominance ratio 
of approximately 0.886. It comprised of 25 fissile metal 
spheres in a 5 × 5 × 1 array (Fig. 5). The metal spheres were 
filled with highly enriched uranium. The center sphere was 

larger than the other eight spheres, with a radius of 10 cm. 
The flux distribution in this model was of interest in this 
study. The number of particles per cycle of 5000, 50,000, 
and 5,000,000 was analyzed to observe the FSD inter-cycle 
correlation lengths. Each calculation had 1000 inactive and 
20,000 active cycles.

Fig. 6   The reference flux results and RSDs of the Sphere array model. a Flux results; b Relative standard deviation

Fig. 7   RSDs and VURs distribution of a single MC simulation in sphere array model. a Relative standard deviation; b VURs
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Fig. 8   FSD average SW dis-
tance evolves with interval cycle 
length in sphere array model. 
a 5,000 neutrons per cycle; b 
50,000 neutrons per cycle; c 
500,000 neutrons per cycle
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4.1.1 � Reference flux distribution and variance 
underestimation phenomenon

The reference flux distribution and relative standard devia-
tion (RSD) distributions were obtained using 100 independ-
ent calculations. The fluxes in each sphere were tallied. The 
reference flux results and RSDs are shown in Fig. 6. Accord-
ing to the Law of large numbers, the RSD of the sample 
variance was approximately 

√
2

N−1
 (where N is the number 

of samples). Thus, the reference standard deviation has a 
±10% fluctuation.

The variance underestimation ratio distribution in Fig. 7 
was obtained by comparing the relative standard deviations 
in a single simulation with the reference results. The Vari-
ance underestimation ratio (VUR) is defined in Eq. (33).

(33)VUR =
�r−�a

�r

× 100%,

where �a is the calculated standard deviation, and �r is the 
true standard deviation.

As shown in Fig. 7, the VURs in each sphere varied from 
24 to 47%. The average VUR was 37.3%.

4.1.2 � Estimation procedure

The number of particles per cycle of 5000, 50,000, and 
5,000,000 was analyzed to observe the FSD inter-cycle cor-
relation lengths in this procedure. Figure 8 shows that the 
FSD average SW distance evolves with the interval cycle 
length. A visual check of the curves showed that the FSD 
inter-cycle correlation lengths were approximately 50 for all 
three batch sizes. Thus, the FSD inter-cycle correlation was 
almost independent of batch size.

Semi-quantitative information can be obtained from 
Fig. 8. The initial FSD average SW distance was approxi-
mately 40% of the stationary SW distance. This "similar-
ity coefficient" can be further used to measure the variance 
underestimation ratio of the total flux in this model.

4.1.3 � Elimination procedure

We verified Eqs. (28–32) by setting different batch 
lengths. The batch lengths are listed in Table 1. Notably, 
in the SeVUE method, only the case with lb = 50 should be 
calculated.

Figure 9 shows that the average VURs evolve with the 
batch length. The average VURs of different batch sizes 
are approximately 37% when the batch length is one cycle. 
With the batch length increases, the average VURs gradually 
declines. When batch length is 50, the average VURs are 
approximately ±1% . Thus, 50 is the proper batch length for 
this model. This value is in satisfactory agreement with the 
FSD inter-cycle correlation length estimated in the former 
procedure.

The results of a single calculation for lb = 50 are shown in 
Fig. 10. The VUR of each sphere varied from − 5.0 to 2.6%, 
with an average VUR of − 1.9%. Considering the fluctua-
tions in the reference standard deviations, these differences 
were acceptable.

4.2 � Power distribution of BEAVRS 3D full‑core 
model

The BEAVRS full-core model is a detailed reactor core 
model used to test indicators in real-world PWRs. The geo-
metric configuration is illustrated in Fig. 11. It consists of 
193 fuel assemblies in a 15 × 15 × 1 array with a dominance 
ratio of 0.989. The power distribution in this model was of 

Table 1   Parameters of batch method in sphere array model

Serial number Batch 
length/cycle

Number of batches Number of 
active cycles

1 1 20,000 20,000
2 2 10,000 20,000
3 4 5000 20,000
4 5 4000 20,000
5 8 2500 20,000
6 10 2000 20,000
7 16 1250 20,000
8 20 1000 20,000
9 25 800 20,000
10 32 625 20,000
11 40 500 20,000
12 50 400 20,000

Fig. 9   Average VUR evolves with batch length in sphere array model
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Fig. 10    Relative standard deviation and VURs distributions of an MC simulation with l
b
= 50 . a Relative standard deviation; b VURs

Fig. 11   Geometric configuration of 3D BEAVRS full-core model. a Front view; b Left view

interest in this study. The number of particles per 50,000 
cycles was analyzed to observe the FSD inter-cycle correla-
tion length. Each calculation had 1000 inactive and 20,000 

active cycles. The total number of neutron histories in the 
active cycles was 1 billion, which is practical for actual 
calculations.
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Fig. 12   Reference power results and relative standard deviations of BEAVRS full-core model. a Power distribution; b Relative standard devia-
tion

Fig. 13    RSDs and VURs distribution of a single MC simulation in BEAVR full-core model. a Relative standard deviation; b VURs

4.2.1 � Reference power distribution and variance 
underestimation phenomenon

The reference power distribution and standard deviation dis-
tribution were obtained using 30 independent calculations, 

similar to the sphere array model. The power of each assem-
bly was tallied. The reference results and RSDs are shown 
in Fig. 12.

The variance underestimation ratio distribution in 
Fig. 13 was obtained by comparing the RSDs in a single 
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MC simulation with the reference results. The VURs in each 
assembly varied from 72 to 91%. The VURs of the assem-
blies close to the center were lower than the average. By 
contrast, the outer assemblies had a VUR above 90%. The 
average VUR was 87.5%.

4.2.2 � Estimation procedure

A batch size of 50,000 was analyzed to observe the FSD 
inter-cycle correlation length. Figure 14 shows that the FSD 

average SW distance evolves with the interval cycle length. 
A visual check of the curves showed that the FSD inter-
cycle correlation length of this model was approximately 
500.

The initial FSD average SW distance was approximately 
1/10 of the stationary SW distance. Thus, the variance 
underestimation problem is more severe in this model than 
in the sphere array model. This conclusion is consistent with 
the results presented in Figs. 7 and 13.

4.2.3 � Elimination procedure

We set different batch lengths to verify that the FSD inter-
cycle correlation length was the optimum batch length. The 
batch lengths are listed in Table 2. In the SeVUE method, 
only the case where lb = 500 should be calculated.

Figure 15 shows that the average VURs evolve with the 
batch length. The average VUR was approximately 87% 
when the batch length was one cycle. It gradually declined 
with the batch length increases. When the batch length 
exceeded 500, the average VURs were within ± 5%, and the 
curve fluctuated. Thus, 500 is the optimum batch length for 
this model.

The results of the single MC simulation with lb = 500 
are shown in Fig. 16. The VUR of each assembly varies 
from − 10.5 to 13.4%, with an average VUR of − 1.3%. The 
differences were acceptable, considering the fluctuations in 
the reference standard deviations and batch method results.

Fig. 14   FSD average SW 
distance evolves with interval 
cycle length in BEAVR full-
core model

Table 2   Parameters of batch methods for BEAVRS full-core model

Serial number Batch 
length/cycle

Number of batches Number of 
active cycles

1 1 20,000 20,000
2 2 10,000 20,000
3 10 2000 20,000
4 20 1000 20,000
5 40 500 20,000
6 80 250 20,000
7 100 200 20,000
8 125 160 20,000
9 200 100 20,000
10 250 80 20,000
11 400 50 20,000
12 500 40 20,000
13 625 32 20,000
14 800 25 20,000
15 1000 20 20,000
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5 � Discussion

Relatively large tallies were used to exemplify the efficiency 
of the SeVUE method, and this method effectively elimi-
nated the variance underestimation problem in MC criti-
cality simulations. The FSD inter-cycle correlation length 
was validated to be independent of the batch size. The ratio 
between the initial FSD average SW distance and stationary 
SW distance in the Estimation procedure can be a poten-
tial reference for the variance underestimation of large local 
tallies.

The penalty is that an additional Estimation calculation 
must be conducted to estimate the FSD inter-cycle correla-
tion length of every model. In addition, the FSD inter-cycle 
correlation length may be hundreds of cycles in the reac-
tor full-core model. Thousands of active cycles and billions 
of neutron histories are required to eliminate the variance 
underestimation problem. Moreover, the standard deviation 
of the tally results may have ±10% fluctuations in the VUR 
when a proper batch length is set.

Fig. 15   Average VUR evolves 
with batch length in BEAVR 
full-core model

Fig. 16   Relative standard deviation and VURs distributions of an MC simulation with l
b
= 500 . a Relative standard deviation; b VURs
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6 � Conclusion

This study provides a mesh-free SeVUE method to obtain 
a credible confidence interval for the tallied results. This 
method comprises two procedures: Estimation and Elimi-
nation. The SW-based variance underestimation estimation 
method was used to estimate the FSD inter-cycle correlation 
length. The batch method was used in the Elimination proce-
dure. The FSD inter-cycle correlation length is the interval 
cycle length n0 where the average FSD SW distance starts 
to fluctuate. It was proved to be the optimum batch length to 
eliminate the variance underestimation problem.

We exemplified this method by using the OECD sphere 
array model and 3D PWR BEAVRS model. The sphere flux 
and assembly power were analyzed. The average VURs of 
the sphere flux and assembly power decreased from 37 and 
87% to within ± 5%, respectively. The calculated variances 
were successfully compared with variance estimates from 
independent simulations.

One-step variance underestimation elimination methods 
are under development.
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