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Abstract
Maximum likelihood estimation (MLE) is an effective method for localizing radioactive sources in a given area. However, 
it requires an exhaustive search for parameter estimation, which is time-consuming. In this study, heuristic techniques were 
employed to search for radiation source parameters that provide the maximum likelihood by using a network of sensors. 
Hence, the time consumption of MLE would be effectively reduced. First, the radiation source was detected using the k-sigma 
method. Subsequently, the MLE was applied for parameter estimation using the readings and positions of the detectors that 
have detected the radiation source. A comparative study was performed in which the estimation accuracy and time consump-
tion of the MLE were evaluated for traditional methods and heuristic techniques. The traditional MLE was performed via a 
grid search method using fixed and multiple resolutions. Additionally, four commonly used heuristic algorithms were applied: 
the firefly algorithm (FFA), particle swarm optimization (PSO), ant colony optimization (ACO), and artificial bee colony 
(ABC). The experiment was conducted using real data collected by the Low Scatter Irradiator facility at the Savannah River 
National Laboratory as part of the Intelligent Radiation Sensing System program. The comparative study showed that the 
estimation time was 3.27 s using fixed resolution MLE and 0.59 s using multi-resolution MLE. The time consumption for the 
heuristic-based MLE was 0.75, 0.03, 0.02, and 0.059 s for FFA, PSO, ACO, and ABC, respectively. The location estimation 
error was approximately 0.4 m using either the grid search-based MLE or the heuristic-based MLE. Hence, heuristic-based 
MLE can provide comparable estimation accuracy through a less time-consuming process than traditional MLE.

Keywords  Radioactive source · Maximum likelihood estimation · Multi-resolution MLE · k-sigma · Firefly algorithm · 
Particle swarm optimization · Ant colony optimization · Artificial bee colony

1  Introduction

Radioactive sources are widely used in many nuclear tech-
nologies in industry [1], health care [2], nuclear research [3], 
and isotope production [4]. According to the International 
Atomic Energy Agency [5], more than 3000 radioactive 
source incidents have occurred globally, 10% of which were 
related to trafficking or malicious use. Most applications that 
use radiation sources are conducted in fixed places, such as 
hospitals, factories, and laboratories. If radioactive material 
is lost, a group of technicians searches for the lost source by 
using handheld detectors. This procedure is time-consuming 

and may adversely affect the health of the technicians. 
Hence, developing effective systems for localizing radiation 
sources in fixed areas is crucial. Distributed sensor networks 
are commonly used for localization [6, 7]. The network 
consists of several stationary radiation detectors, in which a 
radiation source can be localized through a data-processing 
algorithm using the readings of the detectors.

In this study, localization was performed through a sensor 
network, where the sensors measured the radiation level and 
then sent the measured data to a base station. The collected 
data, including detector readings and positions, were pro-
cessed to estimate the radiation source parameters. The posi-
tion of each detector (sensor) is normally provided through a 
global positioning system receiver [8]. Typically, the radia-
tion source parameters are represented by the source’s loca-
tion and intensity (strength) [9]. In order to perform effective 
localization, deployed detectors measure gamma-ray radia-
tion, which can travel greater distances than other radiation 
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types. The type of detector used depends primarily on the 
detection material and the surface area, which affects the 
detection efficiency [10].

Normally, without the presence of a radiation source, 
radiation levels can still be detected because of the pres-
ence of naturally occurring radioactive materials (NORM) 
in the surrounding environment [11]. The radiation detected 
by NORM is referred to as background radiation. Hence, a 
detection process must be applied before applying the locali-
zation method to determine whether the detector reading 
is due to an anomalous source or NORM. Traditionally, a 
source is detected if the measured radiation level exceeds a 
certain value, referred to as the detection threshold. In some 
sensor networks, data transmission is only performed when a 
source is detected to reduce the power consumption of each 
sensor [12]. However, the detection of radiation sources may 
result in high false positive rates if the background radia-
tion fluctuates significantly according to the concentration 
of NORM in the surrounding area [13].

The localization of radiation sources is typically applied 
in environments with uniform background radiation [14] and 
low variance. Accordingly, background radiation is meas-
ured periodically, and the average value of the measured data 
is used later in the detection or localization process. Many 
studies have investigated radiation detection and localization 
while considering different background radiation conditions. 
For radiation monitoring in large geographic areas, back-
ground radiation can be estimated in regions not covered by 
detectors [15, 16]. In [16], the missing values in the meas-
ured radiation data were obtained using the Kriging interpo-
lation method, which is a geo-statistical technique used for 
predicting spatial attributes. Similarly [15], used the Krig-
ing method to estimate the radiation source parameters and 
background radiation. Localization using the Kriging inter-
polation method [15, 16] requires statistical parameters for 
the predicted data, which may not be available. Furthermore, 
in Kriging interpolation, an assumption is that the joint prob-
ability distribution is fixed in all the studied spaces, which 
does not hold for all areas. Some methods have been pro-
posed to localize the radiation source in environments with 
high variance background radiation [13] evaluated using 
estimation techniques. Usually, estimation methods are used 
for background radiation and radiation source parameters 
[13, 17]. However, many observation samples are required 
for effective estimation [13].

Most of the localization methods are applied in estimating 
the parameters of unknown radiation sources [18]. However, 
the source type must be known to perform the localization 
process accurately. Some methods are used to estimate only 
the location of the source and can be applied without the 
knowledge of the source type [19]. In [19], source locali-
zation was performed using the ratio of square distances 
(ROSD), which can only be used to estimate the location 

parameter. This method provides an accurate estimation 
using only four sensors in an ideal environment (without 
any source of randomness). However, more than four sensors 
are required when background radiation and measurement 
randomness are considered in practical situations. Locali-
zation using ROSD provides many locations where only 
one location is considered the true location. Accordingly, 
an additional process is essential to select the true location 
from the estimated group of locations. Similarly, in [20], 
the location of the source was estimated using the relation-
ship between the readings of each sensor and the difference 
between their distances from the source. The intensity of the 
source was then calculated using the estimated location and 
average values of the sensor readings. Hence, the accuracy 
of the estimated intensity depends on the estimated location.

Among the many estimation methods, maximum likeli-
hood estimation (MLE) and Bayesian estimation are com-
monly applied for radiation source localization [13, 21]. 
In Bayesian-based estimation methods [18, 21], estimated 
parameters are assumed to follow a known prior distribution. 
Hence, the estimation performance relies on the accuracy of 
the prior distribution, which represents the stochastic pro-
cess of the source parameters. The authors of [22, 23] and 
[9] have studied two commonly employed Bayesian esti-
mation methods for localization using particle and Kalman 
filters, respectively. However, the methods considered are 
unreliable in practical situations. However, MLE provides 
reliable estimates without requiring a prior distribution. It is 
a statistical method that provides the most probable values 
of the parameters to be estimated according to a likelihood 
function. MLE has been employed in many radiation-related 
applications. In [24], background radiation was modeled 
using MLE via a mobile sensor network for radiation moni-
toring. In [25], MLE was used to estimate the parameters of 
multiple radiation sources in a given area where the number 
of sources is unknown. This method is based on the gen-
eralized maximum likelihood rule to estimate the number 
of sources by exploring different numbers until the best fit 
with the observation data is achieved. In [13], a localiza-
tion method for estimating radiation source parameters in 
an environment with highly fluctuating background radia-
tion was conducted using MLE to localize the source and 
estimate the background radiation.

Implementing MLE is challenging regarding the radiation 
localization problem because of the difficulty in finding a 
closed form solution for the corresponding likelihood func-
tion. Normally, MLE is performed numerically through a 
grid search. This process can be time-consuming, and the 
duration increases with the size of the search space. Hence, 
studies have attempted to solve the MLE time consump-
tion problem. Multi-resolution MLE is the most commonly 
used approach to accelerate the grid search process [11, 
26], where the search is performed iteratively. The process 
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is based on decreasing the search boundaries per iteration 
according to the evaluated estimates provided by the pre-
vious iterations. In multi-resolution MLE, the estimation 
accuracy depends on the initial solution. Accordingly, the 
search may provide a local maximum rather than a global 
maximum, referred to as premature convergence.

In this study, we aimed to overcome the time consumption 
problem of MLE in the localization of radioactive sources. 
To achieve this objective, we applied alternative search 
methods using heuristic techniques that reduced the time 
consumption and likelihood of premature convergence more 
than multi-resolution MLE has in the literature. According 
to our review of the literature, heuristic techniques have not 
been employed for the localization of radiation sources by 
using MLE. Heuristic methods are inspired by nature, for 
example, genetic algorithm [27], firefly algorithm [28], par-
ticle swarm optimization [29], artificial ant colony [30], arti-
ficial bee colony [28], prairie dog optimization [31], gazelle 
optimization algorithm [32], dwarf mongoose optimization 
[33], reptile search algorithm [34], and aquila optimizer 
algorithm [35]. In this comparative study, we investigated 
the performance of the most commonly used and most effec-
tive heuristic methods for solving localization problems. The 
contributions of this study are as follows:

1.	 Four common heuristic techniques are used for the maxi-
mum likelihood localization of a radiation source, which 
are: (1) firefly algorithm (FFA), (2) particle swarm opti-
mization (PSO), (3) ant colony optimization (ACO), and 
(4) artificial bee colony (ABC).

2.	 The performance of the considered heuristic methods, 
in terms of estimation error and time consumption, is 
compared.

3.	 Verification through experimental results using real data 
is applied to show that heuristic methods can signifi-
cantly reduce the time consumption of the MLE locali-
zation process.

2 � Localization of a radioactive source using 
MLE

This section describes the localization process in detail. The 
radiation source parameters, location and intensity, were 
estimated using the MLE algorithm according to the read-
ings collected from stationary detectors (sensors). For each 
detector, the gamma-ray radiation was measured in counts 
per second according to a Poisson distribution model [9] as 
follows:

(1)P
(

Ri,t = ci,t
)

=
e−�i ⋅

(

�i
)ci,t

ci,t!
, 1 ≤ t ≤ TW,

where P(Ri,t = ci,t) is the probability that the reading of the 
ith detector Ri,t at the tth time instant is equal to ci,t counts/s 
within the measured time window TW. The reading Ri,t 
depends on the average count rate denoted by λi, which can 
be expressed as follows [36]:

where δ is a constant that depends on the type of radiation 
isotope and detector parameters, such as the detector area 
and efficiency. The Euclidean distance between the radiation 
source and ith detector is referred to as disi. The value of BG 
represents the background radiation emitted from NORM 
in the environment surrounding the detector. Typically, in 
localization problems, an assumption is that all the detectors 
are identical and affected by the same background radiation.

In estimating the radiation source parameters, denoted by 
Ɵ, the MLE can be used as follows:

where ƟML is the estimated parameter that indicates the 
estimated location (XML, YML) and intensity value IML. For 
M detectors, the likelihood function L(C; Ɵ) represents the 
joint probability of the count rates C and the source param-
eter Ɵ, where C = [c1, c2, …, cM] is the average count rates 
of each detector. According to the Poisson model in (1), the 
likelihood function can be calculated as [13]

In practice, a detection process must be performed before 
estimating the radiation source parameters. In other words, 
all the readings of the M detectors considered in the localiza-
tion procedure indicate a radiation source in the surround-
ing area. A simple technique detects a radiation source if 
the corresponding reading exceeds a threshold value. In this 
study, the detection threshold value, thrd, was calculated 
using the k-sigma method as follows:

where μBG and σBG are the mean and standard deviation of 
the readings corresponding to background radiation, respec-
tively. k is a user-defined value that can affect the true-posi-
tive rate of detection accuracy. For each detector, the average 
count rate was calculated and compared with thrd to verify 
the existence of a radiation source as follows:

(2)�i = � ⋅
I

disi
2
+ BG,

(3)ΘML =
[

XML, YML, IML

]

= argmax
�

L(C;�),

(4)L(C;Θ) =

M
∑

i=1

TW
∑

t=1

(

c
i,t ⋅ ln�i − �

i

)

.

(5)thrd = �BG + k ⋅ �BG.

(6)D
i
=

{

1 if c
i
> thrd

0 if c
i
≤ thrd

,
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where Di is a value from the set [0, 1] that indicates the 
detection status of the ith detector. If Di is 1, the detector’s 
readings correspond to the radiation source. However, the 
readings of the ith detector are considered measurements of 
the background radiation if Di = 0. ci represents the average 
count rate measured by the ith detector and is calculated as 
follows:

For N detectors deployed in a given area, the k-sigma 
method was applied periodically to the readings of each 
detector. All readings collected from the network of detec-
tors are provided in the list R, such as

where Ri denotes the reading of the ith detector. Ri consists 
of all readings measured within TW as follows:

where ci,t denotes the measured count rate at the tth time 
instant for the ith detector. If a radiation source is detected 
by M detectors, where M ≤ N, the localization algorithm can 

(7)ci =
1

TW

TW
∑

t=1

ci,t.

(8)R =
[

R1,R2,… ,RN

]

,

(9)Ri =

⎡

⎢

⎢

⎣

ci,1
⋮

ci,TW

⎤

⎥

⎥

⎦

,

be performed using the corresponding readings. Figure 1 
shows the process of selecting the readings of the detectors 
that detect a radioactive source according to the k-sigma 
method. As shown in Fig. 1, the selected readings are stored 
in a list referred to as list_R such that ||list_R||= M. Accord-
ing to [37], MLE can be applied for radiation source locali-
zation using M detectors such that M ≥ 3.

After selecting the M detectors that detect a radiation 
source, the corresponding readings in list_R are used for 
the estimation process using MLE. Due to the nonlinearity 
relation between the average count rate λ and the source’s 
parameters (X, Y, I), there is no closed form solution to the 
likelihood function presented in (5). Hence, a search method 
is used to solve the problem numerically. Search methods 
were used to find the best solution within the parameters’ 
ranges: [Xmin, Xmax], [Ymin, Ymax], and [Imin, Imax]. The tradi-
tional search method is a midpoint grid search [13], where 
the range of each parameter is divided into grids of equal 
size, and the midpoint of each grid is explored. Algorithm 1 
presents the MLE algorithm using a midpoint grid search. 
As shown in Algorithm 1, the parameters’ ranges, [Xmin, 
Xmax], [Ymin, Ymax], and [Imin, Imax], were divided into NX, NY, 
and NI grids, respectively. Hence, the total number of points 
explored was NX × NY × NI. Usually, an equal number of grids 
is used for each range, that is, NX = NY = NI.

In this study, computational complexity is defined as the 
number of times the likelihood function (L) is calculated. 

Fig. 1   Process of selecting the 
readings of the detectors that 
detected a radiation source
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Accordingly, the computational complexity of the MLE 
using grid search can be provided in terms of the big O nota-
tion O(Ng

3), where Ng = NX = NY = NI. Notably, localization 
accuracy is affected by the number of grids such that better 

estimates can be obtained using a larger number of grids. 
However, the time consumption increases as the number of 
grids increases. The estimation time of the grid search-based 
MLE, denoted as TMLE, can be calculated according to the 
following relation:

where TL is the time for calculating the likelihood function 
(L). 

Algorithm 1. Midpoint grid search MLE 

Inputs:  

Count rate reading ci,t of each detector, where 1≤ i ≤M and 1≤ t ≤ TW

Location (xi, yi) of each detector, where 1≤ i ≤M.
Background radiation BG in counts per second (cps) 

Number of points (grids): NX, NY, and NI

Parameter range: [Xmin, Xmax], [Ymin, Ymax], and [Imin, Imax] 

Procedure: Searching for XML, YML, and IML that maximizes the likelihood L 

1. Initialize the likelihood Lmax by an arbitrary low value (i.e., Lmax = 0)

2. For m = 1 : NX

3. For n = 1 : NY

4. For p = 1 : NI

5.

6.

7.

8. Initialize λ = [ ]

9. For i = 1:M
10.

11.                           Append the value of λi to the list λ

12.                     end For 

13. ∑ ∑            // Calculate the likelihood L
14. if L > Lmax

15. Lmax =  L
16. XML = Xm

17. YML = Yn

18. IML = Ip

19. end if 

20.               end For 

21.        end For 

22. end For 

Output: Maximum likelihood estimates XML, YML, and IML.

(10)TMLE = N3

g
⋅ TL,
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Another search method for MLE is multi-resolution MLE 
[11, 36, 38], which aims to reduce the time consumed by the 
grid search. In multi-resolution MLE, the search is per-
formed through an iterative process over a parameter range 
that decreases per iteration. Algorithm 2 presents an MLE 
algorithm using a multi-resolution grid search. The algo-
rithm applies the conventional grid search using the number 
of grids NX_MR, NY_MR, and NI_MR, where NX_MR≪ NX, 
NY_MR≪ NY, and NI_MR NI, respectively. At each iteration, the 
resulting estimates XML, YML, and IML were used to calculate 

the new ranges [Xmin, Xmax], [Ymin, Ymax], and [Imin, Imax], 
respectively, to evaluate the new estimated values using 
Algorithm 1. A significant time reduction can be achieved 
using multi-resolution MLE without significantly reducing 
the estimation accuracy compared with traditional grid 
search MLE. The computational complexity of the multi-
resolution MLE can be represented by O(N3

g_MR
⋅ Nitr_MR) for 

Ng_MR = NX_MR = NY_MR = NI_MR, where Nitr_MR is the num-
ber of iterations. Accordingly, the estimation time of the 
multi-resolution grid search MLE can be formulated as.

where TMR_MLE is the time consumed by the MLE using a 
multi-resolution grid search. One limitation of the multi-
resolution MLE is that the search method can provide a local 
maximum solution rather than the global maximum. In other 
words, the algorithm does not present a procedure for avoid-
ing convergence toward a local maximum solution in the 
search space. 

Algorithm 2. Multi-resolution grid search MLE 

Inputs:  

Readings ci,t of each detector, where 1≤ i ≤M and 1≤ t ≤ TW

Location (xi, yi) of each detector, where 1≤ i ≤M.
Background radiation BG in counts per second (cps) 

Number of points: NX_MR, NY_MR, and NI_MR

Number of iterations, Nitr_MR

Initial values for parameter ranges [Xmin, Xmax], [Ymin, Ymax], and [Imin, Imax] 

Procedure: Searching for the XML, YML, and IML that maximizes the likelihood L 

1. Apply Algorithm 1 to find XML, YML, and IML by using the initial parameter 

range and the new number of points NX_MR, NY_MR, and NI_MR

2. For l = 1: Nitr_MR

3.

4.

5.

6.

7.

8.

9. Apply Algorithm 1 to find XML, YML, and IML by using the new ranges

10. end For 

Output: The maximum likelihood estimates XML, YML, and IML.

3 � Localization using heuristic‑based MLE

Heuristic techniques can be used to reduce search time and 
guarantee an optimum or near optimum solution. We studied 
the effect of heuristic methods on the performance of maxi-
mum likelihood localization of radioactive sources. Figure 2 
presents the basic procedure for MLE using a heuristic-based 
search applied for estimating the radiation source parameter 
Ɵ. As shown in Fig. 2, the optimum solution was selected 
from a solution space bounded by Ɵmin = [Xmin, Ymin, Imin] 

(11)TMR_MLE ≈ N3

gMR
⋅N itrMR

⋅ TL,
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and Ɵmax = [Xmax, Ymax, Imax]. Initially, Np solutions are ran-
domly selected to represent the search population as follows:

where Ɵn,d is the dth dimension of the nth solution in the  
Np solutions, and DimƟ is the dimension of the parameter 
Ɵ. A random selection is conducted using a random value 
ϵ that follows a uniform distribution over the range [0, 1]. 
After the initialization step, the Np solutions are stored in 
the list ƟP as follows: 

(12)
Θ

n,d = Θmin,d + � ⋅
(

Θmax,d − Θmin,d

)

,

1 ≤ n ≤ Np, 1 ≤ d ≤ Dim� ,

(13)ΘP =
[

Θ1,Θ2,⋯ ,Θ
Np

]

.

Each parameter (solution) Ɵn was evaluated using the 
likelihood function L(Ɵn) that represents the fitness function, 
where 1 ≤ n ≤ Np. The search was then performed in a sto-
chastic manner through an iterative process such that solu-
tions with high fitness values could be found. In the heuristic 
method, a solution update technique is used to generate new 
solutions from randomly selected solutions. Hence, each heu-
ristic method has a different computational complexity. In the 
next subsections, four heuristic methods are presented for the 
maximum likelihood localization of the radiation sources.

3.1 � FFA‑based MLE

The FFA is a population-based optimization method [28] 
that simulates the behavior of fireflies to attract mating 
partners. It is easily implemented to search for optimal 
solutions from a continuous range of values. The selection 
is performed, where a firefly moves toward another fire-
fly that produces the brightest light. For the two fireflies, 
the observed light intensity (brightness) decreases as the 
distance between them increases according to the inverse 
square law. Algorithm 3 presents the pseudo code of the 
FFA-based MLE used to localize a radiation source. The 
algorithm simulates the behavior of fireflies to select the 
maximum likelihood estimates such that.

•	 The solution space represents the locations of all possible 
fireflies in a given area.

•	 The fitness value L(Ɵn) indicates the light intensity of 
the nth firefly according to its location represented by the 
parameter value Ɵn.

•	 The solution update represents the movement of a fire-
fly at location Ɵn toward another firefly located at Ɵm 
according to the following relation [39]:

where Ɵn
* is the updated value for the nth solution Ɵn. 

The values of β0 and γ indicate the attractiveness and 
the light absorption coefficient, respectively. To prevent 
a premature convergence toward local optima, the term 
αϵ is added for further randomization. Parameter α is 
referred to as the randomization parameter. The distance 
between Ɵn and Ɵm is denoted by disn,m, which is calcu-
lated as follows:

where Ɵn,d and Ɵm,d are the values of the dth dimension 
of Ɵn and Ɵm, respectively.

(14)
Θ

n

∗ = Θ
n
+ �0e

−�⋅dis2
n,m

(

Θ
n
− Θ

m

)

+ ��, 1 ≤ n ≤ Np,

(15)dis
n,m =

√

√

√

√

DΘ
∑

d=1

(

Θ
n,d − Θ

m,d

)2
,

Fig. 2   Heuristic-based search MLE for estimating radiation source 
parameters XML, YML, and IML
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•	 The optimum solution represents the location of the fire-
fly with the highest brightness.

According to the pseudo  code in Algorithm  3, the 
computational complexity of the FFA-based MLE can be 
expressed as O(Np

2 Nitr). Hence, the estimation time for 
FFA-based MLE can be calculated as follows:

 where TFFA_MLE is the time required by the MLE algorithm 
using an FFA-based search. 

(16)TFFA_MLE ≈ N
2
p
⋅N itr ⋅ TL,

Algorithm 3. FFA-based MLE 

Inputs:  

Population size Np

Number of iterations Nitr

Solution space: Ɵmin = [Xmin, Ymin, Imin] and Ɵmax = [Xmax, Ymax, Imax]. 

Fitness function (likelihood function) L
Solution update parameters: β0, γ, and α

Procedure: Searching for the optimum parameter Ɵopt

1. Initialize population ƟN = [Ɵ1, Ɵ2, … ƟNp]

2.
3. While (itr ≤ Nitr)

4. For n = 1 : Np

5. Calculate the likelihood function L(Ɵn)

6. For m = 1 : Np

7. Calculate the likelihood function L(Ɵm)

8. if L(Ɵn) < L(Ɵm)            // (update solution Ɵn) 

9.

10. else // (move randomly)

11.

12. end if 

13. end For 

14.        end For

15. Sort the Np solutions according to their fitness value in descending order 

16.

17. end While 

18. The first of the sorted Np solutions is selected as the optimum solution Ɵopt. 

Output: The maximum likelihood estimate Ɵopt = [XML, YML, IML].

3.2 � PSO‑based MLE

In PSO, the search procedure is inspired by the foraging 
behavior of animals, for example, birds or fish [29]. Each 
particle represents a location in the search space and has a 
memory that stores its best location per iteration, referred 
to as pbest (personal best). Similarly, the overall best loca-
tion of the swarm (population) is stored in memory as the 
gbest (global best). The algorithm defined the swarm, posi-
tion, and velocity of each particle. Initially, the positions and 
velocities of the population were randomly evaluated. Next, 

the position and velocity were updated per iteration accord-
ing to the values of pbest and gbest as follows:

(17)v∗
n
= w ⋅ vn + a1�1

(

pbestn − xn
)

+ a2�2
(

gbest − xn
)

,
where xn

* and vn
* denote the updated values for the nth posi-

tion xn and velocity vn, respectively. The parameters a1 and 

(18)x∗
n
= xn + v∗

n
,
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a2 are the acceleration constants used to guide the search 
toward the best local and global locations, respectively. Fur-
thermore, є1 and є2 are random variables, and each follows a 
uniform distribution over the interval [0, 1]. A weight value 
denoted by w is used to control the exploration and exploi-
tation of the swarm and is referred to as the inertia weight 
[40]. The values of pbest and gbest are the positions corre-
sponding to the best fitness values for a single particle and 
the overall population, respectively. The pseudo code for the 
PSO-based MLE is presented in Algorithm 4. The particles’ 
positions are represented by the radiation source parameters 
ƟP, which are initialized according to (13). However, the 

velocity of each particle is initialized to a small random 
value according to [41], where r is a small constant value:

As shown in Algorithm 4, the computational complex-
ity of PSO-based MLE is O(Np Nitr). Accordingly, the time 
consumption of the PSO-based MLE can be expressed as

where TPSO_MLE is the estimation time of the PSO-based 
MLE. 

(19)vn = r ⋅ �, 1 ≤ n ≤ Np,

(20)TPSO_MLE ≈ Np⋅N itr ⋅ TL,

Algorithm 4. PSO-based MLE 

Inputs:  

Population size Np

Number iterations Nitr

Solution space: Ɵmin = [Xmin, Ymin, Imin] and Ɵmax = [Xmax, Ymax, Imax]. 

Fitness function (likelihood function) L
Solution update parameters: w, c1, and c2

Procedure: Searching for the optimum parameter Ɵopt

1. Initialize population: ƟP = [Ɵ1, Ɵ2, … ƟNp] and VN = [v1, v2, …, vNp]

2. Calculate the likelihood LP = [L1, L2, …, LNp], where Ln = L(Ɵn). 

3. pbestn = Ɵn ,    1 ≤ n ≤Np

4. gbest = argmaxƟ (LP)      // store Ɵ of the maximum likelihood in gbest 
5. Lmax = max (LP)              // stores the maximum value of LP in Lmax

6.
7. While (itr ≤ Nitr)

8. For n = 1 : Np

9. ∗

10. ∗

11.            Calculate likelihood L(Ɵn*)

12.            if L(Ɵn*) > L(Ɵn)            // update pbestn

13. pbestn= Ɵn*

14. Ɵn= Ɵn*

15. Ln= L(Ɵn*)

16.            end if

17. if L(Ɵn*) > Lmax               // update gbest
18. gbest = Ɵn*

19.            end if

20.       end For

21.

22. end While 

23. Ɵopt= gbest

Output: The maximum likelihood estimate Ɵopt = [XML, YML, IML].
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3.3 � ACO‑based MLE

ACO was first presented by Colorni et al. [30] as an ant 
system that simulates ant foraging behavior. During food 
searching, each ant deposits its pheromone on the path it 
follows to find the food. Consequently, ants select a path 
according to the amount of pheromones deposited on 
that path. A path with more pheromones indicates that it 
was selected by more ants, representing the shortest path 
to food. The ACO was first used for discrete optimiza-
tion problems. Many studies have been conducted on the 
application of ACO to continuous domains [42]. In this 
study, ACO was applied to estimate the radiation source 
parameter by using the MLE according to the following 
representations:

•	 The solution space (Θmin → Θmax) represents all feasible 
paths for the population of ants.

•	 The pheromone level of a selected path is represented by 
its fitness value, which is calculated using the likelihood 
function L.

•	 A new path is selected based on the pheromone levels of 
the explored paths, according to [43], as follows:

where RG is a random number that follows a Gaussian 
(normal) distribution of mean Ɵbest and standard deviation 
σcol. The value of Ɵbest represents the best explored path 
in terms of fitness value. σcol is the standard deviation of 
all explored paths.

The pseudocode for the ACO-based MLE is presented 
in Algorithm 5. The computation complexity of the ACO-
based MLE can be expressed as O(Np Nitr). Furthermore, 
the time consumption of the ACO-based MLE compared 
with that of the grid-search-based MLE can be formulated 
as

where TACO_MLE is the estimation time of the ACO-based 
MLE. 

(21)Θ∗
n
= RG,RG ∼ N

(

Θbest , σcol
)

, 1 ≤ n ≤ Np,

(22)TACO_MLE ≈ Np⋅N itr ⋅ TL,

Algorithm 5. ACO-based MLE 

Inputs:  

Population size Np

Number iterations Nitr

Solution space: Ɵmin = [Xmin, Ymin, Imin] and Ɵmax = [Xmax, Ymax, Imax]. 

Fitness function (likelihood function) L

Procedure: Searching for optimum parameter Ɵopt

1. Initialize population: ƟP = [Ɵ1, Ɵ2, … ƟNp] 

2. Calculate the likelihood LP = [L1, L2, …, LNp], where Ln = L(Ɵn). 

3.
4. While (itr ≤ Nitr)

5. Ɵbest = argmaxƟ (LP)       

6. σcol = Std (ƟP)                      // calculate the standard deviation of ƟN

7. For n = 1 : Np

8. ∗

9.            Calculate likelihood L(Ɵn*)

10.            if L(Ɵn*) > L(Ɵn)            // select better path 

11. Ɵn= Ɵn*

12. Ln= L(Ɵn*)

13.             end if

14.       end For

15.

16. end While 

17. Ɵopt= Ɵbest

Output: The maximum likelihood estimate Ɵopt = [XML, YML, IML].
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3.4 � ABC‑based MLE

The ABC algorithm is one of the effective nature-inspired 
optimization techniques. It was introduced by Karaboga, 
in [44], as a population-based optimization algorithm that 
simulates the foraging process of a bee swarm. According 
to [44], bees search for the highest quality food source by 
dividing the bee swarm into three groups:

1.	 Employed bees: explore selected food sources.
2.	 Onlooker bees: select new food sources for employed 

bees to explore based on the quality of previously 
explored sources.

3.	 Scout bees: randomly explore new food sources.

In ABC, the solution space represents all possible food 
sources for the bee swarm. Notably, the population repre-
sents the location of the food sources to be explored. The 
solution-updating procedure simulated the behavior of the 
bees through three stages: 

1.	 Employed stage:

 Each solution is updated according to the following relation:

where Ɵn,d
* is the updated value for the dth dimension of the 

nth solution Ɵn,d, and Ɵr,d is the value of the dth dimension 
of the rth solution. For each solution, only the value of the 
dth dimension is updated such that d is selected randomly 
from the range [1, DimƟ]. The rth solution is selected ran-
domly from the range [1, Np] under the condition that r ≠ 
n. The update equation is based on a random value denoted 
by Φ, which follows a uniform distribution over the range 
[− 1, 1]. 

2.	 Onlooker stage:

 A group of solutions is selected for further updating based 
on the selection probability, denoted by Pn, which is calcu-
lated as

 

3.	 Scout stage:

(23)Θ
n,d

∗ = Θ
n,d + ∅ ⋅

(

Θ
n,d − Θ

r,d

)

, 1 ≤ n, r ≤ Np,

(24)P
n
=

L
�

Θn

�

∑Np

m=1
L
�

Θm

�

, 1 ≤ n ≤ Np

Fig. 3   Procedure for calculating 
the estimated values
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 In ABC, for each solution, the number of unsuccess-
ful updates (those not providing a better fitness value) is 
counted and stored in a counter, which is referred to as trials. 
If the value of trials exceeds a predefined value, referred to 
as Limit, the solution is randomly updated as follows:

where trialsn is the value of trials for the nth solution.
Algorithm 6 presents the pseudo code of the ABC-based 

MLE method. In the onlooker phase, the selection prob-
ability is evaluated and compared with rand(0,1), which 
generates a uniformly distributed random value in the inter-
val [0, 1]. Accordingly, a solution is selected for updating. 
The onlooker phase is conducted to provide Np solutions 
for exploration. Hence, an iterative process is applied 
until Np solutions are selected. A number referred to as 
Nmax_look is defined to limit the number of onlooker itera-
tions, where Np < Nmax_look. In other words, the number of 
onlooker iterations is bounded between the minimum and 
maximum values, Np and Nmax_look, respectively. However, 
in the scout phase, updating is performed only for solu-
tions whose corresponding trials values exceed the value of 
Limit. Hence, the calculation of the fitness function (likeli-
hood function) is conducted NL times per iteration, where 
2Np ≤ NL ≤ 2Np + Nmax_look. Accordingly, the time consump-
tion of the ABC-based MLE can be calculated as

where TABC_MLE is the estimation time for the ABC-based 
MLE, and NLi is the number of times that the likelihood 
function is calculated at the ith iteration. 

(25)

Θ∗
n
=

{

Θmin + 𝜖 ⋅
(

Θmax − Θmin

)

if trialsn > Limit

Θn Otherwise
, 1 ≤ n ≤ Np,

(26)TABC_MLE ≈

(

Nitr
∑

i=1

NL
i

)

⋅TL,

Fig. 4   Locations of radiation detectors inside an area of size 
8 m × 8 m, used for collecting the dataset

Fig. 5   Considered positions of the radiation source and radiation 
detectors

Table 1   Parameters’ values 
used to conduct the experiment

Experiment parameter Value

Data parameters Area size 8 m × 8 m
Number of detectors (N) 22
Type of detectors NaI (Sodium iodide) detector
Radiation source type Cesium-137 (137Cs)
Source’s intensity (I) 7.6 μCi and 16 μCi
Measuring time window (TW) 6 s
Number of source locations (Nloc) 65

PC specifications CPU type Intel core-i7
CPU frequency 2 GHz
RAM size 16 GB

Programming language speci-
fications

Type Python
Version 3.9
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Algorithm 6. ABC-based MLE 

Inputs:  

Population size: Np

Number of iterations: Nitr

Maximum number of iterations for the onlooker phase: Nmax_look

Value of trials
Maximum value for trials: Limit
Solution space: Ɵmin = [Xmin, Ymin, Imin] and Ɵmax = [Xmax, Ymax, Imax]. 

Fitness function (likelihood function) L

Procedure: Searching for the optimum parameter Ɵopt

1. Initialize population: ƟP = [Ɵ1, Ɵ2, … ƟNp] and tiralsn = 0  for 1≤n≤Np

2. Calculate the likelihood LP = [L1, L2, …, LNp], where Ln = L(Ɵn).

3.
4. While (itr ≤ Nitr)

5. For n = 1 : Np                           // Employed phase

6. d = random_select (1, DimƟ)  // random selection from the range [1,     

DimƟ]

7. r = random_select (1, Np)       // such that r ≠ n 
8. Ɵn*= Ɵn

9. ∗
      // update nth solution

10.            Calculate likelihood L(Ɵn*)

11.            if L(Ɵn*) > L(Ɵn)            // select better food source 

12. Ɵn = Ɵn*

13. Ln = L(Ɵn*)

14. trialsn = 0

15.            else

16. trialsn = trialsn + 1

17. end if

18.       end For

19. Count = 1

20. n = 0

21. itrlook = 1

22. While (count ≤ Np ) AND (itrlook ≤ Nmax_look)             // Onlooker phase.

23. n = n+1

24. if n > Np

25. n = 1

26. end if

27.
∑

28. if Pn > rand(0,1)                    // select Ɵn to be updated

29.  d = random_select (1, DimƟ)

30. r = random_select (1, Nemp)

31. Ɵn*= Ɵn

32. ∗
      // update nth solution

33.                  Calculate likelihood L(Ɵn*)

34.                   if L(Ɵn*) > L(Ɵn)            // select better food source 

35. Ɵn =  Ɵn*

36. Ln = L(Ɵn*)

37. trialsn = 0

38.                  else

39. trialsn = trialsn + 1

40. end if

41. Count = count + 1

42. end if

43. itrlook = itrlook + 1

44. end While

45. For n = 1: Np                               // Scout phase

46. if trialsn > Limit
47. ∗

48. Calculate likelihood L(Ɵn*)

49. Ɵn = Ɵn*

50. Ln = L(Ɵn*)

51.               end if

52. end For

53. Sort the Np solutions according to their likelihood in descending order

54.

55. end While 

56. Ɵopt = Ɵ1   // Select the first solution to be the optimum solution 

Output: The maximum likelihood estimate Ɵopt = [XML, YML, IML].

In the next section, we discuss the performance of each 
search method. Figure 3 shows the procedure performed to 
provide the estimated values for the evaluation. Each source 
parameter was read from a given dataset that consists of 
detector readings from sources at different locations, where 
the total number of locations is denoted by Nloc. The detec-
tion process was performed using the k-sigma method, and 
the estimated parameters were then calculated using the 
MLE method with different searching techniques.

4 � Experimental results

This section presents the performance of the maximum 
likelihood localization of a radioactive source by using tra-
ditional and heuristic search-based methods. In this study, 
real data were used to evaluate the performance of the MLE 
methods. The data were collected using the Low Scatter Irra-
diator facility at the Savannah River National Laboratory as 
part of the Intelligent Radiation Sensing System program 
[45, 46]. The count rate measurements were read using 
22 stationary radiation detectors scattered in a room with 
an area of 8 m × 8 m (Fig. 4). First, the detector readings 
were collected without a radiation source inside the room to 
measure the background radiation. For the evaluation of the 
detection and localization methods, radiation sources were 
placed at different locations inside the room (Fig. 5). The 
experimental results were calculated using Python 3.9 on a 
core-i7 PC of 2 GHz and 16 GB RAM. The Python program-
ming language was used for the following: (1) reading the 
data from the dataset text file, (2) implementing all consid-
ered methods, and (3) evaluating the performance of each 
method. Table 1 lists the experimental parameters.

In this study, we have presented a performance compar-
ison among four heuristic-based search techniques and tra-
ditional grid search-based methods applied to MLE. The 
comparison was conducted in terms of the most significant 
factors that affect MLE performance: estimation accuracy 
and time consumption. First, radiation source detection 
was applied through the k-sigma method using μBG = 2.4 
cps and σBG = 1.5 cps, calculated from the radiation back-
ground dataset. Traditionally, the value of k has been set 
to 1.645 to control the false positive rate to 5% [47]. Con-
sequently, the detection threshold thrd was 5.4 cps. In the 
localization process, the likelihood function was evaluated 
according to the detectors’ readings and the average count 
rate λ by using δ = 1.6 s−1 m2/μCi, calculated via calibra-
tion [19]. Notably, the background radiation count rate BG 
was set to its average value μBG. Table 2 presents the values 
of the parameters used for the grid search-based MLE and 
heuristic-based search MLE. As shown in Table 2, various 
population sizes and numbers of iterations were used to 
examine their effect on the performance of heuristic-based 
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search MLE methods. According to the dataset parameters 
listed in Table 1, a suitable range for the source intensity 
and location was determined. The number of grids used 
for grid search-based MLE and multi-resolution MLE 
were selected experimentally. Additionally, different val-
ues were selected for the parameters of the heuristic tech-
niques (i.e., FFA, PSO, and ABC) to study their effect on 
localization performance. Some parameters, such as β0 and 
w, were set to their most suitable values, according to the 
literature, for FFA [39] and PSO [48], respectively.

To evaluate localization performance, we measured 
the estimation error for the radiation source location and 
intensity. The location error, denoted as errloc, was repre-
sented by the Euclidean distance between the estimated 
and actual source locations as follows:

where Dism is the Euclidian distance between the actual and 
estimated locations of the mth source as follows:

(27)errloc =

∑NLoc

m=1
Dis

m

NLoc

,

(28)Dism =

√

(

Xm − X̂m

)2

+
(

Ym − Ŷm

)2

,

where 
(

Xm, Ym
)

 and ( ̂Xm, Ŷm ) are the coordinates of the mth 
actual and estimated source locations, respectively. The 
intensity error, denoted by errI, was measured using the 
normalized root mean square error (NRMSE) between the 
actual and estimated intensities as follows:

Table 2   Values of parameters 
used for calculating MLE 
estimates

MLE parameter Value

Source Intensity range [Imin, Imax] [1, 20] μCi
Source location range
[Xmin, Xmax] [− 5, 5] m
[Ymin, Ymax] [− 5, 5] m
Number of MLE grids (Ng) 30
Number of grids for multi-resolution MLE (Ng_MR) 10
Number of iterations for multi-resolution MLE (Nitr_MR) 5
Heuristic-based search parameters
Population size (Np) [5, 10, 15, 20]
Number of iterations (Nitr) [5, 10, 15, 20]
Solution space
Ɵmin [− 5, − 5, 1]
Ɵmax [5, 20]
FFA update parameters
β0 1
Γ [0.01, 0.1, 1, 5, 10, 15,20, 30]
α [0.1, 0.25, 0.5, 1]
PSO update parameters
a1 [0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]
a2 [0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]
w 0.8
ABC update parameter
Nmax_look 40
Limit [10, 20, 30, 40, 50]

Fig. 6   Location error errloc using FFA-based MLE at different values 
for parameters α and γ 
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where Im and Îm are the actual and estimated intensities 
of the radiation source at the mth location, respectively. 
The minimum and maximum NRMSE values are 0 and 1, 
respectively. In evaluating the estimation time, the number 
of detectors (M) affects the time consumed (tL) for calculat-
ing the likelihood function. In the considered experiment, 
the number of detectors M varied according to the detection 
threshold thrd and the reading of each detector, such that 
3 ≤ M ≤ N. Hence, a different estimation time was provided 
according to the source’s parameters (location and inten-
sity). The average time consumption was used to represent 
the estimation time for each localization method over the 

(29)
errI =

1

(Imax − Imin)
⋅

�

�

�

�

�

∑Nloc

m=1

�

I
m
− Î

m

�2

Nloc

,

considered source locations and intensities and was calcu-
lated as follows:

where Test is the average estimation time, and Tm is the con-
sumed time to localize the radiation source at the mth loca-
tion. The time consumed (Tm) by each method was measured 
using the time module of the Python language.

Usually, in localization problems, the accuracy of the esti-
mated location is considered the most significant factor for 
performance evaluation [36]. Hence, in this study, heuristic 
parameters were selected according to their effects on the 
location error errloc. Figure 6 shows the location error at 
different values of α and γ for the FFA-based MLE. Notably, 
the minimum error was achieved at α = 1 and γ = 15. Simi-
larly, for the PSO-based MLE, Fig. 7 presents the location 
error at different values of parameters a1 and a2, where the 
best performance can be provided at a1 = 2 and a2 = 2. In 
Fig. 8, the location error was measured for the ABC-based 
MLE at different values of the user-defined parameter Limit. 
Accordingly, the Limit parameter was set to 30 to minimize 
the errors.  

A performance comparison of the heuristic methods was 
conducted after setting the parameters of each heuristic 
method to their best values in terms of the achieved loca-
tion error. Tables 3 and 4 present a comparison between the 
heuristic-based MLE methods in terms of the location and 
intensity estimation errors, respectively, for different popula-
tion sizes and numbers of iterations. As shown in Table 3, 
the ACO and ABC algorithms provide a more accurate loca-
tion estimate than the FFA and PSO do. As aforementioned, 
the accuracy of the estimation increases with the population 
size. However, the improvement in the estimation accuracy 
decreases as the population size increase. According to the 
results, the difference in performance between the FFA-
based MLE using Np < 10 and Np > 10 was relatively large. 
Similarly, the number of iterations affected the estimation 
accuracy. As shown in Table 3, the difference between ACO 
and ABC was not significant in terms of the location error 
for Nitr values greater than 10. Furthermore, the estimation 
accuracy of the FFA-based MLE was approximately the 
same for Nitr greater than 5. Moreover, population size Np 
and number of iterations Nitr had a slight effect on the inten-
sity estimation error (Table 4). The ABC-based MLE has the 
least estimation error of the heuristic methods for most of 
the considered population sizes and numbers of iterations.

According to the estimation time, we expected the time 
consumption of heuristic-based methods to increase as 
the population size or the number of iterations increased. 
Table 5 compares the heuristic-based MLE methods in terms 
of the estimation time (Test) for different population sizes 

(30)Test =
1

NLoc

NLoc
∑

m=1

T
m
,

Fig. 7   Location error errloc using PSO-based MLE at different values 
for parameters a1 and a2

Fig. 8   Location error errloc using ABC-based MLE at different values 
for the Limit parameter
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and numbers of iterations. The time consumption for the 
FFA-based MLE increased significantly with an increase in 
population size. Furthermore, as concluded in the previous 
section, the PSO-based MLE and ACO-based MLE provide 
approximately the same estimation time, which is less than 
that of the ABC-based MLE. Accordingly, the FFA-based 
MLE is the most time-consuming among the considered 
heuristic-based MLE methods, especially for large popula-
tion sizes.

To illustrate the effectiveness of the heuristic-based MLE 
methods, we compared them with traditional grid search-
based MLE methods. The performance value, denoted by Pv, 

was calculated to indicate the overall performance by using 
the weighted sum approach as follows:

where wi, wl, and wt are the weights of the intensity error, 
location error, and estimation time, respectively. The weights 
were calculated for normalization as follows:

where max(errI), max(errloc), and max(Test) are the maxi-
mum values of the intensity error, location error, and 

(31)Pv = wi ⋅ errI + wl ⋅ errloc + wt ⋅ Test ,

(32)wi =
1

max
(

errI

) ,wl =
1

max
(

errloc

) ,wt =
1

max
(

Test

) ,

Table 3   Comparison of 
heuristic-based MLE methods: 
location error errloc (m) at 
different population sizes Np and 
number of iterations Nitr

Nitr Np FFA-based MLE PSO-based MLE ACO-based MLE ABC-based MLE

5 5 1.320 0.736 0.738 0.624
10 0.789 0.600 0.571 0.480
15 0.709 0.533 0.533 0.475
20 0.650 0.553 0.503 0.381

10 5 1.126 0.636 0.567 0.535
10 0.779 0.581 0.446 0.466
15 0.626 0.456 0.446 0.395
20 0.543 0.492 0.418 0.382

15 5 1.105 0.608 0.528 0.442
10 0.646 0.522 0.427 0.380
15 0.636 0.493 0.411 0.372
20 0.569 0.441 0.401 0.374

20 5 1.066 0.534 0.441 0.473
10 0.776 0.543 0.393 0.384
15 0.605 0.437 0.415 0.386
20 0.581 0.440 0.402 0.366

Table 4   Comparison of 
heuristic-based MLE methods: 
intensity error errI at different 
population sizes Np and number 
of iterations Nitr

Nitr Np FFA-based MLE PSO-based MLE ACO-based MLE ABC-based MLE

5 5 0.189 0.138 0.117 0.192
10 0.157 0.128 0.120 0.138
15 0.138 0.123 0.119 0.118
20 0.127 0.121 0.108 0.105

10 5 0.175 0.146 0.101 0.155
10 0.155 0.133 0.097 0.104
15 0.130 0.118 0.126 0.093
20 0.117 0.133 0.123 0.077

15 5 0.168 0.130 0.113 0.134
10 0.163 0.119 0.130 0.094
15 0.129 0.134 0.142 0.093
20 0.110 0.131 0.138 0.086

20 5 0.154 0.121 0.131 0.107
10 0.130 0.130 0.132 0.084
15 0.118 0.141 0.149 0.089
20 0.132 0.142 0.143 0.095
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estimation time, respectively, calculated for the considered 
population sizes and the number of iterations. Based on 
these results, weights were calculated such that wi = 5.208, 
wl = 0.757, and wt = 0.713. Table 6 compares the heuristic-
based MLE methods in terms of performance value Pv. The 
minimum Pv value was 0.732, obtained using the ABC-
based MLE method with the population size and number 
of iterations equal to 20 and 10, respectively. Hence, a per-
formance comparison of the traditional grid search MLE 
methods and heuristic-based MLE methods using Np = 20 
and Nitr = 10 was presented.

Table  7 shows the estimated parameters (source 
intensity and location) at some of the considered source 

positions in the dataset by using the grid search MLE and 
the heuristic-based MLE methods. Table 8 compares the 
performance of traditional grid search-based MLE meth-
ods and heuristic-based search MLE methods in terms 
of estimation error, time consumption, and performance 
value. The results demonstrate that the multi-resolution 
grid search significantly reduced the time consumption 
of MLE and provided estimation accuracy approximately 
equal to that of a fixed resolution grid search. However, 
heuristic-based MLE methods present different esti-
mation times and accuracies depending on the solution 
update procedure of each heuristic technique. The FFA-
based MLE method consumes more time and provides 

Table 5   Comparison of 
heuristic-based MLE methods: 
estimation time Test (s) at 
different population sizes Np 
and number of iterations Nitr

Nitr Np FFA-based MLE PSO-based MLE ACO-based MLE ABC-based MLE

5 5 0.086 0.017 0.016 0.034
10 0.349 0.027 0.031 0.062
15 0.758 0.041 0.045 0.090
20 1.299 0.052 0.057 0.121

10 5 0.172 0.026 0.029 0.066
10 0.656 0.050 0.055 0.122
15 1.472 0.072 0.079 0.175
20 2.615 0.094 0.103 0.229

15 5 0.254 0.038 0.042 0.095
10 0.992 0.072 0.077 0.176
15 2.238 0.103 0.115 0.259
20 3.922 0.137 0.149 0.343

20 5 0.334 0.049 0.055 0.125
10 1.332 0.091 0.103 0.235
15 2.909 0.137 0.149 0.341
20 5.187 0.179 0.198 0.465

Table 6   Comparison of 
heuristic-based MLE methods: 
performance value Pv at 
different population sizes and 
number of iterations

Nitr Np FFA-based MLE PSO-based MLE ACO-based MLE ABC-based MLE

5 5 2.013 1.280 1.172 1.481
10 1.491 1.129 1.062 1.095
15 1.406 1.055 1.031 0.992
20 1.422 1.064 0.955 0.857

10 5 1.805 1.247 0.961 1.226
10 1.536 1.147 0.853 0.918
15 1.453 0.979 1.009 0.815
20 1.557 1.088 0.976 0.732

15 5 1.774 1.149 0.998 1.053
10 1.563 1.035 1.015 0.810
15 1.598 1.100 1.074 0.811
20 1.801 1.052 1.048 0.789

20 5 1.705 1.049 1.027 0.942
10 1.525 1.113 1.005 0.771
15 1.648 1.101 1.118 0.813
20 2.127 1.110 1.082 0.848
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Table 7   Comparison of grid 
search-based MLE methods and 
heuristic-based MLE methods 
according to the estimated 
parameters (IML, XML, YML)T
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Table 8   Comparison of grid 
search-based MLE methods and 
heuristic-based MLE methods: 
location error (errloc), intensity 
error (errI), time consumption 
(Test), and performance value 
(Pv)

Performance Grid search-based MLE Heuristic-based MLE using

Fixed resolution 
[13]

Multi-resolution 
[38]

FFA PSO ACO ABC

errloc (m) 0.406 0.406 0.543 0.492 0.418 0.382
errI 0.147 0.168 0.117 0.133 0.123 0.077
Test (s) 3.279 0.592 0.753 0.033 0.027 0.059
Pv 3.209 1.381 1.557 1.088 0.976 0.732
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lower estimation accuracy than the multi-resolution MLE 
method does. However, other heuristic techniques (i.e., 
PSO, ACO, and ABC) provide better accuracy than the 
FFA and lower estimation time than the multi-resolution 
MLE. The results in Table 8 verify that the PSO and ACO 
methods require less time than the ABC method does. 
In addition, better localization accuracy can be achieved 
using the ABC-based MLE than by using the considered 
heuristic-based MLE localization methods.

5 � Conclusion

In this study, heuristic techniques were investigated for esti-
mating the parameters of a radiation source using MLE. 
Detection and localization of the radiation source were per-
formed using a sensor network. First, the detection process 
was conducted using the k-sigma method for each radia-
tion detector. Next, the localization of the radiation source 
was performed using only the readings and positions of the 
detectors that detected the source. This study considered four 
effective heuristic techniques that are commonly used: FFA, 
PSO, ACO, and ABC. A performance comparison was con-
ducted between the heuristic-based MLE and the traditional 
MLE by using fixed resolution and multi-resolution grid 
searches. To provide reliable results, we used real data to 
evaluate the performance of the considered methods in terms 
of estimation accuracy and time consumption. The evalu-
ation was conducted by estimating 65 different locations 
of a 137CS radiation source with intensities of 7.6 μCi and 
16 μCi, inside an 8 m × 8 m area, using 22 stationary radia-
tion detectors. According to the results, the considered meth-
ods were able to estimate the location of the radiation source 
with an estimation error of approximately 0.4 m. However, 
the time consumption varies for each search method. The 
estimation time using fixed and multi-resolution grid search 
MLE was 3.27 and 0.59 s, respectively. On the other hand, 
MLE using FFA, PSO, ACO, and ABC provided maximum 
likelihood estimates of 0.75, 0.03, 0.02, and 0.059 s, respec-
tively. Hence, the results of this study imply that heuristic-
based MLE can provide approximately the same estimation 
accuracy and less estimation time compared to both the fixed 
and multi-resolution MLE methods. Furthermore, among the 
heuristic algorithms considered, the most accurate estimates 
were obtained using the ACO and ABC methods.

Although heuristic-based MLE methods are less time-
consuming than conventional MLE methods, they may not 
be suitable for real-time applications. In further research, 
machine learning can be utilized to further reduce the time 
consumption of the MLE-based localization process. Moreo-
ver, additional general localization problems can be consid-
ered, such as the localization of (1) more than one radiation 
source, (2) a radiation source in high variance background 

radiation, (3) a shielded radiation source, and (4) a moving 
radiation source.
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