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Abstract The rapid identification of radioactive sub-

stances in public areas is crucial. However, traditional

nuclide identification methods only consider information

regarding the full energy peaks of the gamma-ray spectrum

and require long recording times, which lead to long

response times. In this paper, a novel identification method

using the event mode sequence (EMS) information of tar-

get radionuclides is proposed. The EMS of a target

radionuclide and natural background radiation were

established as two different probabilistic models and a

decision function based on Bayesian inference and

sequential testing was constructed. The proposed detection

scheme individually processes each photon. When a photon

is detected and accepted, the corresponding posterior

probability distribution parameters are estimated using

Bayesian inference and the decision function is updated.

Then, value of the decision function is compared to preset

detection thresholds to obtain a detection result. Experi-

ments on different target radionuclides (137Cs and 60Co)

were performed. The count rates of the regions of interest

(ROI) in the backgrounds between [651, 671], [1154,

1186], and [1310, 1350] keV were 2.35, 5.14, and 0.57

CPS, respectively. The experimental results demonstrate

that the average detection time was 6.0 s for 60Co (with an

activity of 80400 Bq) at a distance of 60 cm from the

detector. The average detection time was 7 s for
137Cs (with an activity of 131000 Bq) at a distance of 90

cm from the detector. The results demonstrate that the

proposed method can detect radioactive substances with

low activity.

Keywords Natural radiation � Nuclide identification �
Sequential testing � Nuclear safety

1 Introduction

Radioactive substances are a threat to public safety

when they are present in public areas. In such cases,

nuclide identification is crucial for inspecting radioactive

substances. Traditional radionuclide identification methods

[1, 2] are based on the full energy peak information of the

gamma-ray spectrum and require that the particle events

generated by the decay of nuclides are treated as statistics

in the spectrum. Peak-finding algorithms such as the

derivative peak searching method, second derivative peak

identification method [3], covariance peak-search method

[4], and symmetric zero-area peak searching method [5]

use full energy peaks information to identify nuclides

based on the energy of the gamma rays from nuclides. To

obtain a low-statistic spectrum, a long spectrum recording

time is required, resulting in a slow response time. To

compensate for the shortcomings of traditional radionu-

clide identification methods, novel detection methods have

been proposed, including the adaptive filtering method [6],

chaos oscillator method, blind-source separation method,

and stochastic resonance method [4]. The adaptive filtering

method is a weak signal detection method with an optimal

parameter adjustment function that was developed based

on the Kalman filter. This method can automatically opti-

mize a nuclear signal. For the Chaos oscillator method, a
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nuclear signal in the form of a periodic signal is superim-

posed with a fixed-frequency chaotic oscillator. The mixed

signal is then detected and processed using phase differ-

ences. The blind-source separation method uses an analysis

algorithm to obtain the best estimate of a nuclear signal.

The stochastic resonance method uses the synergistic

effects of noise and signals to analyze nuclear signals.

Sullivan adopted wavelet transforms and the modulus

maxima method [7, 8] to achieve accurate nuclide identi-

fication using low-resolution spectra. Several artificial

neural network (ANN) methods have also been introduced

in previous studies [9–12] based on their significant success

in other research fields. Liang used the K-L transform to

extract gamma-ray spectrum features and trained an ANN

to perform radionuclide identification. Experiments and

tests demonstrated that the ANN method is effective for

rapid radionuclide identification [12]. Furthermore, Yang

et al. proposed a radionuclide identification method based

on machine learning and pattern recognition [13–18], and

Chong Jie and Yi Ming used a fuzzy-logic-based algorithm

to discriminate characteristic peaks and identify radionu-

clides [19–21]. Although the aforementioned gamma-ray

spectrum analysis methods have proven to be reliable and

practical, a long recording time is required to obtain a

spectrum with low statistical error. Therefore, these tech-

niques cannot meet the requirements for real-time

radionuclide inspection in public areas.

In 1945, Wald proposed the sequential probability ratio

testing theory [22], which can be used to perform real-time

analysis and judgment regarding whether a hypothesis is

true based on recorded events. The results satisfied statis-

tical requirements. The sequential probability ratio test

combined with the Bayesian law for posterior probability

distributions has been applied in many fields [23, 24].

Candy proposed a sequential Bayesian radionuclide iden-

tification method in 2008. This method combines the

sequential probability ratio test and Bayes rule for radiation

monitoring and radionuclide identification, and establishes

a radiation detection model. In 2010, Candy et al. devel-

oped SRaDS, which is a radiation monitoring system using

a sequential-Bayesian-based radionuclide identification

method [25]. SRaDS automatically eliminates irrelevant

and unexpected photons during the detection process and

improves detection efficiency. This system abandons the

concept of the energy spectrum statistics used for tradi-

tional nuclide recognition. It uses a Bayesian algorithm to

group each target photon, compares preset parameters for

each photoelectric event sequence, and calculates the

probability of the target radionuclide corresponding to the

photoelectric event sequence. Finally, the statistical results

of multiple single-energy ray groups are used to determine

whether the target radionuclides are detected. This method

can successfully detect radionuclides when the number of

recorded photons is small and the measurement time is

short [25, 26].

This method makes full use of event mode sequence

(EMS) information. An EMS of the target radionuclide can

be treated as a composition of EMSs emitted from several

monoenergetic source components. A well-defined proba-

bility model can then be used to describe the EMS of the

target radionuclide. Therefore, a sequential Bayesian

detection scheme can be applied to identify radioactive

nuclides in real time by incorporating energy, count rate,

and emission ratio information [24, 27]. Unlike the tradi-

tional full-spectrum-analysis-based method, this method

can detect radionuclides under low-count conditions.

However, the results of this method are affected by the

background count and some simulation experiments by

Xiang Qingpei verified that it may be inaccurate in cases

with high background counts [25, 26].

In this study, two different probabilistic models were

established based on the EMSs of natural background

radiation and target nuclide radiation fields. The posterior

distribution parameters of the probabilistic models were

then estimated using Bayes’ law. Finally, nuclide identifi-

cation was performed via sequential detection. Once a

photon has been detected and processed, the posterior

probability distribution parameters can be estimated using

Bayesian inference and a decision function can be updated

and compared to preset detection thresholds to determine

whether the target radionuclide is detected. In this paper, a

rapid nuclide identification model and sequential detection

scheme are introduced, followed by the presentation of

validation experiments on target radionuclides (137Cs and
60Co).

2 Methods

2.1 Nuclide identification model based

on background comparisons

The concept of monoenergetic decomposition [13] has

been proposed to leverage EMS information. Suppose that

the sequence of photons emitted by a radionuclide is a set

of photons emitted by several separate monoenergetic

sources. An Event n; em nð Þ;Dsm nð Þð Þ is defined as the nth

gamma ray recorded by the detector. This ray is emitted by

the mth monoenergetic source with a measured energy

em nð Þ and interarrival time Dsm nð Þ between the current and

previous event. The EMS of a target radionuclide (EMSrn)

is then represented as EMSrn N; e;Dsð Þ.

EMSrn N; e;Dsð Þ :¼
XM

m¼1

XNm

n¼1

Event n; em nð Þ;Dsm nð Þð Þ ð1Þ
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The index m represents the mth monoenergetic source of

a target radionuclide and the total number of monoener-

getic sources is M. The detector detects Nm events from the

mth monoenergetic source during the detection period. e is

defined as the complete set of energies composing EMSrn
along with Ds, which is the corresponding set of interar-

rival times. N is the sum of the set Nm.

Considering instrument noise and experimental uncer-

tainty, the measured energy of the gamma rays emitted by a

monoenergetic source in a radiation field follows a Gaus-

sian distribution and the interarrival times follow an

exponential distribution (based on the Poisson statistics of

nuclear decay) [28]. The corresponding formula is pre-

sented in Eq. (2), where em and rem are the expected value

and standard deviation of the Gaussian distribution,

respectively. km is the expected value of the exponential

distribution and am is the emission probability of the mth

monoenergetic source.

P em nð Þjradionuclideð Þ ¼ P em nð Þjem; r2em
� �

¼ 1ffiffiffiffiffiffi
2p

p
rem

e
� em nð Þ�emð Þ2

2r2em

P Dsm nð Þjradionuclideð Þ ¼ P Dsm nð Þjkmð Þ ¼ kme
�kmDsm nð Þ

PðEvent n;em nð Þ;Dsm nð Þjradionuclideð Þ¼am�P em nð Þjradionuclideð Þ
�P Dsm nð Þjradionuclideð Þ

ð2Þ

When a radionuclide identification instrument is placed

in a public area, the background radiation is constant. For

an EMS measured in the presence of natural background

radiation, the region of interest (ROI) in the spectrum

consists of the Compton platform and other types of

background radiation. Therefore, we modeled the mea-

sured energy of a gamma ray emitted by a monoenergetic

source in an ROI uniformly and the interarrival times

exponentially.

P em nð Þjbackgroundð Þ¼P em nð Þjeleftm ;erightm

� �
¼ 1

e
right
m �eleftm

P Dsm nð Þjbackgroundð Þ¼P Dsm nð Þjkbasem

� �
¼kbasem e�kmbaseDsm nð Þ;

PðEvent n;em nð Þ;Dsm nð Þjbackgroundð Þ
ð3Þ

In Eq. (3), eleftm and erightm are the left and right energies of

the ROI, respectively, and kDsbasem is the background count

rate of the ROI. The hypothesis test defined in Eq. (4) is

applied to identify the nuclide through sequential detection

based on the two hypotheses.

H1 : EMSrn N; e;Dsð Þ�P e;Dsjradionuclideð Þ
if radionuclide is detected½ �,

H0 : EMSrn N; e;Dsð Þ�P e;Dsjbackgroundð Þ

if radionuclide is not detected½ �
When a radionuclide is detected, P e;Dsjradionuclideð Þ

is considered as the probabilistic model of the EMS.

Otherwise, the probabilistic model of the EMS is

P e;Dsjbackgroundð Þ. The optimal solution to this binary

decision problem is provided by the Wald sequential

probability ratio test [22]. It is assumed that the Nth

detected photon is emitted from the mth monoenergetic

source. According to the definition in Eq. (1), there are a

total of Nm photons detected from the mth monoenergetic

source and the likelihood ratio Ratio Nð Þ is obtained by

applying the Newman–Pearson theorem as follows:

The decision function K Nð Þ is obtained by taking the

logarithm of Ratio Nð Þ, as shown in Eq. (6).

K Nð Þ ¼ K N � 1ð Þ þ lnP EventðNm; em Nmð Þ;ð
Dsm Nmð ÞjEMSrn N � 1; e;Dsð Þ;H1Þ

�lnP EventðNm;em Nmð Þ;Dsm Nmð ÞjEMSrn N�1;e;Dsð Þ;H0ð Þ
ð6Þ

With the Nth photon recorded by the detector, the pos-

terior probabilistic distribution parameter of the EMS

Ratio Nð Þ ¼ P EMSrn N; e;Dsð ÞjH1ð Þ
P EMSrn N; e;Dsð ÞjH0ð Þ

¼ P EMSrn N � 1; e;Dsð ÞjH1ð Þ � P EventðNm; em Nmð Þ;Dsm Nmð ÞjEMSrn N � 1; e;Dsð Þ;H1ð Þ
P EMSrn N � 1; e;Dsð ÞjH0ð Þ � P EventðNm; em Nmð Þ;Dsm Nmð ÞjEMSrn N � 1; e;Dsð Þ;H0ð Þ :

¼ Ratio N � 1ð Þ � P EventðNm; em Nmð Þ;Dsm Nmð ÞjEMSrn N � 1; e;Dsð Þ;H1ð Þ
P EventðNm; em Nmð Þ;Dsm Nmð ÞjEMSrn N � 1; e;Dsð Þ;H0ð Þ ð5Þ

123

Fast nuclide identification based on a sequential… Page 3 of 12 143



model under H1 is estimated using Bayesian inference. The

decision function is then updated according to the resulting

parameters and compared to preset detection thresholds to

obtain detection results. The Wald sequential probability

ratio test result is defined in Eq. (7), where T1 and T0 are

the detection thresholds [29].

K Nð Þ[ T1;AcceptH1,

T0 �K Nð Þ� T1; Continue,

K Nð Þ\T0;AcceptH0: ð7Þ

After defining a detection method, it is necessary to infer

parameters and finalize a decision function. Based on the

specified probability distribution form and observed data,

the posterior distribution of the mth monoenergetic source

under H1 is defined in Eq. (8), where the probabilistic

model is decomposed by applying Bayes’ rule [30, 31] and

am Nmð Þ is the emission rate estimated by the Nm th photon

detected from the mth monoenergetic source.

P EventðNm; em Nmð Þ;Dsm Nmð ÞjEMSrn N � 1; e;Dsð Þ;H1ð Þ

¼ P Dsm Nmð Þjem Nmð Þ; am Nmð Þ;EMSrn N � 1; e;Dsð Þ;H1ð Þ

�P em Nmð Þjam Nmð Þ;EMSrn N � 1; e;Dsð Þ;H1ð Þ
�P am Nmð ÞjEMSrn N � 1; e;Dsð Þ;H1ð Þ: ð8Þ

P am Nmð ÞjEMSrn N � 1; e;Dsð Þ;H1ð Þ is the probability

that the detected photon is emitted by the mth monoener-

getic source. Additionally, am Nmð Þ represents the detection
ratio for the Nmth photon. The total detected number of

photons is N and there are Nm photons emitted by the mth

monoenergetic source. Therefore, the following equation

can be derived:

P am Nmð ÞjEMSrn N � 1; e;Dsð Þ;H1ð Þ ¼ Nm

N
: ð9Þ

The measured energy of a photon detected from the mth

monoenergetic source is assumed to follow a Gaussian

distribution under H1, as shown in Eq. (10).

Pðem Nmð Þjam Nmð Þ;EMSrn N � 1; e;Dsð Þ;H1Þ

¼ 1ffiffiffiffiffiffi
2p

p
rem Nmð Þ

e
� em Nmð Þ�em Nmð Þð Þ2

2r2em
Nmð Þ ; ð10Þ

where em Nmð Þ and rem Nmð Þ are the expected value and

standard deviation of the posterior distribution,

respectively.

The arrival time interval Ds is exponentially distributed

and km Nmð Þ is the expected value. Therefore, the following

equation can be derived:

P Dsm Nmð Þjem Nmð Þ; am Nmð Þ;EMSrn N � 1; e;Dsð Þ;H1ð Þ
¼ km Nmð Þe�km Nmð ÞDsm Nmð Þ:

ð11Þ

Then, the probabilistic model of the EMS under

hypothesis H1 is given by Eq. (12).

P EventðNm; em Nmð Þ;Dsm Nmð ÞjEMSrn N � 1; e;Dsð Þ;H1ð Þ

¼ Nmkm Nmð Þ
N
ffiffiffiffiffiffi
2p

p
rem Nmð Þ

� e
�km Nmð ÞDsm Nmð Þ� em Nmð Þ�em Nmð Þð Þ2

2r2em
Nmð Þ ð12Þ

The probabilistic model of the EMS under hypothesis

H0 is given by Eq. (13).

P EventðNm; em Nmð Þ;Dsm Nmð ÞjEMSrn N � 1; e;Dsð Þ;H0ð Þ

¼ kbasem

M erightm � eleftm

� � e�kmbaseDsm Nmð Þ ð13Þ

The decision function is obtained by substituting

Eqs. (12) and (13) into Eq. (6), as shown in Eq. (14).

K Nð Þ ¼ K N � 1ð Þ þ lnNm � lnNþ ln
km Nmð Þffiffiffiffiffiffi
2p

p
rem Nmð Þ

 !

� km Nmð ÞDsm Nmð Þ � em Nmð Þ � em Nmð Þð Þ2

2r2em Nmð Þ

þlnM þ ln erightm � eleftm

� �
� ln kbasem

� �
þ kbasem Dsm Nmð Þ:

ð14Þ

2.2 Implementation of the proposed method

First, a radionuclide identification instrument is installed

in a public area to detect the EMS of the target radionuclide

under conditions with natural background radiation for a

long period (at least hundreds of seconds). The count rate

kbasem of the mth monoenergetic source in the natural

background radiation is then obtained by taking average

counts from the ROI.

Next, a parallel detection architecture is proposed to

implement the sequential detection scheme. As shown in

Fig. 1a, there are two types of detection channels that

process the detected photons emitted by a monoenergetic

source. The first type is designed to infer the parameters of

the probabilistic model and evaluate the log-likelihood

under hypothesis H1, whereas the other evaluates the log-

likelihood under hypothesis H0. When a photon is detected

in the first type of channel, photon discrimination is per-

formed. If an event is accepted by one of the channels, then

posterior distribution parameter estimation is performed.

Finally, the log-likelihood is calculated based on the

probabilistic model under hypothesis H1 with updated

parameters. Event discrimination is first performed using

the second type of channel. Finally, the proposed method

performs a log-likelihood evaluation based on the proba-

bilistic model under hypothesis H0 with constant
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parameters. After an event is processed using the detection

channels, the current decision function value is updated

according to Eq. (14) and compared to the preset detection

thresholds to obtain detection results according to Eq. (7).

A two-stage structure was designed to perform photon

discrimination, as shown in Fig. 1b. The energy discrimi-

nator is used to determine which channel a photon should

be processed in, after which a detection rate discriminator

uses the interarrival time for verification [13]. The energy

discriminator performs a confidence interval test, as shown

in Eq. (15), where n is the particle ordinal number, kem is

the confidence coefficient of the energy, and etm and rtm are

the mean and standard deviation of the energy, respec-

tively, which can be obtained experimentally.

etm � kemr
t
m � em nð Þ� etm þ kemr

t
m ð15Þ

The interarrival time discriminator also performs a

confidence interval test, as shown in Eq. (16).

Dsbasem � kcrDsbase �Dsm �Dsbasem þ kcrDsbase ; rDsbase
¼ Dsbase=

ffiffiffi
n

p
; ð16Þ

where Dsm is the average interarrival time and kc is the

confidence coefficient. Dsbasem is the mean interarrival time

under conditions with natural background radiation and

rDsbase is the width of the confidence interval.

The posterior probability distribution parameter esti-

mation of the EMS under hypothesis H1 is achieved using

Bayesian inference. Because energy is modeled as a

Gaussian distribution and the interarrival time is modeled

as an exponential distribution (both belonging to the

exponential family of distributions), it is convenient to find

conjugate prior distributions and infer the posterior distri-

bution in analytical form. Following research on Bayesian

inferencing [32, 25], the Gaussian–Gamma distribution

was applied to model the prior distribution of em and

r2em

� ��1

because the precision parameter precem is defined

as r2em

� ��1

. The prior distributions sem 0ð Þ and em 0ð Þ are

defined in Eq. (17), where a0, b0, u0, and v0 are hyperpa-

rameters [26]. For a weak prior, u0 is set to etm, a0 and b0
are set to one and 100, respectively, and k0 is set to one.

precem 0ð Þ�Gamma a0; b0ð Þ;

em 0ð Þ�N u0; v0precem 0ð Þð Þ�1
� �

;

Fig. 1 Detection architecture
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P em 0ð Þ; precem 0ð Þð Þ ¼ Nðem 0ð Þju0; v0precem 0ð Þð Þ�1ÞGammaðprecem 0ð Þja0; b0Þ

ð17Þ

Equation (18) models the prior distribution km 0ð Þ of the
expected value of the interarrival km as Gamma. c0 and d0
are also hyperparameters, where c0 is set to one and d0 is

set to kbasem .

km 0ð Þ�Gamma c0; d0ð Þ
P km 0ð Þð Þ ¼ Gamma km 0ð Þjc0; d0ð Þ ð18Þ

Up to the nth arrival from the mth monoenergetic

source, the posterior distributions of em nð Þ, sem nð Þ, and

km nð Þ are updated as shown in Eq. (19), where un, vn, an,

bn, cn, and dn are the hyperparameters of the posterior

distributions [33].

P em nð Þ; precem nð ÞjEMSrn n; e;Dsð Þð Þ

¼ P EMSrn n; e;Dsð Þjem nð Þ; precem nð Þð ÞP em nð Þ; precem nð Þð Þ
P EMSrn n; e;Dsð Þð Þ

/ Nðem nð Þjun; knprecemð Þ�1ÞGammaðprecem nð Þjan; bnÞ
P km nð ÞjEMSrn n; e;Dsð Þð Þ

¼ P EMSrn n; e;Dsð Þjkm nð Þð ÞP km nð Þð Þ
P EMSrn n; e;Dsð Þð Þ

/ Gammaðkm nð Þjcn; dnÞ ð19Þ

The hyperparameters can be inferred in analytical form

[33] via conjugacy, as shown in Eq. (20).

emean
m nð Þ ¼

Pn
i¼1 em ið Þ
n

kmean
m nð Þ ¼

Pn
i¼1 km ið Þ
n

un ¼
k0u0 þ

Pn
i¼1 em ið Þ

k0 þ n

vn ¼ v0 þ n

an ¼ a0 þ n=2

bn ¼ b0 þ
1

2

Xn

i¼1

em ið Þ � emean
m nð Þ

� �2þ
k0n emean

m nð Þ � u0
� �

2kn

cn ¼ c0 þ n=2

dn ¼ d0 þ
1

2

Xn

i¼1

km ið Þ ð20Þ

The expectation of the posterior distribution can be used

to obtain the parameters of the EMS model under H1.

em nð Þ ¼ un

rem nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

sem nð Þ

s

¼
ffiffiffiffiffi
bn
an

r

km nð Þ ¼ cn
dn

ð21Þ

Then, the decision function is updated according to the

parameters and the detection result is obtained by com-

paring the decision function to the preset detection

thresholds. If the decision function value exceeds the

threshold T1, a target radionuclide exists in the detection

environment. If the decision function value exceeds the

threshold T0, then there is no target radionuclide in the

detection environment. Otherwise, the detection process

continues until one of the thresholds is exceeded.

3 Experiments

3.1 Background experiment

In this experiment, the spectrum of the background was

recorded for a long duration. The count rate of the ROI was

stable and the relative statistical error was small. The target

radioactive sources were added and the spectrum was

collected to form a stable spectrum. The energy distribu-

tion model of the characteristic peaks in the ROI was then

analyzed.

For a target radionuclide, the count rate of the ROI in the

background can be obtained through a long-term detection

experiment [34]. 137Cs and 60Co were selected as target

radionuclides. The radioactivity of the 137Cs source was

131000 Bq and the radioactivity of the 60Co source was

7000 Bq. A LaBr3 (Ce) detector of size /3:81 cm�
3:81 cm was used in this experiment. The EX-03 multi-

channel analyzer was developed by the Chengdu Univer-

sity of Technology to obtain the EMS. The parameters for

Eqs. (15) and (16) are listed in Table 1. The experiment

Table 1 Preset detection parameters

Detection parameter Value

et1 of the first component of 137Cs 661 keV

rt1 of the first component of 137Cs 10 keV

et1 of the first component of 60Co 1170 keV

rt1 of the first component of 60Co 16 keV

et2 of the second component of 60Co 1330 keV

rt2 of the second component of 60Co 20 keV

kem ,kc 1.0

T0 - 3.98

T1 ? 3.98
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was performed in a laboratory environment to obtain the

count rate of the ROI in the background and the detection

time was set to 276 s. The threshold used in this study was

obtained experimentally and the results of the experiments

demonstrated that a threshold of 3.98 is acceptable.

The spectrum and EMS detected in the background are

presented in Fig. 2. The ROIs in the spectrum are labeled

with red, blue, and green regions. The ROI of 137Cs ranges

from 651 to 671 keV. The first ROI of 60Co ranges from

1154 to 1186 keV and the second ROI of 60Co ranges from

1310 to 1350 keV. It is clear that the counts in the ROI

approximately follow a uniform distribution.

Figure 2a presents a description of the test bench. Fig-

ure 2b presents the energy spectrum and EMS time-domain

scatter diagram for natural background radiation. Figure 2c

presents the energy spectrum and EMS time-domain scatter

diagram of the target nuclide 137Cs and natural background

radiation. Figure 2d presents the energy spectrum and EMS

time-domain scatter diagram of the target nuclide 60Co and

natural background radiation.

Mathematically, the Chi-square goodness-of-fit test was

performed to validate that the energy detected in the ROI

under natural background radiation conforms to a uniform

distribution [33]. The relevant formula is presented in

Eq. (22), where LeftChannel and RightChannel are the

edges of the selected ROI, Spectrumi is the count of the ith

channel in the spectrum, and T is obtained by taking the

average of the counts in the ROI.

Chisquare ¼
XRightChannel

i¼LeftChannel

Spectrumi � Tð Þ2

T
: ð22Þ

For the ROI of 137Cs, the Chi-square test result was

34.37. For the first ROI of 60Co ([1140, 1180] keV), the

result was 20.62 and for the second ROI of 60Co ([1300,

1360] keV), the result was 35.80. The calculated Chi-

square values were compared to the 95% confidence

Fig. 2 (Color online) Detected EMS and spectra in different radiation fields. a Description of the test bench; b Spectrum obtained under

background conditions with a detection interval of 250 s; c 137Cs radiation energy spectrum; d 60Co radiation energy spectrum
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threshold values, which were 55.76, 79.08, and 79.08,

respectively. All of the calculated values are less than the

corresponding threshold values, indicating that the energy

in the ROI measured under the background conditions was

uniformly distributed.

The count rate of the ROI under natural radiation

background, denoted as kDsbase , was also calculated. The

average interarrival time Dsbase was obtained by taking the

reciprocal of the count rate. The average count rates in the

background for [651, 671] keV, [1154, 1186] keV, and

[1310, 1350] keV were 2.35, 5.14, and 0.57 per second,

respectively.

The rapid nuclide identification method was used to

detect target radionuclides under background conditions.

The detection results for 137Cs under background condi-

tions are presented in Fig. 3a. The detection function

gradually decreases along with events that are processed

until the detection function exceeds the low threshold,

indicating that the background is detected in 5 s. The

detection results for 60Co under background conditions are

presented in Fig. 3b. This detection function also gradually

decreases with the events that are processed until the

detection function exceeds the low threshold, indicating

that 60Co is absent in the background.

3.2 Radionuclide detection experiment

The 137Cs source was placed 150 cm in front of the

LaBr3 detector to verify the proposed method under a

radiation field and detection was performed for 100 s. The

detected EMS and spectrum are presented in Fig. 2b. A

fitted Gaussian function (red line) is placed above the ROI,

and it is clear that the energy detected in the ROI under a

radiation field approximately follows a Gaussian distribu-

tion. In addition to this graphical depiction, the Chi-square

test was performed to validate that the energy detected in

the ROI under a radiation field approximately follows a

Gaussian distribution. The relevant formula is presented in

Eq. (23).

Chisquare ¼
XRightChannel

i¼LeftChannel

Spectrumi � IntegralValueið Þ2

IntegralValuei
;

ð23Þ

where LeftChannel and RightChannel are the edges of the

selected ROI, Spectrumi is the count of the ith channel in

the spectrum, and IntegralValue is obtained using

Eq. (24).

Fig. 3 137Cs and 60Co Detection results under background radiation conditions
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IntegralValuei ¼ TotalCount � r

ei
right

ei
left

1ffiffiffiffiffiffi
2p

p
rt

e

� e�etð Þ2
2 rtð Þ2 ; ð24Þ

where TotalCount is the total count in the ROI, and eileft and

eiright are the left and right energies of the ith bin in the

spectrum, respectively. Additionally, et and rt are preset

distribution parameters by the posterior probability distri-

bution parameter estimation (Table 1).

The Chi-square test result for the ROI [641,681] was

50.20. When comparing the Chi-square value to the value

of the 95% confidence threshold of 55.76, the calculated

value is less than the threshold, indicating that the energy

spectrum in the ROI under the 137Cs radiation field and

long-term detection conforms to a Guassian distribution.

A rapid nuclide identification method was used to detect
137Cs in the corresponding radiation field. The detection

distance is 35 cm. The detection function is presented in

Fig. 4a, where the decision function gradually increases

with events that are processed and eventually exceeds the

high threshold, indicating that the 137Cs source is detected

in 4.1 s.

There were only a few counts in the ROI before 137Cs

that were identified and the counts in the ROI were not

sufficient to form a peak. According to Eqs. (23) and (24),

the Chi-square test was performed to determine whether

the spectrum in the ROI follows a Gaussian distribution.

The test value was 41.76, which is greater than the

threshold value of 31.41, indicating that traditional full-

spectrum-analysis-based radionuclide identification meth-

ods cannot identify 137Cs at low values.

The 60Co source was placed 10 cm in front of the LaBr3
detector and detection was performed for 100 s. The EMS

and spectrum detected are presented in Fig. 2c, where two

fitted Gaussian functions (red and blue lines) are placed in

the ROI. The energy detected in the ROI under the 60Co

radiation field approximately follows a Gaussian

Fig. 4 (Color online) 137Cs and
60Co decision results in 137Cs

and 60Co spectra. a Decision

function and spectrum obtained

when 137Cs is identified.

b Decision function and

spectrum obtained when 60Co is

identified
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distribution. By using Eqs. (23) and (24), the Chi-square

test was also performed for validation.

The Chi-square test results for ROI [1140, 1180] and

[1300, 1360] keV were 66.67 and 74.21, respectively. The

calculated Chi-square values were compared to the values

of the 95% confidence threshold, which were 79.08 and

79.08, respectively. All calculated values were less than the

threshold values, indicating that the energy in the ROI

detected in the spectrum under radiation and long-term

detection conforms to a Gaussian distribution.

The rapid nuclide identification method was used to

detect 60Co in the corresponding radiation field. When the

detection distance is 10 cm, the detection results are pre-

sented in Fig. 4b, the decision function gradually increased

with events that are processed and eventually exceeds the

high threshold, indicating that there is a 60Co source in the

radiation field, indicating that the 60Co source is detected

in 4.6 s. Only a few counts in the ROI before 60Co were

detected. To determine if the counts in the ROI were

insufficient to form a peak, according to Eqs. (23) and (24),

a Chi-square test was performed to demonstrate that the

spectrum in the ROI did not follow a Gaussian distribution.

The test values of the ROIs of [1155, 1185] keV and [1310,

1350] keV were 48.59 and 60.34, respectively, and the

95% confidence threshold values were 43.77 and 55.76,

respectively. It is clear that the calculated values are greater

than the detection thresholds. Therefore, traditional full-

spectrum-analysis-based radionuclide identification meth-

ods cannot identify 60Co with such a low counts.

3.3 Detection performance experiments

Experiments were conducted while varying the distance

between the source and detector to evaluate the

performance of the proposed method. The step length was

5 cm and the distance ranged from 5 to 100 cm. For each

distance, the detection experiments were repeated 20 times

to analyze the statistics of the identification time. The

average detection time and variance for each test group

were calculated and plotted. The results for the identifica-

tion time required to cover the distance between the source

and detector are presented in Fig. 5.

As shown in the figure above, when the detection dis-

tance is set to 5 cm, the 137Cs detection time is 0.2 s. As

the distance increases, the detection time also increases.

When the distance reaches 90 cm, the average detection

time increases to 7 s. For the measurement of 60Co, the

average detection time is within 2 s when the detection

distance is within 25 cm. As the detection distance

increases, the detection time also increases and the relative

distance reaches 60 cm. The average detection time is 6 s,

which meets the requirements for rapid identification.

4 Conclusions and prospects

Based on the Bayesian sequential detection method, this

paper introduced a rapid nuclide identification method for

radionuclide inspection in public areas. Unlike other tra-

ditional full-spectrum-analysis-based methods, in this

study, based on the EMS measurement of background

radiation and the target radiation field, two EMS sequences

were established, a priori models were estimated based on

effective particle events, and an a posteriori model was

obtained. The target nuclides were identified via sequential

detection of the posteriori models.

To prove that the efficiency of the proposed back-

ground-comparison-based radionuclide identification
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Fig. 5 Relationship between detection time and detection distance. Identification times required to cover the distances to the 137Cs source with

an activity of 131000 Bq (left) and 60Co source with an activity of 80400 Bq (right)
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method can meet the requirements of rapid identification

under different measurement conditions, several groups of

experiments were conducted. The relative distance between

the detector and two radioactive sources was controlled and

multiple measurements were performed at distances of 0 to

100 cm to obtain detection time curves for the radioactive

sources. The average detection time was 6.0 s for 60Co

(with an activity of 80400 Bq) at a distance of 60 cm from

the detector. The average detection time was 7 s for 137Cs

(with an activity of 131000 Bq) at a distance of 90 cm

from the detector. These results demonstrate that rapid

nuclide identification can be achieved using the proposed

background-comparison-based radionuclide identification

method.

To improve the adaptability of the proposed method to

complex environments, further research should focus on

the rapid detection and identification of radionuclides in

multiple-nuclide mixtures under conditions with complex

motion.
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