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Abstract
Neutron computed tomography (NCT) is widely used as a noninvasive measurement technique in nuclear engineering, 
thermal hydraulics, and cultural heritage. The neutron source intensity of NCT is usually low and the scan time is long, 
resulting in a projection image containing severe noise. To reduce the scanning time and increase the image reconstruction 
quality, an effective reconstruction algorithm must be selected. In CT image reconstruction, the reconstruction algorithms 
can be divided into three categories: analytical algorithms, iterative algorithms, and deep learning. Because the analytical 
algorithm requires complete projection data, it is not suitable for reconstruction in harsh environments, such as strong radia-
tion, high temperature, and high pressure. Deep learning requires large amounts of data and complex models, which cannot 
be easily deployed, as well as has a high computational complexity and poor interpretability. Therefore, this paper proposes 
the OS-SART-PDTV iterative algorithm, which uses the ordered subset simultaneous algebraic reconstruction technique 
(OS-SART) algorithm to reconstruct the image and the first-order primal–dual algorithm to solve the total variation (PDTV), 
for sparse-view NCT three-dimensional reconstruction. The novel algorithm was compared with other algorithms (FBP, 
OS-SART-TV, OS-SART-AwTV, and OS-SART-FGPTV) by simulating the experimental data and actual neutron projection 
experiments. The reconstruction results demonstrate that the proposed algorithm outperforms the FBP, OS-SART-TV, OS-
SART-AwTV, and OS-SART-FGPTV algorithms in terms of preserving edge structure, denoising, and suppressing artifacts.

Keywords  NCT · First-order primal–dual algorithm · OS-SART​ · Total variation · Sparse-view

1  Introduction

Neutron tomography is a noninvasive measurement method 
that differs from X-ray imaging, and muon tomography has 
been applied in various fields with a high accuracy and reli-
ability [1, 2]. The strong transmission of neutrons in metallic 
elements makes neutron tomography extremely useful for 
examining hydrogen in heavy elements under harsh experi-
mental conditions such as strong radiation, high-tempera-
ture, and high-pressure two-phase flow systems. In addition, 
neutrons are used in boron neutron therapy owing to their 
ability to detect and reconstruct the three-dimensional (3D) 
distribution of boron concentration [3, 4]. Neutron tomog-
raphy systems consist of two parts: a neutron photographic 
system and a computed tomography (CT) system capable 
of measuring and displaying the 3D void rate in the boil-
ing flow in a heated rod beam. They have also been applied 
to simulate the cores of advanced nuclear [5–8]. Asano 
and Takenaka [9] used neutron tomography to determine 
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the void-rate distribution in two-phase air and water flows. 
Kureta et al. visualized the toroidal streaming in a heated 
fuel rod bundle using 3D neutron tomography [10]. Trem-
sin et al. used neutron imaging to assess the attachment, 
deposition, and structural integrity of fuel core blocks [11]. 
Andersson et al. developed a portable fast NCT to obtain 
the void rate distribution in fuel rod bundles in a boiling 
water reactor [12]. Although portable NCT systems can per-
form measurements at any altitude, their neutron generators 
exhibit extremely low neutron yields. Therefore, promoting 
the rapid development of neutron tomography for improv-
ing the efficiency and safety of nuclear fuels is an important 
research direction.

The most crucial part of a neutron tomography system is 
the 3D reconstruction algorithm, which is directly related to 
the image quality and measurement reliability. Because of 
the long scanning time of neutron CT (ranging from 30 min 
to several hours) and the complexity of practical applica-
tion environments, it is difficult to obtain complete projec-
tion data. Consequently, reconstruction algorithms that can 
efficiently utilize sparse-view projection data are required 
to obtain accurate measurement results. Furthermore, the 
reconstruction of sparse-view projection data is helpful for 
investigations in harsh environments such as strong radia-
tion. Currently, algorithms are used for the reconstruction 
of sparse views and highly under-sampled projection data. 
Therefore, this study was focused on a 3D reconstruction 
algorithm for sparse-view NCT.

Sparse-view reconstruction is a highly complex math-
ematical problem and is a significant research direction in 
the image reconstruction field. Because prior information 
can be embedded in the iterative reconstruction algorithm, it 
is considered the sparse-view reconstruction algorithm most 
likely to replace the FBP algorithm. With the development of 
deep learning, it has been applied to the field of tomographic 
reconstruction. Many researchers have worked on sparse-view 
tomography and achieved significant results. As proposed in 
[13], the DEAR model, which adds a priori information and 
data in the image domain to the compressed sensing-based 
variation model, can not only eliminate the artifacts of the 
reconstructed image but also improve the quality of the recon-
structed image. A multiple adversarial learning angiography 
image reconstruction framework has been proposed in the lit-
erature [14], which solves the challenge of low-intensity aor-
tic reconstruction by introducing dual-correlation constrained 
adversarial learning; its application in clinical data shows its 
feasibility and effectiveness. However, because of practical 
limitations, this study focused on neutron CT 3D reconstruc-
tion, and it was not possible to obtain a large number of neu-
tron projection images for supervised training. Therefore, this 
study focuses on an iterative algorithm for neutron CT 3D 
reconstruction. Currently, mainstream iterative reconstruction 
algorithms include ART [15], SIRT [16], and SART [17]. 

Although all these iterative algorithms can reconstruct high-
quality images, when the projection data are extremely sparse 
and no a priori information is introduced, the reconstructed 
images show significant artifacts. Donoho [18] proposed 
the compressive sensing (CS) theory, which has promoted 
the rapid development of sparse-view image reconstruc-
tion. According to the mathematical implications of the CS 
theory, an image may be reconstructed exactly if it is sparse 
or can be sparsely represented by a spatial transformation. 
The evolution of the CS theory has facilitated the application 
of total variational algorithms in sparse-view image recon-
struction. Rudin proposed the ROF denoising model, which 
reduces noise while preserving the image edge and detailed 
structural information using the total variance as a constraint 
for image denoising [19]. Several TV-based techniques and 
variations to improve the performance of the algorithm have 
been put forward, including directional TV [20], weighted 
TV [21], edge-preserving TV [22], and weight TV[23]. The 
total variation model is a typical regularization model. Total 
variance minimization is particularly important in CT imag-
ing because of its ability to resolve acute discontinuities. This 
is critical for many imaging problems, because the sample 
edges contain critical structural information about the object. 
However, because of the non-smooth character of the total 
variance, it is difficult to achieve total variance regularization 
minimization. Furthermore, one drawback of these models is 
that they assume that the image is piecewise constant, which 
destroys significant information in the image. The total-vari-
ational image-denoising problem is a class of convex optimi-
zation problems. To solve convex optimization problems, the 
second-order method exhibits good convergence and requires 
only a small number of iterations. However, each iteration of 
the second-order method is extremely complicated, making 
it difficult to apply to large-scale problems. In contrast, the 
first-order method involves only function values and gradi-
ent information, and the process of each iteration is relatively 
simple. In the case of gradient magnitude sparsity, the total 
variance of the intermediate images is minimized, resulting 
in high-quality reconstructed images. Therefore, this study 
employs a first-order method to address the total-variance 
image noise reduction problem, and proposes an algorithm 
applicable to the 3D reconstruction of NCT in sparse views.

The goal of this study was to find an efficient 3D recon-
struction algorithm for sparse-view NCT. To address arti-
facts and noise in sparse-view projection-reconstructed 
images, we propose the ordered subset simultaneous alge-
braic reconstruction technique (OS-SART-PDTV) algo-
rithm, which uses the ordered subset simultaneous alge-
braic reconstruction technique (OS-SART) to reconstruct 
the image and the first-order primal–dual algorithm to solve 
the total variation (PDTV). This novel algorithm achieves a 
blurred version of a piecewise constant object through phe-
nomenological modeling, and reconstructs high-quality 3D 
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images by minimizing the total variance of the intermediate 
images through gradient-amplitude sparsity, which allows 
the reconstructed image interiors to change quickly and 
smoothly. Next, we present the proposed method, including 
the proposed algorithm and NCT fundamentals, in Sect. 2. 
In Sect. 3, the simulation experiments and a real neutron 
projection experiment are discussed. Section 4 discusses the 
research process and presents conclusions. Finally, a short 
conclusion is presented in Sect. 5.

2 � Principles and algorithms Of NCT

2.1 � NCT system

This section describes the fundamentals of CT image 
reconstruction. In general, CT image reconstruction gen-
erates a 3D volume from a 2D collection of projected 
images using mathematical algorithms. This requires the 
development of a measurement model using mathemati-
cal methods to relate the measured data to the desired 
physical properties. Image reconstruction consists of two 
processes: forward and back projection. Forward pro-
jection enables the calculation of model measurements 
corresponding to the actual measurements that match 
the physical properties. Model measurements corre-
sponding to the actual measurements were calculated 
using forward projection. Forward projection refers to 
the mapping of an objective onto the projection domain. 
Back projection is the opposite of forward projection, 
which determines the physical properties of a measure-
ment. Therefore, these two operations largely determine 

the image reconstruction precision. The change in for-
ward projection depends on the radiation beam geom-
etry. Based on the selected system, source of radiation, 
and available data acquisition systems, the appropriate 
geometry of the beam was selected so that reliable meas-
urements could be obtained. The NCT system primarily 
includes a collimator and shield, rotating sample stage, 
and neutron imaging system. The neutron imaging sys-
tem included a 2D neutron image detector, conversion 
screen, and 3D reconstruction software. The algorithm 
used for 3D reconstruction directly determines the imag-
ing quality and measurement reliability of the system, 
and is the core of the system. A schematic of the NCT 
scanning system is shown in Fig. 1.

In NCT systems, the mass of the neutron source and noise 
generated by the electronics can cause the projection data to 
contain noise. Therefore, Poisson noise and Gaussian noise 
are added to the numerical projection data reconstruction to 
validate the denoising ability of the algorithm while testing 
its reliability [24]. Therefore, these two noise components 
must be considered during NCT. The equation is as follows:

where Î  denotes noisy transmission data, I represents the 
mean photon number, mic indicates the average value of 
the electronic noise, and �2

ic
 is the variance of the electronic 

noise. System calibration typically has a value from mic to 
zero. The variance �2

ic
 was estimated via dark current meas-

urements [25].

(1)Î = Poisson(I) + Gaussian
(
mic + 𝛿2

ic

)
,

Fig. 1   (Color online) Schematic of the NCT system
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2.2 � Principle of CT

2.2.1 � CT projection acquisition

In NCT, the geometry of the neutron beam is primarily par-
allel. Among the mathematical concepts, the parallel geo-
metric beam is the simplest. An object can be represented 
by a binary function R(x, y) , which represents the intensity 
function on the x−y plane. The projection represents the 
decay integral of the neutron beam as it passes through the 
object from the neutron source, which is considered to be 
the sum of the line integral and ray. The expression of the 
projection is given by the equation

where L represents a neutron beam passing straight through 
an object R(x, y) , s represents the detector coordinates in the 
projection domain, and � denotes the counterclockwise rota-
tion angle of the x-axis in the projection domain. According 
to the Delta functions in Eq. (2) can be rewritten as follows:

Equation (3) represents the Radon transform of the object 
R(x, y) , which transforms the space data into the frequency 
domain. The projection consisted of a group of integrals of 
the neutron attenuation coefficients of the sample measured at 
the detector for every given angle.

2.2.2 � Central slice theorem

The Central slice theorem establishes a connection between 
the 2D projection of an object and its 1D projection in the 
Fourier domain. The 1D Fourier transform function K(�) of 
the projection function h(s, �) of the density function R(x, y) 
in a certain direction is the value of the 2D Fourier transform 
of the density function R(x, y) on the x − y plane along the 
same direction on a straight line past the origin. Equation (4) 
represents the defined 1D Fourier variation of the objective 
function in polar coordinates.

Equation (4) represents the 2D Fourier transform of the spa-
tial frequency �x = � cos �, �y = � sin � in the Fourier space. 
Therefore, the following equation was derived:

(2)h(s, �) = ∫L

R(x, y)ds,

(3)h(s, �) = ∫
∞

−∞ ∫
∞

−∞

R(x, y)�(x cos � + y sin � − s)dxdy.

(4)K(�, �) = ∫
∞

−∞ ∫
∞

−∞

R(x, y)e−j2��(x cos �+y sin �)dxdy

(5)R(x, y) = ∫
2�

0 ∫
∞

0

Q(�x, �y)e
j2��(x cos �+y sin �)d�d�.

Several problems arise when the central slice theorem is 
used for the Fourier transform reconstruction. First, the theo-
rem produces data in the Fourier space that are inconsistent 
with the Cartesian space. The data were interpolated into 
Cartesian coordinates. However, interpolation in the Fourier 
space before the anti-Fourier transform can have a significant 
influence on the reconstruction. The second problem is the 
difficulty in performing targeted reconstruction and identifying 
fine structures within small areas.

2.3 � Algorithms

2.3.1 � TV algorithm

In the NCT, the measurement time can be drastically 
reduced by reducing the number of projection views; 
however, this leads to sparse sampling. Based on the CS 
theory, a signal can be reconstructed exactly if it is sparse 
or can be represented sparsely. Under ideal conditions, 
NCT reconstruction can be converted to solve the problem 
of a linear system; thus, the discrete model of CS theory 
may be represented.

where L =
{
li,j
}
 stands for system matrix b denotes the 

projection data obtained at each angle and g represents the 
image to be reconstructed. Mathematically, solving Eq. (6) 
usually converts it into a least square problem:

However, in sparse-view image reconstruction, the 
incompleteness of the projection data leads to recon-
structed images containing noise and artifacts. Therefore, 
various regularization models have been proposed to obtain 
approximate solutions, which are defined by the following 
equations:

where argmin
g

‖Lg − b‖2
2
 represents the data fidelity term, 

�Z(g) denotes the regular term, and � is the regularization 
parameter used to balance the regular and data terms. The 
equation that defines TV as regularization is given in Eq. (9)

where g denotes the 3D image, ∇ig represents the gradient 
along i direction, and |∙| denotes the complex modulus.

(6)Lg = b,

(7)argmin
g

‖Lg − b‖2
2
.

(8)argmin
g

‖Lg − b‖2
2
+ �Z(g),

(9)‖g‖TV =
�

�
��∇xg

��
2
+
���∇yg

���
2

+ ��∇zg
��
2
,
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2.3.2 � First‑order primal–dual algorithm

Owing to the segmental smoothness of the regularization 
term of the variational model, the total variational model 
can effectively preserve image edges during image recovery 
and achieve improved recovery results. Therefore, the total 
variational model, particularly the total variational regulari-
zation model proposed by Rudin, Osher, and Fatemi, has 
gained popularity. According to the ROF model, the discrete 
total variational model of the 3D images can be formulated 
as follows [26]:

where ‖ ∙ ‖2 stands for the Euclidean parametrization, 𝛼 > 0 
is the regularization argument, and CTV(g) is the regular 
term of the discrete total variational model. To obtain a 
stable solution to the problem of minimization, ∇ , which 
denotes the difference algorithm on the space ℝ3n2 , is defined 
as shown in Eq. (11) below:

where

ge,u,q denotes the ((N ∗ M) ∗ q + e + N ∗ u)-th element of 
g , whose position in the image is (e, u, q) ; (∇g)h

e,u,q
 , (∇g)v

e,u,q
 , 

and (∇g)w
e,u,q

 are the different operators in the x , y , and z 
directions at a pixel ((N ∗ M) ∗ q + e + N ∗ u) . The expres-
sion of the regular terms of the total variational model is 
shown below.

In this study, the above model was improved using the 
finite difference matrix R instead of the difference operator 
∇.

Thus, the expression of the model investigated in the pre-
sent study can be obtained as follows:

(10)min
g

1

2
‖Hg − u‖2

2
+ �CTV(g),

(11)(∇g)e,u,q =
(
(∇g)h

e,u,q
, (∇g)v

e,u,q
, (∇g)w

e,u,q

)
,

(∇g)h
e,u,q

=

{
ge+1,u,q − ge,u,q e < N

0, e = N
(e = 0, 1, 2, ...,N)

(∇g)v
e,u,q

=

{
ge,u+1,q − ge,u,q u < M

0, u = M
(u = 0, 1, 2, ...,M)

(∇g)w
e,u,q

=

{
ge,u+1,q − ge,u,q q < Z

0, q = Z
(q = 0, 1, 2, ..., Z)

(12)

CTV(g) = ‖∇g‖1

=
�

0≤e≤N,0≤u≤M,0≤q≤Z

�
����(∇g)

h
e,u,q

���
2

+
���(∇g)

v
e,u,q

���
2

+
���(∇g)

w
e,u,q

���
2

(13)CTV(g) = ‖Rg‖1

Although the total variational model efficiently preserves 
image edges, it is difficult to obtain the minimum value of 
the total variational model by solving Eq.  (14) directly 
because of the non-smooth nature of the total variational 
model [27]. Because the first-order primal–dual algorithm is 
an efficient method for solving non-smooth convex optimiza-
tions of images, we employed it to solve Eq. (14).

Definition 1: Assume that the binary function 
J(� , �)(� ∈ Nn, � ∈ Nn) is convex for � , and concave for 
� . If, for any (� ∈ Nn, � ∈ Nn) , there exists an (�∗, �∗) such 
that Eq. (15) holds, (�∗, �∗) is the saddle point of the func-
tion J(� , �).

Chambolle and Pock suggested a first-order primal–dual 
algorithm to solve the following model based on the proper-
ties of the saddle points [28]:

where o and � are lower semi-continuous convex functions, 
and K denotes the line operator. The first-order primal–dual 
iterations were as follows [29, 30].

where the parameter s, t > 0 is the iteration steps for the 
primal and dual variables, separately; � denotes the combi-
national parameter, which is used to ensure the algorithm 
convergence.

Definition 2: Assuming that function o(g) ∶ Nn
→ N , we 

call the formula in Eq. (20) as a conjugate function of the 
function o(g) [31].

where � represents the dual vector of g , N denotes the real 
number space, Nn represents the k-dimensional real space, 
and T denotes the transpose.

According to Definition 2, the ‖Rg‖1 can be expressed as 
max
‖�‖≤1 �

T
Rg . Then, Eq. (14) can be converted into a mini-

mal–extreme problem [32] as follows:

(14)min
g

1

2
‖Hg − u‖2

2
+ �‖Rg‖1.

(15)J(�∗, �) ≤ J(�∗, �∗) ≤ J(� , �∗)

(16)min
𝜒⊂Nn

max
𝜈⊂Nn

£(𝜒 , 𝜈) ≡ o(𝜒) + ⟨K𝜒 , 𝜈⟩ − 𝜗(𝜈),

(17)𝜒 (d+1) = arg min
x⊂Nn

o(𝜒) + ⟨K𝜒 , 𝜈⟩ − 1

2s

���𝜒 − 𝜒 (d)���
2

2
,

(18)� (d+1) = � (d+1) + �
(
� (d+1) − � (d)

)
,

(19)

𝜈(d+1) = arg min
𝜈⊂Nn

⟨
K𝜒 (d+1), 𝜈

⟩
− 𝜗(𝜈) −

1

2t

‖‖‖𝜈 − 𝜈(d)
‖‖‖
2

2
,

(20)o∗(𝜉) = sup
x⊂Nn

{
𝜉Tg − o(g)

}
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The iterative formula in Eq. (21) can be obtained by using 
a first-order primal–dual algorithm.

The minimization problem for the subproblem g can be 
converted into solving the solution of the linear Eq. (25). 
H is a 3 × 3 a chunking matrix.

where HT is the transpose of H and RT is the transpose of R.

For subproblem � , the maximum problem of � is first 
transformed into a minimization problem.

Then, the Eq. (27) is the �(d+1) = PA(�
(d) − t�R g (d+1)) , 

which denotes the projection of �(d) − t�R g (d+1) onto set 
A.

(21)min
g

max
‖�‖∞≤1

1

2
‖Hg − u‖2

2
+ ��TRg.

(22)

g(d+1) = arg max
g⊂N3n2

1

2
‖Hg − u‖2

2
+ 𝛼gTRT𝜉(d) +

1

2s

���g − g(d)
���
2

2

(23)g (d+1) = g(d+1) + �
(
g(d+1) − g(d)

)

(24)�(d+1) = arg max
‖�‖∞≤1 � �

T Rg (d+1) −
1

2t

���� − �(d)
���
2

2

(25)(HTH +
1

s
I)−1g(d+1) = HTu +

1

s
g(d) − �RT�(d)

(26)g(d+1) =
(
H

T
H +

1

s
I

)−1(
H

Tu +
1

s
g(d) − �RT�(d)

)

(27)

�(d+1) = arg max
‖�‖∞≤1 ��

T
R g (d+1) −

1

2t

���� − �(d)
���
2

2

= arg min
‖�‖∞≤1

1

2

���� − (�(d) − t�R g (d+1))
���
2

2

The defining equations for the projection operator of 
any vector q on set A are given by Eq. (29)(table 1)

Then, there is PA(q) =
q

max(1,‖q‖2
2
)
.

2.3.3 � Adaptive weighted total variation algorithm

The conventional TV term is based on the assumption that 
the reconstructed image is piecewise constantly distrib-
uted, and this approach can cause excessive smoothing of 
the reconstructed image edges. To alleviate the problem 
of over-smoothing of traditional TV edges, many research-
ers have studied weighted adaptive total variation [33]; 
therefore, in this study, an adaptive weighted total vari-
ation (AwTV) minimization image model was used for 
comparison with the proposed algorithm.

where AwTV denotes the adaptive weight of the total vari-
ance of the reconstructed image. The ‖�‖AwTV is defined as 
follows:

where wi denotes the weight factor, and � is a scaling factor 
in the weights used to control the diffusion intensity of each 
iteration.

2.3.4 � Fast Gradient Projection Algorithm

Beck and Teboulle proposed a fast gradient projection 
algorithm [34], which is derived as follows. The model 
expression to solve the TV-based denoising problem is 
given by Eq. 33.

(28)A ≡ �
� ∈ R

3n2 × R
3n2 ∶ ‖�‖∞ ≤ 1

�

(29)PA(q) ≡ argmin
�∈A

‖� − q‖2
2
,∀q

(30)min
�≥0 ‖�‖AwTV subject to �p − A�� ≤ �

(31)

‖�‖AwTV

=
�

x,y,z

�
w
x
(�

x,y,z − �
x−1,y,z)

2 + w
y
(�

x,y,x − �
x,y−1,z)

2 + w
z
(�

x,y,z − �
x,y,z−1)

2

(32)

wx = exp

[
−(

�x,y,z − �x−1,y,z

�
)2
]

wy = exp

[
−(

�x,y,z − �x,y−1,z

�
)2
]

wz = exp

[
−(

�x,y,z − �x,y,z−1

�
)2
]

(33)min
x∈C

x − b2
F
+ 2�TV(x)

Table1   First-order primal-dual algorithm

where s is the iteration step of the original variable, t is the iteration 
step of the dyadic variable, and k is the number of iterations.

Set s > 0, t > 0, 𝜃 ∈ [0, 1] , input, u, �,R
Initialize �(0), g(0)

Repeat k ← k + 1

g(d+1) =
(
H

T
H +

1

s
I

)−1(
H

Tu +
1

s
g(d) − �RT�(d)

)

g (d+1) = g(d+1) + �(g(d+1) − g(d))

�(d+1) = PA(�
(d) − t�R g (d+1))

Calculate the deviation value RD
RD =

‖g(i+1)−g(i)‖2

‖g(i+1)‖2

Until RD ≤ 10−4 , or k reaches the maximum number of iterations
Output recovery image g(i+1)
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TV is a nonsmooth regularization function that can be an 
isotropic TVI or anisotropic TVl1

.and C belongs to a closed 
convex subset of E ≡ ℝ

m×n . The nonsmoothness of the TV 
function leads to significant difficulties in solving Eq. 33.
To address this challenge, Chambolle proposed a gradient-
based algorithm for solving pairwise problems using a 
pairwise approach under unconstrained conditions. Thus, a 
constrained problem pair was constructed according to the 
proposed method. The following symbols are required.

•	 P denotes the set of matrix-pairs 
(
p1, p2

)
 which meet:

•	 L ∶ ℝ
(m−1)×n ×ℝ

m×(n−1)
→ ℝ

m×n is linear operation, 
which is defined according to the following equation.

•	 The operator LT ∶ ℝ
m×n

→ ℝ
(m−1)×n ×ℝ

m×(n−1) adjacent 
to L is calculated according to the following formula.

where p ∈ ℝ
m×n is the matrix, whose defining equations 

are

PC belongs to an orthogonal projection operator in set C . 
Therefore, when C = Bl,u , the PBl,u

 can be defined as:

Based on the notation above, we obtain the dual problem in 
Eq. 33 and show the relationship between the primal and dual 
optimal solutions. To analyze this relationship, we propose 
the following hypothesis: We assume that 

((
p1, p2

))
∈ P is 

the optimal solution to this problem.

(
p1
i,j

)2

+
(
p2
i,j

)2 ≤ 1, (0 ≤ i ≤ m, 0 ≤ j ≤ n)

|p1
i,n+1

| ≤ 1, 0 ≤ i ≤ m

|||p
2
m+1,j

||| ≤ 1, 0 ≤ j ≤ n

L
(
p1, p2

)
i,j
= (p1

i,j
− p1

i−1j
) + (p2

i,j
− p2

i,j−1
)

1 ≤ i ≤ m, 1 ≤ j ≤ n

L
T(x) =

(
p1, p2

)

p1
i,j
= xi,j − xi+1,j, i = 1,… ,m − 1, j = 1,… , n

p2
i,j
= xi,j − xi,j+1, i = 1,… ,m, j = 1,… , n − 1

PBl,u
(X)i,j =

⎧
⎪
⎨
⎪⎩

lxij < l

xijl ≤ xij ≤ u

uxij > u

The HC(x) defined as:

Because objective function h in Eqs. (34) is continuously 
differentiable and its gradient is defined as

Therefore, problem Eq. 34 can be converted into the fol-
lowing equation.

Because the objective function is concave in p1, p2 and con-
vex in x , the maximum and minimum orders can be exchanged. 
Thus, the following equation is obtained:

This can be rewritten as follows:

where the optimal solution of the minimum problem is

Subsequently, by substituting Eq. 41 into Eq. 40 and omit-
ting the constant term, we obtain the following dual problem:

Our goal is to solve the dual problem in Eq. 34, whose gra-
dient is expressed by Eq. 36. Therefore, the gradient projection 
algorithm, which is an effective method for solving the denois-
ing problem, is presented. Because the norm of x ∈ ℝ

m×n is 
Frobenius norm. For 

(
p1, p2

)
∈ ℝ

(m−1)×n ×ℝ
m×(n−1) , the norm 

is expressed as follows:

The projection onto set P can be computed sim-
ply: For 

(
p1, p2

)
 , projection PP

(
p1, p2

)
 is given by 

(34)min
(p1,p2)∈P

{
h
(
p1, p2

) ≡ −||HC(b − �L
(
p1, p2

)
||2
F
+

|||
|||b − �L

(
p1, p2

)|||
|||
2

F

}

(35)HC(x) = x − PC(x), x ∈ ℝ
m×n

(36)∇h
(
p1, p2

)
= −2�LTPC

(
b − �L

(
p1, p2

))
,

(37)T
(
x, p1, p2

)
= Tr

(
L
(
p1, p2

)T
x
)
.

(38)min
x∈C

max
(p1,p2)∈P

{
X − b2

F
+ 2�Tr

(
L
(
p1, p2

)T
x
)}

(39)max
(p1,p2)∈P

min
X∈C

{
x − b2

F
+ 2�Tr

(
L
(
p1, p2

)T
x
)}

.

(40)max
(p1 ,p2)∈P

min
X∈C

{
X −

(
b − �L

(
p1, p2

))2
F
− b − �L

(
p1, p2

)2
F
+ b2

F

}
,

(41)x = PC

(
b − �L

(
p1, p2

))
.

(42)

max
(p1,p2)∈P

{
PC

(
b − �L

(
p1, p2

))
− (b − �L

(
p1, p2

)2
F

−b − �L
(
p1, p2

)2
F

}
.

(43)‖‖‖p
1, p2

‖‖‖ =

√
‖‖p1‖‖

2

F
+ ‖‖p2‖‖

2

F
,

(44)Lh ≤ �2.
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PP

(
p1, p2

)
=
(
r1, r2

)
 . The equations of r ∈ ℝ

m×n are shown 
below:

Substituting the objective function, gradient equation, and 
maximum Lipschitz constant into Eqs. 34 into the gradient 
projection algorithm introduced above, we obtain the denois-
ing algorithm.

2.3.5 � Os‑sart algorithm

In 1984, Anderson and Kak proposed an improved SART. 
The SART improves on the ART algorithms by calculat-
ing the error of all rays passing through a pixel at the same 
projection angle. The ART uses only one ray per iteration, 
whereas the SART corrects all the rays at the same angle. 
This is similar to lowering the noise introduced by the ART 
algorithm. Its formula is as follows:

The OS-SART is a combination of ordered subsets and 
the SART algorithm, and its formula is as follows:

where i denotes the i-th ray at a certain projection angle, j 
denotes the pixel value in the i-th ray, k denotes the number 
of iterations, and � is the relaxation factor.

2.3.6 � Proposed algorithm

Based on the OS-SART iterative algorithm and first-order 
primal–dual algorithm with total variation denoising, we 
propose a new algorithm for sparse-view NCT 3D image 
reconstruction (OS-SART-PDTV). The iterative process of 

(45)

r1
i,j
=

⎧
⎪
⎪
⎨
⎪
⎪⎩

p1
i,j

max

�
1,

��
p1
i,j

�2

+
�
p2
i,j

�2

�

p1
i,j

max

�
1,
���p

1

i,j

���+
���p

2

i,j

���
�

r2
i,j
=

⎧
⎪
⎪
⎨
⎪
⎪⎩

p2
i,j

max

�
1,

��
p1
i,j

�2

+
�
p2
i,j

�2

�

p2
i,j

max

�
1,
���p

1

i,j

���+
���p

2

i,j

���
�

(46)x
(k+1)

j
= xk

j
+

∑
pi∈p�

�
�k

pi−
∑M−1

m=0
wimx

(k)

im∑M−1

m=0
wim

wij

�

∑
pi∈p�

wij

.

(47)
x
(k+1)

j
= xk

j
+

∑
i∈St

�
�k

pi−
∑M−1

m=0
wimx

(k)

im∑M−1

m=0
wim

wij

�

∑
i∈St

wij

,

this algorithm contains two loops: the outer and inner loops 
are OS-SART for image reconstruction and PDTV for image 
denoising (Table 2).

3 � Experiment

3.1 � Quantitative evaluation index

In this study, we used four image evaluation metrics to 
quantitatively analyze the mass of the reconstructed 
images for each algorithm. The accuracy of the image 
reconstruction was quantitatively analyzed using the corre-
lation coefficient (CC) metric, which is defined as follows:

where � true is the image to be reconstructed, M denotes the 
voxel number, and �(y) represents the reconstructed value 
at voxel y . When the reconstructed image was the same as 
the image to be reconstructed, the CC value was 1.

(48)

CC =

∑M

k=1
(�(y) −�)(�true(y) −� true)

�∑M

k=1
(�(y) −�)2

∑M

y=1
(�true(y) −� true)

2

�1∕2
,

Table 2   OS-SART-PDTV algorithm

1. While the stop criterion is not met
2. Step1: OS-SART reconstruct the image
3. Initialization: g0 , �OS - SART , NOS - SART , �PDTV and NPDTV

4. For n = 1 to NOS - SART do; (n denotes the number of iterations)

5. 
g
(k+1)

j
= gk

j
+

∑
i∈St

�
�k

pi−
∑M−1
m=0

wimx
(k)
im∑M−1

m=0
wim

wij

�

∑
i∈St

wij

6. Non-negativity constraint;
If g(n)

OS - SART
< 0, g

(n)

OS - SART
= 0

7. Step2: PDTV
8. Set s > 0, t > 0, 𝜃 ∈ [0, 1], input, u, 𝛼,R

9. Initialize �(0), g(0) = gOS - SART

10. While the stop criterion is not met

11. 
g(d+1) =

(
H

T
H +

1

s
I

)−1(
H

Tu +
1

s
g(d) − �RT�(d)

)

12. g (d+1) = g(d+1) + �(g(d+1) − g(d))

13. �(d+1) = PA(�
(d) − t�R g (d+1))

14. Calculate the deviation value RD, 
RD =

‖g(d+1)−g(d)‖2

‖g(d+1)‖2

15. Until RD ≤ 10−4 , or d reaches the maximum number of iterations
16. Output recovery image g(d+1)

17. end if;
18. Until the stopping criteria are reached
19. Get the final reconstructed image gOS - SART - PDTV
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The ((MSSIM) provides a comprehensive evaluation 
of the reconstructed image by comparing the differences 
between the image to be reconstructed and the reconstructed 
image in terms of brightness, contrast, and structure.

Brightness information: l(�, �) = 2u�u�+c1

u2
�
+u2

�
+c1

.

Contrast information: c(�, �) = 2����+c2

�2
�
+�2

�
+c2

.

Structure Information: s(�, �) = ���+c3

��+��+c2
.

where �, � denote the standard image and the image to be 
evaluated, respectively; u� and u� are the mean values of the 
image; �� and �� are the standard deviations of the image; ��� 
is the covariance of the image; C1 , C2 and C3 are constants. 
The mean structural similarity of an image is defined as

RMSE is defined by the following equations:

p̂n represents a voxel in the image to be reconstructed, pn 
represents a voxel in the reconstructed sample, and N indi-
cates the number of voxels. A higher RMSE value indicates 
a larger error between the reconstructed images.

Universal quality image (UQI) is a widely used image 
evaluation index, which is defined as follows:

where cov denotes the covariance function, 𝜇̂,𝜇 are the 
means, and 𝜌̂2, 𝜌2 are the variances of the reconstructed 

(49)MSSIM =
1

M

M∑

t=1

[l(�t, �t)]
�×[c(�t, �t)]

� × [s(�t, �t)]
� .

(50)RMSE =

�∑N

n=1
(p̂n − pn)

2

N
,

(51)UQI =
2cov(𝜇̂,𝜇)

𝜌̂2 + 𝜌2
⋅

2𝜇̂𝜇

𝜇̂2 + 𝜇2
,

image and the image to be reconstructed, respectively. The 
UQI value ranges from 0 to 1 and increases with similarity.

3.2 � Digital 3D shepp–logan model experiment

In the digital simulation experiment, we compared and 
analyzed the performance of five algorithms: FBP, OS-
SART-TV, OS-SART-AwTV, OS-SART-FGPTV, and OS-
SART-PDTV by reconstructing 3D Shepp–Logan model 
projection data. The dimensions of the 3D Shepp–Logan 
model were 256 × 256 × 256. An iterative algorithm must set 
reasonable iterative parameters to obtain an ideally recon-
structed image. The following parameters were used to com-
pare the three iterative algorithms: OS-SART-TV � = 2.7 , 
NiterOS - SART = 80 , �TV = 200 , and NiterTV = 300 . For the 
OS-SART-AwTV algorithm � = 2.5 , NiterOS - SART = 80 , 
�AwTV = 100 , and NiterTV = 250 . For the OS-SART-FGPTV 
algorithm, � = 2.2 , NiterOS - SART = 80 , �PDTV = 0.006 , 
NiterFGPTV = 150 .  For the OS-SART-PDTV algo-
r i thm, � = 2.2 ,  NiterOS - SART = 80 ,  �PDTV = 0.0032 , 
NiterPDTV = 300 . To verify the denoising capability of 
the algorithm, the following parameters were set accord-
ing to the noise model of the NCT system: These param-
eters include the photon incident flux 1 × 105 , mic = 0 , and 
�2
ic
= 10.
Figure 2 shows the relationship between the RMSE of the 

reconstructed images using the OS-SART-PDTV algorithm 
and the number of iterations for different sparse views (28 
and 38 projection views), showing that the OS-SART-PDTV 
algorithm can converge to a stable solution after a certain 
number of iterations.

Figure 3 shows the reconstruction of images with differ-
ent numbers of projected views using the five algorithms. 
As illustrated in Fig. 3, the smoothness and sharpness of 

Fig. 2   RMSE versus iteration steps for the OS-SART-PDTV algorithm from different sparse views: a 28; b 38
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the images reconstructed using the five algorithms improved 
rapidly as the number of projection views increased. Com-
pared to the other four iterative algorithms, the reconstructed 
images of the FBP algorithm showed severe bar artifacts. 
The reconstructed images from the four iterative algorithms 
are smoother and have sharper boundaries than those from 
the FBP algorithm. As shown in the enlarged ROI in Fig. 3, 
the OS-SART-TV, OS-SART-AwTV, and OS-SART-FGPTV 
algorithms can effectively reduce artifacts; however, part of 
the edge structure is not exactly reconstructed. In contrast, 
the novel algorithm can not only maintain good reconstruc-
tion performance but also reconstruct finer structures.

In addition, we compared and analyzed the error images 
of the reconstructed images using different algorithms that 
reflected the difference between the pixel values of the 
reconstructed and reference images. According to the error 
image in Fig. 4, the image reconstructed using the FBP 
algorithm lost many features and produced many artifacts, 
indicating that the algorithm is not suitable for sparse-view 

NCT 3D reconstruction. The other four iterative algorithms 
performed better at suppressing artifacts and reconstruct-
ing detailed structural information. The OS-SART-PDTV 
algorithm has much less detail loss in the error image than 
the other algorithms.

We plotted the profile of the reconstructed images for 
each algorithm in Fig. 5 to further evaluate the perfor-
mance of each algorithm. The number of projection views 
from left to right was 28, 38, and 38 + , respectively. Here, 
38 + indicates that the noise model was added to the 3D 
Shepp-Logan model. As shown in Fig. 5, there was a large 
fluctuation in the FBP profile line with the largest devia-
tion from the true pixel value. Although the OS-SART-
TV, OS-SART-AwTV, and OS-SART-FGPTV algorithms 
performed better than the FBP algorithm, there was still 
a gap between their amplitudes and true pixel values. The 
profile of OS-SART-PDTV matches the reference value 
best and is closest to the true value. This also indicates that 

Fig. 3   Sliced images at z = 130 
for four algorithms reconstruct-
ing reconstructed images with 
different numbers of projection 
views
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the OS-SART-PDTV algorithm is well-suited for sparse-
view NCT 3D reconstruction.

As shown in Fig. 6. We used four image evaluation 
metrics to quantitatively analyze the reconstructed images 
from each algorithm. First, the evaluation indices of the 
images reconstructed using noiseless projection data 

were analyzed. From the CC, MSSIM, and UQI histo-
grams shown in Fig. 6, the values of the three metrics 
for the reconstructed images from each reconstruction 
algorithm gradually increased as the number of projec-
tion views increased. These three metrics exhibit similar 
characteristics.

Fig. 4   Slice of error images at 
z = 130

Fig. 5   (Color online) Horizontal profiles of the 3D Shepp–Logan model at z = 130th slices. a 28; b 38; c 38 + 
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According to the RMSE histogram in Fig.  6c, the 
reconstructed images of OS-SART-PDTV had the small-
est RMSE values compared to the other algorithms for the 
same projection views. The RMSE of the reconstructed 
image for each algorithm gradually decreased as the num-
ber of projection views increased. The RMSE value of 
the images reconstructed using the OS-SART-PDTV algo-
rithm at 28 projection views was 0.03103, indicating that 
the reconstructed image was closest to the real image and 
that the quality of the reconstructed images was higher. 
As shown in the UQI histogram in Fig. 6d, the UQI values 
of the reconstructed images for each algorithm gradually 
increased as the number of projected views increased. The 
trend of the UQI was the opposite to that of the RMSE. 
The reconstructed images from the OS-SART-PDTV algo-
rithm had the highest UQI values for the same number of 
projection views, indicating that it outperformed the other 
algorithms. The UQI value of the image reconstructed 
using the OS-SART-PDTV algorithm was 0.98594 for 
the 28 projection views. We then quantitatively analyzed 
four evaluation metrics for the images reconstructed using 
data containing noisy projections. From the CC, MSSIM, 

and UQI histograms, it can be seen that the OS-SART-
PDTV algorithm has the largest evaluation metrics for 
these three reconstructed images when the same number of 
noise-containing projections are reconstructed. According 
to the RMSE histogram, the reconstructed image from the 
OS-SART-PDTV algorithm had the lowest RMSE value. 
Therefore, based on the quantitative and visual analyses 
of each algorithm, the OS-SART-PDTV algorithm has the 
highest-quality reconstructed images with the same num-
ber of projection views.

3.3 � Digital head model experiment

We further analyzed the performance of these five algo-
rithms by reconstructing a digital head model. The recon-
structed images from the five algorithms used for recon-
structing different projection view numbers are shown in 
Fig. 7. Based on the reconstructed images, the smoothness 
and sharpness of the reconstructed images of all five algo-
rithms improve significantly as the number of projected 
views increases. Compared to the other four algorithms, the 
reconstructed images of the FBP algorithm show severe bar 

Fig. 6   (Color online) Histogram of reconstructed image evaluation metrics for the 3D Shepp-Logan model. a CC; b MSSIM; c RMSE; d UQI
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artifacts. The reconstructed images from these four iterative 
algorithms were smoother and had cleaner image bounda-
ries than those from the FBP algorithm. As shown in the 
enlarged ROI in Fig. 7, the OS-SART-TV, OS-SART-AwTV, 
and OS-SART-FGPTV algorithms are effective in reducing 
artifacts, but the edge structure of the image is not accurately 

reconstructed. In contrast, the proposed OS-SART-PDTV 
algorithm can not only reduce artifacts, but also reconstruct 
more detailed structural information.

To further evaluate the performance of the algorithm, 
the contours of the reconstructed images for each algorithm 
are plotted in Fig. 8. As shown in Fig. 8, the numbers of 

Fig. 7   (Color online) Sliced 
images at z = 70 for four algo-
rithms reconstructing recon-
structed images with different 
number of projection views

Fig. 8   (Color online) Horizontal profiles of the digital head model at z = 250th slices. a 28; b 38; c 38 + 
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projected views from left to right are 28, 38, and 38 + , 
where 38 + indicates that noise has been added to the pro-
jection data. As shown in Fig. 8, there was a large fluctuation 
in the FBP profile, which had the largest gap from the true 
pixel values. Although the OS-SART-TV, OS-SART-AwTV, 
and OS-SART-FGPTV algorithms performed better than the 
FBP algorithm, there was still a large deviation between the 
actual and true pixel values. The profile of OS-SART-PDTV 
matches the reference value best and is closest to the true 
value. This also indicates that the OS-SART-PDTV algo-
rithm is well-suited for sparse-view NCT 3D reconstruction.

According to the RMSE histogram of the reconstructed 
images from each algorithm, the OS-SART-PDTV algo-
rithm had the smallest RMSE of the reconstructed images. 
As the number of projected views gradually increased, the 
RMSE of the reconstructed image for each algorithm gradu-
ally decreased. When the number of projected views is 28, 
the RMSE value of the OS-SART-PDTV algorithm-recon-
structed image is 0.02404, which indicates that the recon-
structed image of this algorithm is the closest to the real 
image, and the quality of the reconstructed image is higher.

The UQI histogram in Fig. 9d shows that the UQI values 
of the reconstructed images of each algorithm increased as 
the number of projected views increased. The UQI trend 
was opposite to that of the RMSE. The OS-SART-PDTV 
algorithm reconstructs the image with the largest UQI 
value for the same number of projected views, indicating 
that this algorithm outperforms the other three iterative 
algorithms. When the number of projected views was 28, 
the UQI of the image reconstructed by PDTV algorithm 
was 0.9927. We then quantitatively evaluated images 
containing noisy projections reconstructed using the four 
algorithms. The OS-SART-PDTV algorithm reconstructs 
the image with the largest CC, MSSIM, and UQI values 
for the same number of projected views. According to the 
RMSE histogram, the RMSE value of the reconstructed 
image obtained using OS-SART-PDTV was the small-
est. Therefore, by quantitative and visual analyses of each 
algorithm, OS-SART-PDTV exhibited superior perfor-
mance in sparse view reconstruction.

To analyze the relationship between the OS-SART-
PDTV algorithm and regularization parameters, we 

Fig. 9   (Color online) Histogram of reconstructed image evaluation metrics for the digital head model. a CC; b MSSIM; c RMSE; d UQI
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present the reconstructed images with different regulari-
zation parameters in Fig. 10. Based on the reconstructed 
images, an optimal image was obtained by adjusting the 
regularization parameters when reconstructing the head 
model. According to the reconstructed images with dif-
ferent regularization parameters, it can be seen that the 
reconstructed image quality reaches the best when the 
regularization parameters reach a certain value as the 
reconstruction parameters gradually increase. As the regu-
larization parameter continued to increase, the quality of 
the reconstructed image decreased.

3.4 � Real neutron projection experiment

To further validate the performance of this novel algorithm 
in practical applications, the performance of the algorithm 
was verified using projection data from an NCT-based clock 
model (Fig. 11) provided by Burkhard Schillinger of the 
Technical University of Munich, Germany [35]. Schillinger 
et al. provided 201 neutron projection images captured at 
equal angles in the range of 0°to 180°. They also provided 
two dark field and two open field background images. The 
background images were obtained using the CCD camera 
with the neutron beam turned off, which contained read-
out noise as well as electron noise caused by dark currents. 
Open-field images were obtained using a CDD camera with 
neutrons turned on and without the samples.

As shown in Fig. 12, the artifacts of the reconstructed 
images by the FBP algorithm gradually increase as the num-
ber of projected views decreases. When the number of pro-
jected views is 45, the four iterative algorithms outperform 
the FBP algorithm in suppressing artifacts and reconstruct-
ing fine structure information. Although the OS-SART-TV, 
reconstructs images with fewer artifacts, the edges of the 
reconstructed images are too smooth, resulting in the loss of 
detailed structural information of the reconstruction images. 
Despite OS-SART-AwTV and OS-SART-FGPTV algorithms 
can also reconstruct a lot of image details, their reconstruc-
tion results are poor compared with the OS-SART-PDTV 
algorithm that reconstructs the same number of sparse views. 
Visually, the OS-SART-PDTV algorithm outperforms other 
algorithms in terms of noise removal, artifact suppression, 
and retention of detailed structural information.

The performances of the three iterative algorithms 
were quantitatively analyzed using four image-evaluation 
metrics, as shown in Fig. 13. In Fig. 13, the RMSE of the 

Fig. 10   (Color online) Reconstructed images with different regularization parameters for the OS-SART-PDTV algorithm 38 + 

Fig. 11   (Color online) Clock model
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image reconstructed by the OS-SART-PDTV algorithm 
is the smallest, indicating the minimal error between the 
reference image and the reconstructed image, whereas the 
image reconstructed by the OS-SART-PDTV algorithm has 
the highest CC, MSSIM, and UQI values, indicating that it 
is most similar to the reference image. In summary, the OS-
SART-PDTV algorithm performed well in denoising, sup-
pressing artifacts, and reconstructing fine structures when 
reconstructing the projection data of sparse NCT scans, 
indicating that this novel algorithm can be applied to the 
3D reconstruction of sparse-view NCT.

Figure  14 presents the profiles of the reconstructed 
images. According to the profile, the OS-SART-PDTV algo-
rithm has an advantage over the other algorithms, and its 
profile is the closest to the reference.

4 � Discusssion

Herein, we proposed a 3D reconstruction algorithm 
for sparse-view NCT. Because the analytical algorithm 
(FBP) has inherent defects that make it unsuitable for 
sparse-view reconstruction, we used an iterative algo-
rithm applied to the 3D reconstruction of sparse-view 
NCT. Furthermore, the iterative algorithm can embed a 
priori information to regularize the image. Therefore, the 
TV-based iterative algorithm is widely used in sparse-
view CT image reconstruction because it is superior to 
other algorithms in artifact suppression and denoising. 
By reconstructing the projection data of the 3D Shepp-
Logan, head, and clock models, the OS-SART-PDTV 
algorithm outperformed the other algorithms in both 

Fig. 12   (Color online) Sliced 
images at z = 201 for four algo-
rithms reconstructing recon-
structed images with different 
number of projection views
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quantitative and visual analyses. Therefore, OS-SART-
PDTV is suitable for sparse-view NCT. In addition, deep 
learning, an important research direction in the field 
of image reconstruction, has led to many significant 
research results in sparse-view reconstruction, such as in 
[36], using short C-arm CT. scans. This study proposed 

the DRONE model, which uses a codec network in the 
embedding module to extract depth features in the data 
and image domains, combined with the Wasserstein dis-
tance generation adversarial network to maintain details 
and features in the image domain. It combines data resid-
ual and image residual networks in the refinement module 

Fig. 13   (Color online) Histogram of reconstructed image evaluation metrics for the clock model. a CC; b MSSIM; c RMSE; d UQI

Fig. 14   (Color online) The profile of reconstructed images by FBP, OS-SART-TV, OS-SART-AwTV, OS-SART-FGPTV, and OS-SART-PDTV 
at z = 201. The number of projection views is a 45; b 90; c 135
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to restore fine structure features from the output of the 
embedding module. According to the CS iterative recon-
struction model, the depth prior of the data and image 
domains is regularized, thus ensuring the robustness of 
the DRONE network and making the DRONE model good 
at retaining image edge information, recovering image 
features, and reconstructing accurate image information 
in practical applications.

Generally, in practical NCT scanning systems, the pro-
jected image is affected by photon statistical noise and 
electrical noise. Therefore, several iterative reconstruc-
tion algorithms cannot achieve satisfactory results in NCT 
scanning systems. To further test the performance of our 
algorithm, we reconstructed the projection data obtained 
from the NCT scan-clock model using the OS-SART-
PDTV algorithm. Based on the results of the reconstructed 
neutron projection data, OS-SART-PDTV exhibited a 
good performance in denoising, suppressing artifacts, and 
reconstructing fine structures. According to the results of 
the reconstruction of the 3D Shepp-Logan model, the OS-
SART-PDTV algorithm converged monotonically to a sta-
ble solution (Fig. 3).

Iterative reconstruction algorithms generally need to 
optimize several parameters to obtain a stable solution. 
This is a common problem encountered by all iterative 
reconstruction algorithms. The OS-SART-PDTV algo-
rithm must optimize the following parameters: �OS - SART , 
NOS - SART , �PDTV and NPDTV . We found that the quality 
of the reconstructed images was significantly improved 
when �OS - SART varied within a small range. In other 
words, the OS-SART–PDTV algorithm was more sensi-
tive to this parameter. NOS - SART is usually set in the range 
of 50–100 because the improvement rate of the image 
quality gradually decreases as the number of iterations 
increases, and after reaching a certain number of itera-
tions, the image quality no longer improves. According to 
our experimental results, the OS-SART-PDTV algorithm 
obtained a better reconstructed image after 50 iterations. 
In addition, the two parameters �PDTV and NPDTV must be 
tuned several times to obtain high-quality reconstructed 
images. When reconstructing the projection data of a 
new sample, the two parameters �PDTV and NPDTV must 
be readjusted.

5 � Conclusion

NCT has proven to be a highly effective noninvasive meas-
urement method and has been widely applied in nuclear 
engineering, thermodynamics, and other fields. However, 
because of the complexity of the NCT application environ-
ment, obtaining complete projection data is challenging. 

The selection of an efficient sparse-view reconstruction 
algorithm is directly related to the system imaging qual-
ity and reliability of the measurement results. To this end, 
we propose the OS-SART-PDTV algorithm for sparse-view 
NCT 3D. The OS-SART-PDTV algorithm is divided into 
two steps: OS-SART for image reconstruction, and PDTV 
for solving the total variance using a first-order primal–dual 
algorithm. Based on the reconstruction results of the pro-
jection data obtained from the NCT scan clock model, the 
OS-SART-PDTV algorithm has a significant advantage over 
the other algorithms in preserving edge structure, denoising, 
and suppressing artifacts. Therefore, the OS-SART-PDTV 
algorithm has great potential for application in NCT 3D 
reconstruction.
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