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Abstract
A deep learning-based automated Kirkpatrick–Baez mirror alignment method is proposed for synchrotron radiation. We 
trained a convolutional neural network (CNN) on simulated and experimental imaging data of a focusing system. Instead 
of learning directly from bypass images, we use a scatterer for X-ray modulation and speckle generation for image feature 
enhancement. The smallest normalized root-mean-square error on the validation set was 4%. Compared with conventional 
alignment methods based on motor scanning and analyzer setups, the present method simplified the optical layout and 
estimated alignment errors using a single-exposure experiment. Single-shot misalignment error estimation only took 0.13 s, 
significantly outperforming conventional methods. We also demonstrated the effects of the beam quality and pretraining 
using experimental data. The proposed method exhibited strong robustness, can handle high-precision focusing systems 
with complex or dynamic wavefront errors, and provides an important basis for intelligent control of future synchrotron 
radiation beamlines.
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1 Introduction

Synchrotron micro- or nano-focused X-rays have been 
widely used to explore the microstructures of materials in 
the fields of energy [1] and material and life sciences [2]. 
For a coherent source, smaller focusing spots yield higher 

coherent fluxes, improving the resolution of the recon-
structed images. To meet the high demand for X-ray focus-
ing systems, aberration-free focusing systems are desired for 
perfect wavefronts. The Kirkpatrick–Baez (KB) mirror pair 
is a typical X-ray focusing system [3, 4] consisting of two 
perpendicular mirrors with elliptical or parabolic shapes. 
To achieve an ideal focusing spot, in addition to the high-
precision surface figure, KB mirrors must be placed accu-
rately along the optical axis. Conventionally, a KB mirror is 
aligned by trial and error. A knife-edge scan [5] is the sim-
plest method for measuring the focusing spot size; however, 
it can only provide one-dimensional (1D) intensity profile 
information in one scan. The Hartmann wavefront sensor 
[6] can provide two-dimensional (2D) wavefront informa-
tion directly in one shot; however, the device is expensive 
and has a relatively low spatial resolution. Grating-based 
shearing interferometry [7, 8] is another approach to obtain-
ing 2D wavefront information; however, these measure-
ments require accurate alignment of interferometers and 
nearly perfect fabrication of gratings. Recently, a near-field 
speckle-tracking method [9] based on digital image correla-
tion (DIC) was developed for extracting wavefront informa-
tion, and relevant characteristics of this method, such as the 
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effect of the diffuser grain size [10] and correlation subset 
size [11], were carefully explored. A speckle-based scanning 
method was also proposed to directly provide information on 
the pitch angle error [12]; however, the scanning process is 
time-consuming, and the acquired alignment information is 
limited to the pitch angle and wavefront curvature. Another 
speckle analysis method [13] based on coherent X-ray beams 
was developed for obtaining alignment error-related infor-
mation in one shot based on the inverse relationship between 
the speckle and focusing spot sizes. A few more shots were 
required to attenuate the noise in this method.

In recent years, the rapid development of deep learning 
has extended to the field of optical systems. A convolutional 
neural network (CNN) was trained for estimating the Zernike 
coefficients of wavefront aberration using a pre-conditioner 
to increase the number of informative pixels in the detected 
image [14]. A deep residual wavefront learning method was 
also proposed to extend the usable range of Lyot-based low-
order wavefront sensors [15]. Instead of using images as 
the network input, Tchebichef moments were introduced 
to extract the features of point-spread functions (PSFs) 
and passed to a multiple neural network (MNN) [16]. In 
the telescope field, a CNN was used for determining the 
initial estimates of the Zernike coefficients from the PSF 
images [17] for further iterative refinement. In microscopic 
systems, deep learning has been used for autofocusing 
[18, 19] and denoising [20]. In the field of X-rays, neural 
networks have been used for screening macromolecular 
X-ray crystallographic diffraction images [21], classification 
of crystal structures [22], tomographic denoising [23], and 
Bragg peak analysis [24]. Machine learning-based methods 
have also been applied to the diagnosis and tuning of 
accelerators [25, 26]. However, relevant applications of deep 

learning in X-ray optics alignment and metrology remain 
lacking.

In this study, we propose a single-exposure deep learning-
based KB mirror alignment error estimation method. We 
use the detected images to train a CNN for estimating 
alignment errors. To improve the performance of the deep 
learning methods, we place a thin scatterer in the focal 
plane to modulate the direct beam and generate speckles 
in the detector plane, because these speckles can carry 
the wavefront error-related information of the focal plane. 
We first train the CNN using simulated data and then use 
experimental data to fine-tune the network. The influence of 
the beam quality and pre-training with simulated data on the 
misalignment error estimation is also discussed.

2  Method

As shown in Fig. 1, a thin scatterer was placed in the focal 
plane to generate speckles in the direct beam images on the 
detector as a modulation (pre-conditioner) for training the 
CNN. Unlike other image-based machine learning methods, 
we used both direct beam and speckle-modulated images for 
training the network to extract the features of the detected 
images and compared the performance of the network on 
them.

For a narrowband incident light wave, u(P,t), the mutual 
intensity can be defined as Ji(P1,P2) = u(P1,t)u*(P2,t). After 
passing through a thin scatterer with a complex transmit-
tance function t(P), the exit mutual intensity becomes Jt(P1
,P2) = t(P1)t*(P2)Ji(P1,P2). The propagation of the mutual 
intensity from the scatterer surface  S1 to the detector surface 
 S2 can be written as [27]

Fig. 1  (Color online) Schematic 
of the experimental optical path 
using with the proposed method
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where λ represents the center wavelength of the narrowband 
beam, ri is the distance between Pi and Qi, and χ(θi) is the 
obliquity factor at position Pi.

Because only the intensity information can be detected, we 
consider I(Q) = J(Q,Q) in the detector plane. Let (x,y) denote 
position Q in the detector plane, and let (α,β) denote position 
P in the scatterer plane. By assuming a Schell model field Ji
(α1,β1,α2,β2) = A(α1,β1)A(α2,β2)μ(α1 − α2, β1 − β2) and using 
the Fresnel approximation, we obtain the following simpli-
fied expression:

As indicated by the above equation, the scatterer perturbs 
the detected intensity. Using deep learning methods, we can 
extract the speckle difference owing to the scatterer by learning 
together the detected images with and without scattering. Deep 
learning methods use backpropagation and gradient descent 
for optimizing the parameters of artificial neural networks. 
A typical artificial neural network contains many layers of 
neurons. Each layer receives the output of the previous layer 
as input and feeds processed input to the next layer; the last 
layer outputs the model predictions. The gradient of the 
loss function capturing the difference between the model 
predictions and ground truth is propagated backward through 
the network starting from the output layer, according to the 
backpropagation algorithm. Specifically, for a layer of neurons, 
the forward and backward propagation rules are as follows:
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where z indicates the output of a given layer, w and b repre-
sent the weight and bias parameters of individual neurons 
of this layer, respectively, x is the input to this layer (also 
the output from the previous layer), L is the loss function 
reflecting the optimization objective, and constructs such as 

∂L/∂x are backpropagation gradients formulated as Jacobian 
matrices.

For image processing, CNNs have become much more 
popular than vanilla multilayer neural networks, accord-
ing to some recent advances in deep learning. Compared 
with conventional multilayer neural networks, CNNs lever-
age the ideas of local connectivity, parameter sharing, and 
pooling of hidden units. Thus, they are more computation-
ally efficient, exploit the 2D topology of image pixels, and 
account for translation invariance. The backbone CNN in 
the present study was ResNet50 [28] (schematically shown 
in Fig. 2), which demonstrated good performance on vari-
ous vision tasks and has been a popular backbone network 
for many types of vision-related tasks. We added a dropout 
layer with a drop ratio of 0.2 to mitigate the overfitting 
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Fig. 2  (Color online) Schematic 
of the misalignment error esti-
mation process. Dropout: drop-
out layer. FC: fully connected 
layer. Conv: convolution layer
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problem; in addition, we added a fully connected layer 
for regression.

3  Simulation results

Considering the sensitivity of the different alignment errors 
associated with KB mirrors, we focused on six main degrees 
of freedom: (1, 2) vertical and horizontal pitch angles, (3, 4) 
vertical and horizontal curvatures, (5) astigmatism, and (6) 
defocus. Single-micron focusing was pursued based on the 
experimental environment.

First, a simulation was performed to verify the feasibil-
ity of the proposed method. The optical layout and photon 
energy of 10 keV were the same as in the experiment in 
beamline BL15U (more detailed information is provided in 
Sect. 4), as shown in Fig. 1. The simulation was conducted in 
1D for horizontal and vertical focusing first, then combined 
to form a 2D focus by shearing and matrix multiplication, 
and finally was propagated to the detector plane to reduce 
the computational complexity. The source was simulated 
using an array of point sources with a random phase sampled 
from a uniform distribution within a preset range. Based on 
the diffraction fringes generated by the source and the rela-
tionship between the contrast of the fringes and coherence 
length of the Gauss–Schell model, the transverse coherence 
length values at the source position were measured as less 
than 3 μm horizontally and 42 μm vertically in simulations 
(averages over one thousand replicates). A thin scatterer was 
simulated using five layers of randomly distributed 500-nm-
size Cu particles, as shown in Fig. 3a. The particle sizes 
were drawn from a Gaussian distribution (mean, 500 nm; 
standard deviation, 0.25 of the mean). The tangential figure 
of the KB mirrors was simulated using an elliptical curve 
with randomly added high- and low-frequency errors. High-
frequency figure errors were drawn from a Gaussian distri-
bution (root-mean-square (RMS), 0.2 nm; peak and valley 
(PV), 1 nm), while low-frequency figure errors were drawn 
using a sin function of a complete cycle with a 30-nm PV 

and a random initial phase. Medium- or low-frequency fig-
ure errors yielded coherent stripes in far-field images, dif-
ferent from lower-frequency alignment errors. To overcome 
a possible alignment error-related estimation bias intro-
duced by figure errors, the mirror figure was not fixed in the 
simulations; for each generated figure, the simulation was 
repeated 10 times, and a new figure was generated and used. 
An example error curve is shown in Fig. 3b. The lengths of 
the horizontal focusing mirror (HFM) and vertical focusing 
mirror (VFM) were both 200 mm to simulate the KB mirrors 
used in experiments. The ideal focus size without alignment 
errors was approximately 1 μm in both directions.

The tolerances for the six main misalignment parameters 
were estimated using the Strehl ratio based on the Marechal 
criterion, using the simulation results. The Strehl ratio 
averaged over 100 simulations with a random source field 
sampled from a uniform distribution, and the corresponding 
results are listed in Table 1.

For better reliability and robustness, we also added devi-
ations of other degrees of freedom to the simulations as 
experimental noise to avoid overfitting to an ideal environ-
ment; these errors included the error of the detector position, 
roll angle error, and beam in-/out-axis error (the distance 
that the mirror moved from the optical axis in the tangential 
plane). We did not include the roll angle error in the estima-
tion because the simulation program was unable to simu-
late comprehensive 2D interaction of the beam and mirrors, 
which led to the focus insensitivity to the roll error, and the 
proposed experimental platform was unable to adjust the roll 
angle between mirrors. This perpendicularity error can be 
easily included in the estimation by adding a dimension to 
the output of the last FC layer, if required. The simulation 
was implemented according to the optical layout shown in 
Fig. 1, and 8000 samples were generated using the simula-
tion program for machine learning, one of which is shown 
in Fig. 4. Owing to the 1D simulation of the KB focusing 
process, the vertical and horizontal beam propagations were 
decoupled, and there was an obvious correlation between 
the detected images for different directional points, owing 
to the matrix multiplication of the focus field. The alignment 
parameters and error ranges are listed in Table 2, where the 
errors were randomly drawn from a uniform distribution. 
The range of the estimated errors was chosen to enlarge the 

Fig. 3  (Color online) Example simulated optical elements. a Simu-
lated scatterer composed of Cu particles and b simulated figure error 
of the KB mirror. Scale bar: 20 μm

Table 1  Estimated tolerances for six main alignment parameters

Mirrors Alignment parameters

Pitch 
angle 
(μrad)

Curvature  (km−1) Astigma-
tism (μm)

Defocus (μm)

VFM 9.5 1.2 ×  10−2 3200 1600
HFM 4.5 1.5 ×  10−2 700 350
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focal spot to approximately 10 μm; the range of the errors 
acting as noise was chosen to not visibly affect the size of 
the focal spots.

We used the Adam optimizer [29] for training our CNN, 
because it generally converges faster than the stochastic 
gradient descent (SGD) method. The learning rate was 
 10−4, with a rate of decrease at 0.978 per epoch. The batch 
size was 10, and the training was performed for 80 epochs. 
Gaussian noise with a signal-to-noise ratio (SNR) of 50 dB 
was added to the images to simulate a practical noise envi-
ronment for further robustness. The misalignment errors 
were normalized to the [− 1, 1] range as the target value 
to avoid gradient explosion or imbalanced weights among 
the estimated errors. The loss function was the mean square 

error (MSE), commonly used in regression tasks. The 
method was implemented in PyTorch and executed on an 
NVDIA A100 GPU with 40 GB of VRAM.

The training was performed using three different data-
sets: speckles, direct beams, and both. We combined the 
speckle and direct beam images in different channels for 
training. The results are listed in Table 3, and the training 
results for the speckle dataset are shown in Fig. 5. The 
RMSEs between the ground truth and estimated align-
ment errors for the test datasets were 0.271 ± 0.126 for 
the combined dataset of speckle and direct beam images, 
0.265 ± 0.122 for the dataset of speckle images, and 
0.273 ± 0.126 for the dataset of direct beam images, while 
the corresponding RMSEs for the training datasets were 
0.05, 0.045, and 0.047, respectively. Overfitting occurred 
early during training, and the RMSE of the test dataset 
decreased slowly approximately from epoch 10, as shown 
in Fig. 5c. While the RMSE of the training error continued 
to decrease to 0.045 over the entire training process, the 
RMSE of the validation error stopped at approximately 0.3 
and started to oscillate around it with a small amplitude. 
This happened because the randomness of the incident 
beam status and mirror figure strongly affected the features 
of the detected images; for one set of misalignment error 
parameters, the detected images generated in the simula-
tions varied strongly in the case of different statuses of the 
incident beam and mirror figures. Increasing the amount 
of data or using a constant phase for the incident beams 
and mirror figures may relieve this problem. The best per-
formance was obtained for the speckle dataset. Combin-
ing the images from the speckle and direct beam datasets 
did not utilize the advantages of both datasets, and the 
resultant performance was similar to that obtained using 

Fig. 4  (Color online) Example 
simulated speckle (a) and direct 
beam (b) detector images. Scale 
bar: 1 mm

Table 2  Alignment parameters and ranges of misalignment errors in 
the simulations

FH refers to the focal length of the HFM, while FV refers to the focal 
length of the VFM

Alignment terms Parameters Range of errors

VFM pitch angle (mrad) 3  ± 0.02
HFM pitch angle (mrad) 3  ± 0.03
Astigmatism (mm) 245  ± 3
Horizontal focus position (m) 0.270  ± 0.002
Vertical focus position (m) 0.517  ± 0.002
VFM curvature  (km−1) 2.9  ± 0.15
HFM curvature  (km−1) 5.7  ± 1.2
Roll angle (mrad) /  ± 0.05
Detector position (mm) 2075  ± 100
VFM beam in/out error (μm) 0  ± 2
HFM beam in/out error (μm) 0  ± 2

Table 3  Summary of validation 
accuracies (RMSEs) of 
normalized misalignment error 
estimation models trained on 
the simulated data

Index Alignment parameters Dataset

Speckles Direct beam Both

1 VFM pitch angle 0.110 ± 0.078 0.114 ± 0.066 0.104 ± 0.060
2 HFM pitch angle 0.226 ± 0.146 0.205 ± 0.122 0.233 ± 0.146
3 VFM curvature 0.131 ± 0.080 0.132 ± 0.079 0.170 ± 0.108
4 HFM curvature 0.069 ± 0.050 0.087 ± 0.064 0.140 ± 0.120
5 Astigmatism 0.505 ± 0.286 0.526 ± 0.300 0.525 ± 0.300
6 Defocus 0.414 ± 0.243 0.424 ± 0.246 0.391 ± 0.224
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only the dataset with direct beam images. Among the six 
parameters, astigmatism and defocus were the main con-
tributors to the RMSE of the alignment error. Because 
these two parameters spanned small ranges compared with 
the large depth of focus, the detected images had low sen-
sitivity to changes.

Compared with the estimation of the Zernike wavefront 
coefficient, the proposed method directly obtains informa-
tion about the misalignment of KB mirrors rather than infer-
ring the misalignment from the wavefront phase information 
provided by the Zernike coefficients and wavefront ampli-
tude information calculated from the intensity information of 
the detected images. By using an end-to-end misalignment 
estimation model, this method introduces fewer calculation 
errors.

4  Experimental results and discussion

The experiment was conducted at the beamline BL15U of 
the Shanghai Synchrotron Radiation Facility (SSRF), using 
photons with the energy of 10 keV. The secondary source 
aperture was 200 μm × 30 μm for improving the beam coher-
ence, and the coherence lengths at aperture were 4.25 μm in 
the horizontal direction and 66.55 μm in the vertical direc-
tion [30]. Bendable KB mirrors (active length, 200 mm) 
were pre-aligned with a silicon substrate at the beamline. 
The slope error along the optical axis of the KB mirrors was 
less than 0.5 μrad, and the roughness of the surfaces coated 
with Pt and Rh layers was at least 0.3 nm RMS. The ends 

of the mirrors were equipped with two bending rods above 
and below the surfaces, for applying the bending force, and 
two fixed rods were used to support and stabilize the mir-
rors. The curvatures of the KB mirrors were adjusted using 
actuators attached to the benders. A thin sandpaper scat-
terer was placed at the focus. A microscope objective lens 
system (Optique Peter) coupled to a complementary metal-
oxide semiconductor (CMOS) camera (Hamamatsu) was 
placed 2075-mm downstream from the focus. The detector 
pixel size was 1.625 μm, and there were 2048 × 2048 pixels. 
To pass their values to our CNN, we cut the image from 
the beam center to reduce the space occupied by the back-
ground and downsampled it to 500 × 500 pixels, considering 
the computational ability of the network. The position of 
the minimal spot size based on the knife-edge scan results 
was considered the zero-error position for the alignment. 
Although the theoretical focus area was 1.1 μm × 1.6 μm 
(H × V), which was calculated by ray tracing using Shadow 
VUI simulation program [31], owing to the optical degrada-
tion from the upper stream, experimental noise, and knife-
edge vibration, the measured focus spot was approximately 
4 μm in both directions, which was much larger than the size 
used in simulations. The two sets of focus spots measured 
using the knife-edge scan method at different foci and pitch 
angles are shown in Fig. 6.

The network trained on the simulated data was used as the 
first guess for training on the experimental data. To examine 
the extent to which the simulations helped for estimating 
experimental alignment errors by the model, we also 
attempted to fine-tune the network trained on the simulated 

Fig. 5  (Color online) Results 
of training the network on the 
speckle data. a A detected 
image generated by the simula-
tion. b The corresponding 
estimation. c The RMSE drop 
during the training process. 
Error indices: (1) VFM pitch, 
(2) HFM pitch, (3) VFM cur-
vature, (4) HFM curvature, (5) 
astigmatism, and (6) defocus
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data using the experimental data, with the backbone CNN 
and parameters that were determined using the simulated 
data. We attempted to freeze the parameters of the full 
ResNet50 network, including only the convolution layers, 
and unfreeze the parameters of the last convolution layer of 
ResNet50. Because the simulation results slightly differed 
from the experimental results, owing to the simulation 
limitations and environmental differences between the 
source and optical characteristics of the experimental and 
simulation setups, estimating experimental alignment errors 
using the CNN trained on the simulated data directly could 
yield relatively large estimation errors. The learning rate was 
 10−4 and the batch size was 10. The training was performed 
for 80 epochs on an NVDIA A100 GPU with 40 GB of 
VRAM, with one epoch taking on average less than 1 s. 
During the training, the model with the lowest RMSE on 
the verification set was selected. In the validation process, 
one estimation of the misalignment error took, on average, 
0.13 s.

The experiment was performed twice under different 
beam-quality conditions, and two sets of data were gener-
ated. Overall, 1762 images and their corresponding align-
ment parameters (selected from a regular grid) were col-
lected; the collected images were divided into training and 
validation sets, at the 8:2 ratio. As shown in Fig. 7a and b, 
the images obtained in the first experiment had many more 
stripes than those obtained in the second experiment, indi-
cating that the beam underwent serious phase modulation 
owing to the beryllium window. Before passing the data to 
the CNN, the alignment errors were normalized, and their 
ranges are listed in Table 4. The RMSEs of the training 
results for the two experiments are listed in Table 5, indi-
cating that the normalized RMSE achieved the best accu-
racy of approximately 4%. Example detected images from 

the validation set are shown in Fig. 7a–d, and the estima-
tion results of the model trained with the full network cor-
responding to Fig. 7d are shown in Fig. 7e. For the direct 
beam data, the defocus error term was zero because there 
was no sample at the focal spot for defocus detection. The 
astigmatism error was fixed because the distance between 
the HFM and VFM at the BL15U beamline was the same. 
Owing to the differences between the image characteristics 
of the simulated and experimental data, training the convolu-
tion layers was necessary for improving the precision of the 
estimations, and training the last convolution block could 
substantially improve performance. For the training process 
with the full trainable network, overfitting was still remark-
able for the data obtained in the first experiment, while the 
same phenomenon was much less likely to be observed for 
the training process using the data obtained in the second 
experiment, as can be seen from Fig. 7f–g. Comparing the 
learning processes of the two experiments, it is evident that 
the beam quality significantly affected the generalization 
capability of the neural network. Although it provided more 
features, the phase modulation noise made it more difficult 
for the network to recognize useful information for the esti-
mation of alignment errors and caused the network to con-
fuse different focus states; more training data are required 
for addressing this problem.  

A line chart of the different errors estimated by the net-
work trained on the simulation data as the first estimate is 
shown in Fig. 8. According to the normalization, for the 
validation results of the model trained using the speckle data 
obtained in the first and second experiments, the RMSEs 
of the VFM pitch error estimation are listed in Table 4. 
Compared with the defocus errors, the pitch and curvature 
errors are more sensitive. This is because changes in the 
pitch and curvature induce more internal structural changes 

Fig. 6  Knife-edge scan results at different pitch angles and foci. Both scans were performed in the horizontal direction; the results obtained for 
the vertical direction were similar. a Data were collected in the first experiment. b Data were collected in the second experiment
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in the images and are easier to extract and recognize as fea-
tures. With respect to the simulation data, figure errors of 
the mirrors were randomly generated to alleviate their influ-
ence on the misalignment error estimation. With respect to 
the experimental data, because the estimation model was 

specifically trained for a KB mirror focusing system in a 
fixed optical layout, the figure error was not considered 
separately because it would not change for a KB mirror. For 
further figure errors arising from in situ elements, the curva-
ture and pitch angle errors caused by figure errors may even 
be compensated for by the estimated misalignment errors.

The misalignment error estimation models trained on the 
data obtained in the first experiment performed even better 
than the models trained on the data that were obtained in the 
second experiment, when compared in terms of the RMSEs 
of non-normalized misalignment errors. This indicates that 
the deep learning method has the potential to overcome the 
effect of the beam noise, such as stripes. In addition to the 
explanation positing that more features were introduced by 
the noisy beam, another possible reason for the unusual per-
formance reversal is the effect of the normalization range on 
the estimation accuracy. For a larger range of misalignment 
errors, there are larger intervals between different misalign-
ment error data, which means that a much smaller estima-
tion error of the normalized misalignment errors can cause 
a large estimation error of the non-normalized misalignment 
error. This also shows that the ranges of the misalignment 

Fig. 7  Training results for the 
misalignment error estimation 
model trained on four differ-
ent experimental datasets. a, b 
Direct beam images from the 
first and second experiments, 
respectively. c, d Speckle 
images from the first and second 
experiments, respectively. e 
Line chart of estimated errors 
and ground truth corresponding 
to (d). f, g RMSE drop curves 
during the training process for 
speckle data from the first and 
second experiments, respec-
tively. Error indices: (1) VFM 
pitch, (2) HFM pitch, (3) VFM 
curvature, (4) HFM curvature, 
(5) astigmatism, and (6) defocus
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Table 4  Ranges and estimation accuracy (RMSEs) of misalignment 
errors for the experimental data

Alignment term 1st experiment 2nd experiment

Error range Accuracy Error range Accuracy

VFM pitch angle 
(μrad)

 ± 16 1.676  ± 80 4.255

HFM pitch angle 
(μrad)

 ± 16 1.017  ± 60 2.307

VFM curvature 
 (km−1)

 ± 0.015 8.3 ×  10−4  ± 0.03 1.03 ×  10−3

HFM curvature 
 (km−1)

 ± 0.015 6.2 ×  10−4  ± 0.03 1.08 ×  10−3

Astigmatism 
(mm)

0 (fixed) \ 1 (fixed) \

Defocus (mm)  ± 4.5 1.605  ± 9 0.631
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errors we chose in the experiments were still far from the 
resolution limit of the neural network model we used. For 
smaller ranges, the network may still provide a relatively 
accurate estimation of the normalized misalignment errors, 
indicating that the network has the potential for more accu-
rate estimation. Considering the overfitting problem, we 
assumed that the neural network model would perform bet-
ter on larger datasets. We also attempted to train the net-
work using experimental data without pre-training it on the 
simulated data. After a sufficiently long training process, 
the network achieved the performance comparable to that of 

the previously trained network. However, with a pretrained 
network, the training process was significantly shorter.

To explore the training process of the neural network 
model for the estimation of the misalignment errors of KB 
mirrors more clearly, we drew feature maps of the networks 
extracted from one detected image and show them in Fig. 9. 
The first convolution layer was responsible for extracting 
related information from the input image and standardizing 
the format of the feature images. It mainly focused on high-
intensity loci. The first layer of ResNet extracted texture-
related information from the image and distinguished the 
speckles surrounding the center beam image and different 
texture patterns in the beam image. The second layer fur-
ther extracted texture features, while the third layer sum-
marized the features. As shown in Fig. 9d, both localized 
and global features were present in the feature maps of the 
third layer. The last convolution layer of ResNet extracted 
highly abstract information with a large field of view. Instead 
of fine textured features, this layer yielded coarse-grained 
structural features.

The saliency map of the network attention is shown in 
Fig. 10. The network extracted information from both the 
detected beam and speckles surrounding the beam. It also 
successfully avoided positions with saturated intensity at 
the lower and right edges of the beam that did not contain 
any information. Using this technique with a well-trained 
neural network that can make accurate estimations, we can 
trace which features were captured by the network and how 
the features were processed to obtain the result, which can 
help us verify whether the network learned the mechanics 

Table 5  Summary of validation 
accuracies (RMSEs) of the 
normalized misalignment 
error estimation using the deep 
learning model trained on the 
experimental data

a 1st experiment result, ‘experiment’ is omitted, same for the rest of this row
b Freeze all convolution layers
c Unfreeze the last Resblock, freeze all other convolution layers

1st direct  beama 1st speckle 2nd direct beam 2nd speckle

Train full net 0.097 ± 0.088 0.117 ± 0.105 0.062 ± 0.038 0.040 ± 0.024
Freeze ResNet 0.296 ± 0.165 0.204 ± 0.127 0.239 ± 0.110 0.223 ± 0.113
Freeze conv  1b 0.222 ± 0.120 0.199 ± 0.118 0.234 ± 0.110 0.213 ± 0.115
Freeze conv  2c 0.116 ± 0.101 0.140 ± 0.107 0.115 ± 0.059 0.061 ± 0.028

Fig. 8  RMSEs of different normalized errors between estimations, 
for the model trained on the simulation data as first guess and ground 
truth. Error indices are the same as in Fig. 7

Fig. 9  (Color online) Feature maps of convolution layers of misalign-
ment error estimation models trained on the experimental data. From 
a to e shown are feature maps from the first convolution layer, layer 
1 of ResNet50, layer 2 of ResNet50, layer 3 of ResNet50, and layer 

4 (the last layer) of ResNet50; each picture contains 64 feature maps. 
For layers containing more than 64 feature maps, only the first 64 fea-
ture maps are shown
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correctly rather than simply fitting data by some tricky 
means. By careful examination and analysis of the feature 
processing and attention capabilities of the model, we can 
understand the structural relationship of input images to tar-
get values and may find directions to explain the estimation 
process and establish the relationship between the detected 
phenomena and underlying factors.

5  Conclusion

A machine learning-based method was presented for 
estimating the KB mirror alignment error. Direct-beam and 
speckle-modulated images were captured by a detector for a 
CNN to estimate the alignment errors. In this study, we used 
simulations to predict the different performances of detected 
images under different alignment errors and scatterer 
conditions and generated training data for deep learning. 
We verified this method experimentally and estimated the 
effect of the beam quality. Both experiments exhibited good 
estimation accuracy, which proved the repeatability of this 
method. The results demonstrate the applicability of the 
proposed method.

The proposed method can provide fast and relatively 
accurate alignment error estimation based on a single-
exposure experiment, even under noisy beam conditions. 
Compared with the existing methods, the proposed method 
is much faster and more robust and can make estimations 
with the best normalized RMSE accuracy of 4% on average 
taking 0.13 s. Similar approaches can be applied to other 
machine learning-based beam diagnosis problems. By 
combining simulations and multiple experiments with 
related visualization technology, we aimed to provide a 
reliable, trustworthy, and traceable deep learning-based 
optical metrology approach. However, the error estimation 
of the network relies heavily on the layout of the beamline 
and calibration accuracy. The estimation becomes inaccurate 
if the beamline is modified because the network cannot 
learn the intrinsic relationship between the alignment error 
and beam propagation. In addition, different networks for 

different beamline layouts require large amounts of data 
and time to train. In future studies, we will optimize the 
light source model and elucidate the role of mirror figure 
errors in the beam propagation. A more accurate model 
will significantly improve the accuracy of the proposed 
method. For further applications, the robustness, reliability, 
and generalization of machine learning methods in optical 
tasks should be improved. This framework can be applied 
to a wide range of optical imaging systems involving the 
alignment of optical elements. With the improvement of the 
analytical ability of neural networks and the development of 
adaptive optical techniques, we are hopeful that this method 
will eliminate the dependency on specific scenarios and will 
enable learning from a generalized beam-generating scheme, 
avoiding repetitive training on different optical layouts 
while providing better estimations. This will be helpful for 
advancing toward a fully intelligent beamline control.
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