
Vol.:(0123456789)1 3

Nuclear Science and Techniques (2023) 34:124 
https://doi.org/10.1007/s41365-023-01270-8

Level density of odd‑A nuclei at saddle point

Wei Zhang1  · Wei Gao1  · Gui‑Tao Zhang1 · Zhi‑Yuan Li1

Received: 13 March 2023 / Revised: 26 May 2023 / Accepted: 30 May 2023 / Published online: 26 August 2023 
© The Author(s), under exclusive licence to China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese 
Academy of Sciences, Chinese Nuclear Society 2023

Abstract
Based on the covariant density functional theory, by employing the core–quasiparticle coupling (CQC) model, the nuclear 
level density of odd-A nuclei at the saddle point is achieved. The total level density is calculated via the convolution of the 
intrinsic level density and the collective level density. The intrinsic level densities are obtained in the finite-temperature 
covariant density functional theory, which takes into account the nuclear deformation and pairing self-consistently. For saddle 
points on the free energy surface in the (�2, �) plane, the entropy and the associated intrinsic level density are compared with 
those of the global minima. By introducing a quasiparticle to the two neighboring even–even core nuclei, whose properties 
are determined by the five-dimensional collective Hamiltonian model, the collective levels of the odd-A nuclei are obtained 
via the CQC model. The total level densities of the 234−240 U agree well with the available experimental data and Hilaire’s 
result. Furthermore, the ratio of the total level densities at the saddle points to those at the global minima and the ratio of 
the total level densities to the intrinsic level densities are discussed separately.

Keywords Level density · Covariant density functional theory · Core–quasiparticle coupling model · Saddle point

1 Introduction

As a fundamental nuclear property, nuclear level density 
(NLD) plays a crucial role in many applications, such as the 
calculation of reaction cross sections with nucleosynthesis, 
the nuclear reaction calculation program TALYS [1], and 
the Hauser–Feshbach model for compound nucleus calcula-
tions [2, 3]. Owing to the complexity of nucleon interactions 
and the fact that the level density increases exponentially 
with an increase in the excitation energy, the accurate cal-
culation of the NLD has long been a theoretical challenge.

Many methods for estimating NLD have been developed. 
The most common method is the Bethe formula based on 
the zero-order approximation of the partition function of 

the Fermi gas model [4, 5]. In attempting to reproduce the 
experimental data, various phenomenological modifications 
to Bethe’s original analytical formulation have been pro-
posed—particularly to account for shell, pairing, and defor-
mation effects—which led first to the constant-temperature 
formulation, then to the shifted Fermi gas model, and later 
to the popular back-shifted Fermi gas model [2, 6, 7].

There are many microscopic methods for calculat-
ing NLD, including the shell-model Monte Carlo method 
[8–10], the moments method derived from random matrix 
theory and statistical spectroscopy [11, 12], the stochastic 
estimation method [13], the Lanczos method using realistic 
nuclear Hamiltonians [14], the self-consistent mean-field 
approach based on the extended Thomas–Fermi approxi-
mation with Skyrme forces [15], and the exact pairing plus 
independent-particle model at a finite temperature [16–19]. 
On the basis of the Hartree–Fock–Bogoliubov (HFB) model, 
S. Hilaire and S. Goriely developed a microscopic approach 
to describe NLD with great success [20–22]. Microscopic 
methods based on the self-consistent Hartree–Fock (HF) 
plus BCS model [23–25] have also been developed.

Recently, on the basis of the relativistic Hartree–Bogo-
liubov model [26–29], Zhao et al. developed a method for 
describing NLD [30]. In this model, the partition function is 
determined using the same two-body interaction employed 
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in the HF plus BCS and HFB mean-field models   [25], 
which includes shell, pairing, and deformation effects of 
self-consistently. The total level densities are the convolu-
tion of the intrinsic level density and the collective level 
density. The intrinsic level density is obtained by an inverse 
Laplace transform of the partition function with the saddle-
point approximation [31, 32]. Previously, the collective 
enhancement is considered via a phenomenological or sem-
iempirical multiplicative factor for rotational and vibrational 
degrees of freedom [24, 33–36] or more microscopically via 
a combinatorial method using single-particle level schemes 
obtained through HF plus BCS or HFB calculations [20, 22]. 
In Ref. [30], the collective enhancement is determined from 
the eigenstates of a corresponding collective Hamiltonian 
that considers quadrupole or octupole degrees of freedom. 
Both the intrinsic level density and the collective enhance-
ment are determined by the same global energy density func-
tional and pairing interaction.

The success of the microscopic description of NLD in 
even–even nuclei prompts us to extend it to odd-A nuclei. 
The core–quasiparticle coupling (CQC) model intro-
duces a quasiparticle to the neighboring even–even core 
nuclei within the same covariant density functionals and 
achieved progress for describing the quantum phase transi-
tion in odd-A nuclei. It is based on the covariant density 
functional theory (CDFT), which has achieved consider-
able success in describing ground-state properties of both 
spherical and deformed nuclei all over the nuclear chart [26, 
27, 37–40]. Its successful applications include superheavy 
nuclei [41–45], pseudospin symmetry [40, 46, 47], single-
particle resonances [48–50], hypernuclei [51–56], thermal 
shape transition [57–59], and shell correction [60–64].

In this study, the CQC model is applied to the calcula-
tion of collective levels in even–odd uranium isotopes. 
For even–even isotopes, the collective levels are attained 
via the five-dimensional collective Hamiltonian (5DCH) 
model [65]. Similar to Ref. [30], the intrinsic level den-
sity is obtained using the finite-temperature CDFT [58, 59, 
66]. Because the level density of the saddle point plays an 
important role in the compound nuclei reactions  [67, 68], 
the level density of the saddle point �sd and the level density 
of the global minima �min are analyzed. The ratio of the level 
density at the saddle point to the level density at the global 
minimum is the quantity of interest.

The remainder of this paper is organized as follows. The 
theoretical framework is introduced in Sect. 2. The results 
for 234−240 U are presented in Sect. 3. Section 4 presents a 
short summary.

2  Theoretical framework

With the assumption of decoupling between intrinsic and 
collective degrees of freedom, the excitation energy of a 
nucleus can be written as E∗ = Ei + Ec , where Ec represents 
the collective excitation energy. The total level density is 
obtained as [36]

with the collective level density given as

For a collective state with the angular momentum Ic , the 
degeneracy is �c

(
Ec

)
= 2Ic + 1.

The intrinsic level density �i can be obtained from the 
giant partition function of two types of particles via the 
inverse Laplace transform and saddle point approxima-
tion [31, 32]:

where S represents the entropy, and D is the determinant of 
a 3 × 3 matrix that contains the second derivatives of the 
entropy with respect to the inverse temperature � = 1∕(kBT) 
and �N = ��N ,�Z = ��Z at the saddle point. The intrinsic 
excitation energy is calculated as Ei(T) = E(T) − E(0) , 
where E(T) represents the binding energy of the nucleus at 
temperature T. The specific heat is defined by the relation 
Cv = �Ei(T)∕�T .

According to the ideas presented in Ref. [32], the deter-
minant D can be simplified to the following form:

where N and Z represent the numbers of neutrons and pro-
tons, respectively, and �N(�Z) denotes the neutron (pro-
ton) Fermi surface. For convenience, the temperature used 
is kBT  (in units of MeV), and the entropy used is S∕kB 
(dimensionless).

Entropy is extracted in the finite-temperature covariant 
density functional theory. In the covariant density functional 
theory, the Dirac equation for single nucleons is

where m represents the nucleon mass, and �k(r) denotes the 
Dirac spinor field of a nucleon. The scalar S(r) and vector 
potential V�(r) are

(1)�tot(E
∗) = ∫ �i

(
Ei

)
�c
(
E∗ − Ei

)
dEi,

(2)�c(E) =
∑

c

�
(
E − Ec

)
�c
(
Ec

)
.

(3)�i =
eS

(2�)3∕2D1∕2
,

(4)D = T5 �S

�T

||||�N�Z
�N

��N

||||T�Z

�Z

��Z

||||T�N
,

(5)
[
��(i�

� − V�) − (m + S)
]
�k = 0,
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respectively. The isoscalar density �S , isoscalar current j�
V
 , 

and isovector current j�
TV

 have the following forms:

where fk represents the thermal occupation probability of 
quasiparticle states, having the form fk = 1∕

(
1 + eEk∕kBT

)
 . 

Ek represents the quasiparticle energy for the single-parti-
cle state k, and Ek =

[
(�k − �)2 + Δ2

k

] 1

2 . The BCS occupation 
probabilities v2

k
 and the related u2

k
= 1 − v2

k
 are obtained as 

follows:

Δk is the pairing gap parameter, which satisfies the gap equa-
tion at a finite temperature:

The  par t ic le  number  N (Z )  i s  res t r ic ted  by 
N(Z) = 2

∑
k>0

�
v2
k
(1 − 2fk) + fk

�
 . The entropy is computed 

using the relation

For even–even nuclei, the collective levels are obtained via 
the five-dimensional collective Hamiltonian (5DCH) [65]. 
All the collective parameters, such as the inertia parameters 
and the collective potential, are extracted from the con-
strained CDFT+BCS in the triaxial deformation space.

For odd-A nuclei, the collective levels are calculated 
using the CQC model [69], whose collective Hamiltonian is 
expressed as

(6)

S(r) = �S�S + �S�
2
S
+ �S�

3
S
+ �SΔ�S

V�(r) = �Vj
�

V
+ �V

(
j
�

V

)3
+ �VΔj

�

V

+ �3�TV j
�

TV
+ �3�TVΔj

�

TV
+ eA�

(7)

𝜌S(r) =
∑

k

�̄�k(r)𝜓k(r)
[
v2
k

(
1 − 2fk

)
+ fk

]

j
𝜇

V
(r) =

∑

k

�̄�k(r)𝛾
𝜇𝜓k(r)

[
v2
k

(
1 − 2fk

)
+ fk

]

j
𝜇

TV
(r) =

∑

k

�̄�k(r)�𝛾
𝜇𝜓k(r)

[
v2
k

(
1 − 2fk

)
+ fk

]
,

(8)
v2
k
=

1

2

(
1 −

�k − �

Ek

)

u2
k
=

1

2

(
1 +

�k − �

Ek

)
,

(9)Δk = −
1

2

∑

k�>0

V
pp

kk̄k� k̄�

Δk�

Ek�

(
1 − 2fk�

)
.

(10)S = −kB

∑

k

[
fk ln fk +

(
1 − fk

)
ln
(
1 − fk

)]
.

(11)

H = Hq p + Hc

=

( (
�A−1 − �

)
+ ΓA−1 ΔA+1

Δ†A−1 −
(
�A+1 − �

)
− ΓA+1

)

+

(
EA−1 0

0 EA+1

)
,

where � denotes the Fermi surface, and �A±1 and EA±1 repre-
sent the single-particle energy and the collective excitation 
energy for the even–even A ± 1 core, respectively. Γ and Δ 
denote the mean and pairing fields associated with long-
range quadruple–quadruple particle–hole interactions and 
short-range monopole particle–particle interactions between 
the odd nucleon and core, respectively. The Γ field can be 
expressed as

where 
⟨
𝜇j
‖‖‖Q̂2

‖‖‖𝜇
�j�
⟩A±1

 and 
⟨
𝜈R

‖‖‖Q̂2
‖‖‖𝜈

�R�

⟩A±1

 are the 
reduced quadrupole matrix elements of the spherical hole 
(particle) and cores, respectively. The Fermi surface � and 
coupling strength of the quadrupole field � are left as free 
parameters that are fit to data separately for positive- and 
negative-parity states.

In this study, the 5DCH and CQC models are based on 
the CDFT calculation with the harmonic oscillator basis 
NF = 16.

3  Results and discussion

The parameter sets of covariant density functional theory 
used in this study are PC-PK1  [70] and DD-LZ1  [71]. 
PC-PK1 is one of the most widely used point-coupling 
parameter sets, and DD-LZ1 is a density-dependent param-
eter set that aims to alleviate the spurious shell closure. 
The pairing effect is considered by the separable pairing 
force [72]. The nuclei considered are even–even 234−240 U 
and even–odd 235−239U.

In the first step, large-scale finite-temperature CDFT 
calculations are performed for 234−240 U in the temperature 
range of 0–2 MeV in the (�2, �) plane. Figure 1 shows the 
free energy surface evolution with respect to the tempera-
ture for 235 U. The deformations of the global minimum and 
the saddle point change slightly with an increase in the 
temperature, i.e., with the increase in the temperature, the 
global minimum deformation �2 decreases, while the saddle 
point deformation � slowly moves toward the prolate axis 
( � = 0◦ ) and �2 remains nearly constant. The saddle point 
gradually becomes indistinct as the temperature approaches 
1.6 MeV. The free energy surface evolution for other nuclei 
234,236−240 U is similar to that for 235 U. For the parameter set 
DD-LZ1, the energy surface shapes are similar, while the 
fission barrier heights are larger. Moreover, the free energy 
surfaces of 234−240 U considering the axial octupole defor-
mations are checked, and it is found that although the PESs 
of some nuclei are relatively soft in the octupole direction, 

(12)
ΓA±1 = −𝜒(−1)j+R+J

{
j 2 j�

R� J R

}⟨
𝜇j
‖‖‖Q̂2

‖‖‖𝜇
�j�
⟩A±1

×

⟨
𝜈R

‖‖‖Q̂2
‖‖‖𝜈

�R�
⟩A±1

,
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there is no significant octupole deformation for the global 
minimum and first saddle point. Therefore, in the following 
calculation, the deformation space is limited to the ( �2 , � ) 
space.

It is shown that the intrinsic level density has an expo-
nential relationship with the entropy in Eq. (3). To study 
the dependence of the entropy on the nuclear deformations, 
Fig. 2 shows the entropy surfaces at T=0.4 MeV and 0.8 
MeV in the ( �2, � ) plane calculated using two parameter sets 
PC-PK1 and DD-LZ1. The global minima and the saddle 
points displayed in free energy potential surfaces (Fig. 1) are 
also marked in Fig. 2. Comparing these two figures reveals 
that the entropy has a low value near the free energy global 
minimum, and it becomes high near the saddle point. There 
are numerous similarities between the entropy surface and 
the free energy surface. For the low temperature of T=0.4 
MeV, there are sharp changes within a certain deformation 
range-particularly for DD-LZ1. For the high temperature of 
T=0.8 MeV, the entropy surfaces share substantial common 

features. Furthermore, several derivatives composing the √
�D� term, which appears as the denominator in Eq. (3), 

are extracted for all the deformation grid points, and the 
intrinsic level density �i is settled. The intrinsic level density 
surface on the logarithmic scale is analogous to the entropy 
surface here. It is omitted owing to space limitations.

In the nuclear reactions, the level density of the saddle 
point is critical. Figure 3 shows several properties of the 
saddle points with respect to the temperature for 234−240 U 
calculated with the parameter set PC-PK1, i.e., the excita-
tion energies Ei , the entropy S, the specific heat Cv , the 
partial derivative of the entropy with respect to the tem-
perature �S∕�T  , the pairing energy gap Δ , and the intrinsic 
level density �i . The temperature range ends at 1.4 MeV, 
which corresponds to the excitation energy of approxi-
mately 40 MeV. For higher temperatures up to 2 MeV, the 
trends do not change. In Fig. 3e, pairing phase transitions 
occur at a temperature of approximately 0.6 MeV for all 
nuclei. When T ≈ 0.4 MeV, more curve details about Cv 
and �S∕�T  in Fig. 3c, d can be observed. For Cv , the curve 
reaches a local maximum and then decreases slightly, and 
the segments T < 0.4 MeV and T > 0.6 MeV are essen-
tially two straight lines. Because the specific heat is the 
partial derivative of the excitation energy with respect to 
the temperature, it supports the fact that the excitation 
energy curves in Fig. 3a are actually two connecting quad-
ratic parabolas. This is consistent with the fact that in the 
Fermi-gas model, the intrinsic excitation energy increases 
quadratically with respect to the temperature Ei ∝ T2 with 
slope changes around the pairing phase transition. For 
�S∕�T  , it reaches 60 MeV−1 , decreases to 40 MeV−1 , 
and then remains constant for T > 0.6 MeV. Because of 

Fig. 1  (Color online) Free energy surfaces in the ( �
2
,� ) plane at tem-

peratures of (a) 0, (b) 0.4, (c) 0.8, (d) 1.2, (e) 1.6, and (f) 2.0 MeV 
for 235 U obtained via finite-temperature CDFT calculations using the 
parameter set PC-PK1. The global minimum and saddle points are 
represented by squares and stars, respectively. The energy separation 
between contour lines is 0.5 MeV

Fig. 2  (Color online) Entropy S for 235 U at T = 0.4 MeV (upper row) 
and 0.8 MeV (lower row) obtained via CDFT calculations using the 
parameter sets PC-PK1 (left) and DD-LZ1 (right) in the ( �

2
,� ) plane
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the direct relationship between �S∕�T  and entropy S, the 
entropy should be quadratic for T < 0.4 MeV and linear for 
T > 0.6 MeV. This confirms the classic relation S ∝ T  but 
only for high temperatures. The logarithmic intrinsic level 
density �i in Fig. 3f has analogous temperature depend-
ence to the entropy S in Fig. 3b, representing ln(�i) ∝ S 
in Eq. (3).

For comparison, the corresponding properties of the 
global minimum of 234−240 U are shown in Fig. 4. In Fig. 4e, 
the pairing phase transition occurs at Tc = 0.6–0.7 MeV, 
while the proton gap is larger than the corresponding neu-
tron gap at low temperatures. For the specific heat Cv in 
Fig. 4c, the slopes before and after the phase transition are 
close, rendering the excitation energy curve in Fig. 4a a 
smooth parabola. At high temperatures, the partial deriva-
tive �S∕�T  in Fig. 4d has nearly the same constant as that in 
Fig. 3d. Because the intrinsic level density increases expo-
nentially with respect to the entropy, this indicates that both 
the entropy S in Figs. 3b and 4b and the logarithmic intrinsic 
level density in Figs. 3f and 4f have the same trends at a high 
excitation energy.

In addition, the result for the parameter set DD-LZ1 is 
obtained. The specific heat Cv varies more gently near the 
pairing phase transition, while other properties are roughly 
the same as those for PC-PK1.

In the second step, the collective level densities of odd-
A nuclei are calculated via the CQC model, while those 

of even–even nuclei are obtained via the 5DCH model. 
The collective Hamiltonian of the odd-A nuclei is obtained 
by coupling the core parts of the two adjacent even–even 
nuclei and one particle or hole in the spherical case. The 
two free parameters of the model, i.e., the Fermi sur-
face � and coupling strength � , are adjusted according to 
the experimental values of the low excitation spectrum. 
Details can be found in Ref. [69]. The CQC parameters 
for the odd-A 235−239 U nuclei corresponding to two den-
sity functional parameter sets PC-PK1 and DD-LZ1 are 
presented in Table 1.

Take 235 U as an example. Its low excitation spectra 
obtained using PC-PK1 and DD-LZ1 together with the 
experimental data from the NNDC  [73] are shown in 
Fig. 5. The coupling strength and Fermi surface are finely 
tuned to reflect the collective enhancement induced by 
negative parity according to the corresponding experi-
mental data of the low excitation spectrum. The calcu-
lated levels exhibit good qualitative agreement with the 
experimental results.

In the final step, when performing the convolution using 
the Eq. (1) to obtain the total level density, it is found 
that the total level density �tot depends on the number of 
collective levels considered. This implies that a specific 
collective truncation parameter should be introduced and 
adjusted manually. To alleviate this problem, inspired by 
Ref.[36, 74], a factor exp(−Ec∕T) is inserted into Eq. (1), 
and the total level density is rewritten as

Fig. 3  (Color online) Excitation energy Ei (a), entropy S (b), spe-
cific heat C

v
 (c), �S∕�T  (d), pairing energy gap Δ (e), and intrinsic 

level density �
i
 (f) with respect to the temperature for saddle points 

of 234−240 U. The results were obtained via finite-temperature triaxial 
CDFT calculations with the parameter set PC-PK1  

Fig. 4  (Color online)  Same as Fig. 3, but for the global minimum
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This factor simulates the coupling between the collective 
levels and intrinsic levels: higher collective levels corre-
spond to a weaker contribution to the convolution; thus, a 
fixed truncation parameter is not needed. According to the 
highest excitation energy considered, tests reveal that an 
angular momentum up to 18 ℏ with the first 20 collective 
levels for each angular momentum is sufficient.

In Fig. 6, the total level density and the intrinsic level 
density at the global minima and saddle points are compared 
with available experimental data below 5 MeV [75], avail-
able calculations in the TALYS−1.95 package [1] directory 
density/ground/hilaire or density/fission/hilaire/Max1 and 
directory density/ground/goriely or density/fission/goriely/
inner, or the Reference Input Parameter Library (RIPL) [20, 
22]. Clearly, the intrinsic level densities deviate from the 
experimental data, indicating the necessity of collective 

(13)�tot (E
∗) = ∫ exp

(
−
E∗ − Ei

T

)
�i
(
Ei

)
�c
(
E∗ − Ei

)
dEi.

Table 1  CQC parameters for 
235,237,239 U based on triaxial 
CDFT calculations with 
the parameter sets PC-PK1 
and DD-LZ1; the units of � 
and � are MeV and MeV/b, 
respectively

Density functional Nucleus Parity � � Parity � �

PC-PK1 235U + − 5.7 4.0 – − 6.9 11.5
237U + − 7.1 4.0 – − 6.7 11.5
239U + − 6.1 4.0 – − 5.2 8.5

DD-LZ1 235U + − 7.9 4.0 – − 7.2 11.0
237U + − 5.0 7.0 – − 6.9 11.0
239U + − 6.0 4.0 – − 8.1 8.0

Fig. 5  (Color online) Calculated low-energy positive-parity (a) and 
negative-parity (b)  bands, of 235 U based on triaxial CDFT calcu-
lations with the parameter sets PC-PK1 (red) and DD-LZ1 (blue) 
together with the available experimental data (black) [73]

Fig. 6  (Color online) Total level densities (solid) and intrinsic level 
density (dash-dotted) at the global minima ( a-g ) and saddle points 
( a�-g� ) of the 234−240 U with respect to the excitation energy E∗ . The 
pink and blue lines correspond to calculations with the parameter sets 
PC-PK1 and DD-LZ1, respectively. The experimental data (black 
squares) from Ref. [75] and calculations from Refs. [20, 22] are com-
pared
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degrees of freedom. For excitation energies up to 10 MeV, 
the total level density calculated via the two parameter sets 
PC-PK1 and DD-LZ1 agrees well with the two sets of theo-
retical calculations performed by S. Goriely and S. Hilaire 
in TALYS. However, for energies above 10 MeV, the total 
level density obtained via the relativistic density functional 
agrees well with Hilaire’s calculation, whereas Goriely’s 
calculation exhibits a sharp increase. The ratio of the total 
level density to Hilaire’s calculation result �tot∕�Hilaire is well 
within an order of magnitude.

Furthermore, we compare the total level densities at the 
saddle points �sd and those at the global minima �min and plot 
their ratio in Fig. 7. For low excitation energies up to 5 MeV, 
the majority of �sd values are smaller than �min , which may 
be related to pairing association [76]. The pronounced peaks 
at 0–5 MeV for 237−239 U are actually caused by a small drop 
in the intrinsic level density at the global minimum (Fig. 6). 
For intermediate energies in the range of 5 MeV < E∗ < 30 
MeV, �sd increases more quickly than �min . In particular, for 
235 U, this ratio increases linearly with respect to the excita-
tion energy. When the atomic number increases from 234 U to 
240 U, the curve of this ratio tends to shift downward.

Finally, it is convenient to study the ratio of 
the total level density to the intrinsic level density 
Kcoll(E

∗) = �tot (E
∗)∕�i(E

∗)  [30] as a collective enhancement 
factor and attribute it to the inclusion effect of collective lev-
els. Figure 8 shows this collective enhancement factor Kcoll 
with respect to the excitation energy E∗ for 234−240 U. Clearly, 
the curves can be divided into two groups: one group con-
sists of low-lying concentrated curves for even–even nuclei 
234−240 U, and the other group consists of scattered curves for 
three odd-A nuclei 235−239 U. This implies different collective 

spectrum patterns for even–even nuclei and odd-A nuclei. 
For even–odd nuclei, the factor Kcoll obtained via the param-
eter set DD-LZ1 exceeds that for PC-PK1. The magnitude 
of Kcoll is similar to that of the nuclei 94,96,98Mo, 106,108Pd, 
and 106,112 Cd discussed in Fig. 5a of Ref. [30] at the low 
excitation energy. The collective enhancement factor shown 
in this figure undoubtedly indicates the fact that the collec-
tive levels of odd-A nuclei are lower and denser than those 
of even–even nuclei. For level densities at saddle points, 
this factor Kcoll is almost indistinguishable from those of the 
global minimum.

4  Summary

In this study, according to the finite-temperature covari-
ant density functional theory, the total level densities were 
obtained by convolving the intrinsic level densities and the 
collective levels achieved using the parameter sets PC-PK1 
and DD-LZ1. For saddle points on the free energy surface 
in the (�2, �) plane, the entropy and several derivatives com-
posing the 

√
�D� term were extracted, and the intrinsic level 

density, which has an exponential relationship with the 
entropy, was determined. The collective levels of even–even 
nuclei were calculated using the five-dimensional collec-
tive Hamiltonian model, and those of odd-A nuclei were 
calculated using the CQC model. The total level densities 
of 234−240 U agreed well with the available experimental data 
and Hilaire’s result. The behavior of even–even nuclei and 
odd-A nuclei can be easily distinguished from the collective 
enhancement factor Kcoll.
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ial CDFT calculations with the parameter sets PC-PK1 and DD-LZ1
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