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Abstract In this study, the anti-noise performance of a

pulse-coupled neural network (PCNN) was investigated in

the neutron and gamma-ray (n-c) discrimination field. The

experimentswere conducted in two groups. In the first group,

radiation pulse signals were pre-processed using a Fourier

filter to reduce the original noise in the signals, whereas in the

second group, the original noise was left untouched to sim-

ulate an extremely high-noise scenario. For each part, arti-

ficial Gaussian noise with different intensity levels was

added to the signals prior to the discrimination process. In the

aforementioned conditions, the performance of the PCNN

was evaluated and compared with five other commonly used

methods of n-c discrimination: (1) zero crossing, (2) charge

comparison, (3) vector projection, (4) falling edge percent-

age slope, and (5) frequency gradient analysis. The experi-

mental results showed that the PCNN method significantly

outperforms other methods with outstanding FoM-value at

all noise levels. Furthermore, the fluctuations in FoM-value

of PCNN were significantly better than those obtained via

other methods at most noise levels and only slightly worse

than those obtained via the charge comparison and zero-

crossing methods under extreme noise conditions. Addi-

tionally, the changing patterns and fluctuations of the FoM-

value were evaluated under different noise conditions.

Hence, based on the results, the parameter selection strategy

of the PCNN was presented. In conclusion, the PCNN

method is suitable for use in high-noise application scenarios

for n-c discrimination because of its stability and remark-

able discrimination performance. It does not rely on strict

parameter settings and can realize satisfactory performance

over a wide parameter range.

Keywords Pulse coupled neural network � Zero crossing �
Frequency gradient analysis � Vector projection � Charge
comparison � Neutron and gamma-ray discrimination �
Pulse shape discrimination

1 Introduction

Given that the demand for neutron detection has sig-

nificantly increased in recent years, neutron monitoring has

become vital in numerous fields such as deep-space

exploration [1], reactors [2, 3], radiopharmaceuticals [4],

geology [5], national security [6, 7], and meteorology [8].

One of the essential challenges in neutron detection is the

presence of accompanying gamma-rays. They are gener-

ated by the interaction, i.e., inelastic scattering and radia-

tion capture, between the neutrons and the surrounding

environment. Hence, typically, an extensive gamma back-

ground is present wherever neutrons exist [9]. For most

radiation detectors, the incident neutrons and gamma-rays

are simultaneously recognized, and it is difficult to differ-

entiate the signal coming from neutrons or gamma-rays. To

distinguish these signals, pulse-shape discrimination (PSD)

was developed [10, 11], which is based on the differences
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in [12] the shapes of neutrons and gamma-rays pulse sig-

nals (n-c PSs). Therefore, discrimination techniques rely

heavily on scintillator materials, and many scintillators

with cutting-edge discrimination performance have been

developed [13–15]. It should be noted that most organic

scintillators exhibit similar decay characteristics, but other

scintillators exhibit different characteristics such as CLYC.

Among PSD-capable scintillators, plastic scintillators are

more commercially friendly, convenient to transform, and

adaptive to different work conditions; however, their dis-

crimination capabilities are limited. Conversely, liquid and

crystal [16] scintillators commonly outperform plastic

scintillators in terms of discrimination, although they are

more expensive. Furthermore, liquid scintillators are diffi-

cult to store and transport.

Plastic scintillators are preferred in many scenarios due

to their application requirements and cost control. How-

ever, many broadly used discrimination methods, such as

charge comparison [17] and the zero-crossing method [18],

perform poorly in plastic scintillators when compared to

liquid scintillators. Consequently, a discrimination method

capable of realizing a higher performance in plastic scin-

tillators is required. In 2021, Liu et al. resolved this

problem by proposing a pulse-coupled neural network

(PCNN)-based discrimination method [19], which exhibits

a remarkable discrimination effect when applied to n-c PS
data acquired for a plastic scintillator. This method can

recognize dynamic information inside n-c PSs and has the

advantage of no pre-training process requirements. Fur-

thermore, the anti-noise ability was mentioned in their

study, but they did not further validate the anti-noise per-

formance of the PCNN applied in n-c discrimination.

Although many studies have been performed to control

the noise in various detection systems [20–22], it is still an

inevitable problem in any radiation detection system;

hence, it is crucial for discrimination methods to maintain a

stable performance under the influence of noise. In the

present study, experiments were conducted to investigate

the noise immunity of the PCNN. The n-c mixed field, used

in the study, was generated by a 4.5-MeV (mean energy)
241Am-Be neutron source, and n-c PSs were measured

from this field via an EJ299-33 plastic scintillator and a

9821B photomultiplier. Different levels of Gaussian noise

were added to the pulse shapes prior to the discrimination

process. The experimental results of the PCNN were

compared with the other five commonly used discrimina-

tion methods under different noise conditions, namely, zero

crossing (ZC), charge comparison (CC), vector projection

(VP), falling edge percentage slope (FEPS), and frequency

gradient analysis (FGA) methods. Additionally, the influ-

ence of the PCNN parameters on its anti-noise effect was

elucidated. Based on this, a parameter decision strategy

was presented for high-noise application scenarios.

The remainder of this paper is organized as follows. In

Sect. 2, several n-c discrimination methods are intro-

duced. In Sect. 3, evaluation criteria for n-c discrimina-

tion are defined. In Sect. 4, details of the experimental

design and results are presented, and the characteristics of

the PCNN parameters are analyzed. Finally, conclusions of

this study are presented in Sect. 5.

2 Principles of discrimination methods

2.1 Zero crossing

The zero crossing (ZC) method is one of the most used

methods in the n-c discrimination field based on a simple

methodology, while it offers reliable discrimination results

[18, 23]. To discriminate the pulse signals using this method,

n-c PS must be first transformed into a bipolar pulse signal.

Second, the so-called zero-crossing time should be calculated

by finding the time interval between the beginning of the n-c
PS and zero-crossing point of the bipolar pulse signal, which

are set as 10%of the pulsemaximum and the first sample after

the pulse’s peak that crosses the baseline, respectively.

Finally, the neutrons and gamma-rays can be discriminated by

comparing the zero-crossing times of different n-c PSs.

Specifically, a digital CR� RC2 filter was used for the

transformation from the original n-c PS to the bipolar pulse

signal, whose mathematical expression is as follows [24]:

y n½ � ¼ 3dy n� 1½ � � 3d2y n� 2½ � þ d3y n� 3½ �

þ Td 1� xT
2

� �
x n� 1½ � � Td2 1þ xT

2

� �
x n� 2½ �;

ð1Þ

where y denotes the bipolar pulse signal obtained by this

filter process, x denotes the original n-c PS, n denotes the

sample index, d and x denote constants defined by:

d ¼ e�T=s; ð2Þ

x ¼ 1

s
; ð3Þ

where s ¼ RC denotes the shaping time and T denotes the

sampling interval of the pulse signal. Furthermore, s and T

were determined using the detection system and its set-

tings. Given the slower decay speed of neutron pulse sig-

nals (organic scintillators), the zero-crossing time of

neutrons is longer than that of gamma-rays.

2.2 Charge comparison

As the charge comparison (CC) method exhibits out-

standing discriminating efficiency and stability, it has been

widely used in many areas that require the n-c
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discrimination technique [17]. A criterion termed as charge

ratio Rc is used to transmit the pulse shape information of

neutrons and gamma-rays, which can be calculated as

follows [25]:

Rc ¼
QN

QM

; ð4Þ

where QN denotes the charge of the slow component,

which can be calculated by integrating the amplitude of the

falling edge and delayed fluorescence parts of a pulse

signal, QM denotes the charge of the entire signal, which is

defined as the amplitude integration of all sampling points

of a given pulse signal. Given that the decay speed of a

pulse signal generated by a neutron is slower than that of a

gamma-ray photon, along with the effect of the delayed

fluorescence that is characteristic of neutron pulses, the

slow component charge QN due to neutrons is significantly

larger than that of gamma-ray signals. Hence, the Rc-value

for the neutrons is higher than that for the gamma-rays

because of the differences between the n-c PSs.

2.3 Vector projection

In the vector projection (VP) method [26, 27], the pulse

signals of different particles are considered as vectors

pointing in different directions in a vector space. First, n-c
PSs were normalized. Second, two ideal pulse signals

corresponding to neutron and gamma-rays are defined.

They are typically obtained by averaging a significant

number of respective n-c PSs. Then, every single vector

(i.e., n-c PS) is projected in the projection direction, which
is defined as the difference between ideal pulses. The

projection results of neutrons and gamma-rays differ and

act as the discrimination factor. The projection results of

neutrons are generally larger or smaller than those of

gamma-rays based on whether the projection direction is

positive or negative with respect to the vector space. In this

study, the projection results of gamma-rays are set as

smaller than those of neutrons to maintain the same dis-

tribution of the neutron and gamma peaks in the histogram

of counts (Sect. 3) as those for other discrimination

methods used in this study (i.e., the neutron band on the

right side with larger discrimination factors and the

gamma-ray band on the left side with smaller discrimina-

tion factors).

2.4 Falling edge percentage slope

The falling edge percentage slope (FEPS) method

[27, 28] aims to realize fast real-time n-c discrimination.

To realize discrimination using this method, a region of

interest (ROI) must be selected, which is located in the

region with the most significant differences between n-c

PSs in the falling edge area. The ROI is specified by setting

two thresholds on the top and bottom, termed as Above A

threshold (AAT) and Below A threshold (BAT), respec-

tively. The analysis includes finding the intersections

between a n-c PS and these two thresholds: intersection U
at coordinates ðUx;UyÞ for AAT and intersection

WðWx;WyÞ for BAT. Finally, the discrimination factor, i.e.,

the Rs, is calculated as follows:

Rs ¼
Wy � Uy

Wx � Ux
: ð5Þ

Usually, the BAT is a constant and set as 10% of the

maximum of a n-c PS, whereas the AAT is a manually

determined parameter that varies from 30 to 90% of the

maximum. As gamma-ray pulses exhibit a faster decline

speed, the absolute value of their Rs is considerably larger

than those of neutrons. Additionally, the Rs-values of n-c
PSs are negative; hence, in the histogram of counts of n-c
PSs mentioned in Sect. 3, the gamma-ray band is located

on the left side of the neutron band.

2.5 Frequency gradient analysis

The frequency gradient analysis (FGA) method is a

frequency-domain-based method with theoretically spe-

cialized anti-noise ability as proposed in 2010 [29]. When

applying it to n-c PSs, a radiation pulse signal must be

transformed into the frequency domain using the Fourier

transform. In contrast to the original time-domain signal, in

which the most significant differences between n-c PSs are
located at the falling edge area, the frequency-domain

signal exhibits distinct differences between n-c PSs at the
beginning of the signal. The amplitudes of the transformed

n-c frequency-domain signals at zero frequency, equal to

the average values of the entire time-domain pulse signals

of the neutron and gamma-ray, respectively, significantly

differ from each other. Subsequently, two points in the

early parts of a frequency-domain signal are selected to

calculate the gradient value, Rg, which is further used in the

discrimination process. The mathematical formula for the

discrimination factor, termed as the frequency gradient, is

defined as follows:

Rg ¼ X 0ð Þj j � X fð Þj j
f

; ð6Þ

where Xðf Þ denotes the frequency-domain signal trans-

formed from an original time-domain n-c PS using the

Fourier transform, f denotes the frequency, which is

located at the initial parts of the frequency-domain signal

mentioned earlier. The Rg-value of neutrons is greater than

that of gamma-rays because of the faster decrease in the

frequency domain signals of the neutrons.
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2.6 Pulse coupled neural network

A pulse-coupled neural network (PCNN) was introduced

into the field of n-c discrimination by Liu et al. in 2021

[19]. It has been shown to exhibit a significantly better

performance than almost all the previous discrimination

techniques. This is attributed to its ability to recognize and

capture the dynamic information in n-c PSs, which is

crucial, if not the most important, information for the dis-

crimination process. This characteristic is inherited from

the original structural design and application of the PCNN.

Initially, the PCNN was inspired by the biological neuronal

cortex of animals. The biological neurons of the visual

cortex of animals receive stimulation from their eyes,

leading to spike generation and transmission between cell

assemblies in the cortex [30, 31]. This interaction between

cell assemblies can recognize and analyze the information

contained in the stimuli [32] wherein the information is

carried by the images that are observed by the eyes of the

animals. Due to evolution, this working style of neurons is

extremely effective in dealing with dynamic information

inside images. Based on these neurological findings, Eck-

horn et al. proposed an artificial cortical model [33] that

enables computers to obtain parts of the dynamic infor-

mation processing ability of biological neurons. A few

years later, in 1994, Johnson et al. designed a PCNN model

based on Eckhorn’s original cortical model for the image-

processing area [34, 35]. Since then, PCNN has been

widely used in many image processing applications such as

image shadow removal [36], feature extraction [34], pat-

tern recognition [32], image segmentation [35], and object

recognition [37, 38].

The structural design of the PCNN incorporates three

closely connected parts: accepted, modulation, and pulse

generator domains [39]. First, the link input (LI) and

feedback input (FI) constitute the accepted domain, and

they are both modulated by the surrounding neurons via

weighting matrices M and W. The LI is responsible for the

stimulus provided by the surrounding neurons, whereas the

input signal’s outer stimulus S mainly affects the FI. Sec-

ond, the modulation domain controls the relationship

between the internal threshold and internal activity by

changing the character of the dynamic threshold h. Finally,

the pulse generator domain is responsible for the activation

of a neuron by comparing the value of its internal activity

U and dynamic threshold h. If the activity exceeds the

threshold, then the neuron is activated (or ignited), and

consequently passes a stimulus to its neighboring neurons.

The mathematical equations for these activities are as

follows [40]:

Fij n½ � ¼ e�aFFij n� 1½ � þ VF

X
kl

MijklYkl n� 1½ � þ Sij; ð7Þ

Lij n½ � ¼ e�aLLij n� 1½ � þ VL

X
kl

W ijklYkl n� 1½ �; ð8Þ

Uij n½ � ¼ Fij n½ � 1þ bLij n½ �
� �

; ð9Þ

Yij n½ � ¼ 1; Uij n½ �[ hij n½ �
0; otherwise

�
; ð10Þ

hij n½ � ¼ e�ahhij n� 1½ � þ VhYij n� 1½ �; ð11Þ

where F denotes the FI and L denotes the LI; subscripts ij

denote the location of a neuron at coordinate ði; jÞ; n

denotes the iteration count; aF and aL denote the decay

time constants of FI and LI, respectively; VF and VL denote

the amplification coefficients of FI and LI, respectively; M

and W symbolize the weighting matrices of FI and LI,

respectively; S denotes the input signal’s outer stimulus; U

denotes the internal activity; Y denotes the timing pulse

sequence that determines whether a neuron located at ði; jÞ
should be fired (Uij n½ �[ hij n½ �, Yij n½ � ¼ 1) or not fired

(Uij n½ � � hij n½ �, Yij n½ � ¼ 0); h denotes the dynamic thresh-

old; b denotes the linking strength, which modulates the

contribution from the FI and LI to the internal activity U;

ah and Vh denote the decay time constant and amplification

coefficient of the dynamic threshold, respectively.

To discriminate n-c PSs using the PCNN method [19],

the neural network should be first provided with n-c PSs in
order to generate an ignition map (a vector of the same size

as the n-c PS) that corresponds to each fed n-c PS. The

pulse shape differences between neutrons and gamma-rays

are amplified and more discernible in the ignition maps of

neutrons and gamma-rays. Subsequently, the discrimina-

tion factor was obtained by integrating the ignition times

(the number of times a neuron at one point is ignited) of

parts of the ignition map that correspond to the parts

incorporating the falling edge and delayed fluorescence in

the original n-c PS. It should be noted that the discrimi-

nation factors of neutrons are greater than those of gamma-

rays because the ignition times of a point are more sig-

nificant if the amplitude is higher.

3 Evaluation criteria

In this study, Figure of merit (FoM) is used to objec-

tively evaluate the discrimination performance of several

methods under different conditions. After the discrimina-

tion process, the discrimination results, i.e., the discrimi-

nation factors of n-c PSs, were used to create a histogram.

This histogram consists of two bands: the gamma-ray band

on the left side and neutron band on the right side. We used
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a Gaussian fitting function to fit each band and calculated

the FoM-value using the following Eq. [41]:

FoM =
S

FWHMn þ FWHMc
; ð12Þ

where S denotes the distance between these two bands,

FWHMn and FWHMc denote the full width at half maxi-

mum of the gamma-ray (on the left side) and neutron (on

the right side) bands, respectively. For an excellent dis-

crimination result, the bands in the histogram are dis-

cernibly separated from each other, while each band

maintains a Gaussian distribution with low variance. This

leads to a larger S-value and smaller FWHMn and FWHMc

values. This implies that as the FoM value increases the

discrimination results become better.

4 Experiment

4.1 Experimental setups and parameter settings

The 9414 n-c PSs used in the study were collected

under excitation from a 241Am-Be isotope. To acquire data,

we used a TPS2000B oscilloscope (with 200�MHz band-

width, 1-GS/s sampling rate, and 8 bits of vertical resolu-

tion), 9821 B photomultiplier, and n-c discrimination

capable plastic scintillator (EJ299-33). We followed the

Shannon criteria [42], the pulse duration was set to 160 ns

to prevent the bandwidth from suppressing the information.

The trigger threshold was set to 500 mV, which corre-

sponds to a 1.6-MeVee (electron equivalent, i.e., signal

produced by 1.6-MeV gamma-ray) threshold. Typical pulse

waveforms of neutrons and gamma-rays are shown in

Fig. 1.

All parameters of the discrimination methods used in the

study are optimized. For the ZC method, s ¼ 1 ns and

T ¼ 72 ns. For the CC method, we set the range ð bP �
10; bP þ 90Þ ns as the total component, where the bP denotes

the time when a pulse reaches its maximum value, and the

range ð bP þ 27; bP þ 90Þ ns denotes the slow component.

For the FEPS method, the aforementioned threshold A is

set to 60%. For the FGA method, f ¼ 1. Finally, for the

PCNN method, we set n ¼ 180, aF ¼ 0:325, aL ¼ 0:356,

ah ¼ 0:081, VF ¼ 0:0005, VL ¼ 0:0005, Vh ¼ 16:8,

b ¼ 0:67, M ¼ W ¼ ½0:1509; 0; 0:1509�, and the integra-

tion range is set as ð bP � 7; bP þ 123Þ ns.

4.2 Discrimination results and analysis

Filtering is a standard process for most discrimination

approaches, and it reduces the noise from the detection

system (e.g., the noise of the photomultiplier tube or

random voltage fluctuation). Zuo et al. demonstrated that

different discrimination methods include an optimal fil-

tering method, which can exhibit optimal discrimination

performance [43]. In the study, the most commonly used

filtering method, the Fourier filter, was applied to all dis-

crimination methods to control variables such that the

change in FoM is only affected by the type of discrimi-

nation method. Additionally, in the study, we focus on the

effect of noise. Hence, evaluation was conducted twice as

follows: using the raw n-c PSs and using filtered n-c PSs.
Although ZC, CC, VP, and PCNN methods can work

adequately with or without the filter, the FEPS method is

unable to correctly discriminate n-c PSs when the n-c
PSs are not pre-processed by the filter.

Hence, the discrimination processes can be divided into

two groups as follows: (i) five methods that benefit from

filtering (ZC, CC, VP, FEPS, and PCNN) and (ii) five

methods that do not benefit from the filtering process (ZC,

CC, VP, FGA, and PCNN). The discrimination results are

shown in Figs. 2 and 3 as two-dimensional histograms. In

the histograms, count refers to the number of n-c PSs with a
specific range of normalized discrimination factors and

normalized maximum pulse amplitudes. The band on the

left side originates from gamma-ray pulses, and the band

on the right side originates from neutron signals.

As shown in Fig. 2, CC (a) and PCNN (b) methods

significantly outperform other methods with band shapes

that are consistent with a Gaussian distribution and a wide

gap between the gamma-ray and neutron bands. For ZC

(c) and VP (d) methods, an excessively high number of

n-c PS counts were located between the bands, and they

were difficult to identify. The discrimination performance

of the FEPS (e) method is poor given that both bands are

Fig. 1 (Color online) Typical pulse waveforms of neutrons and

gamma-rays
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smeared (larger FWHM), and thus they almost overlap

with each other.

The results of the raw data processing are shown in

Fig. 3. In general, when raw data are used, the discrimi-

nation effects of ZC (a) CC (b) VP(c) and PCNN (d)

methods are slightly degraded when compared with their

performance with filter processing as shown in Fig. 2. The

number of counts located between the n-c bands signifi-

cantly increased when band widths (FWHM) increased.

Evidently, the residual noise in n-c PS negatively affects

the discrimination process. More experiments were per-

formed to determine the specific impact of noise on the

different methods,.

Thus, different intensity levels of Gaussian noise were

added to the n-c PSs before the discrimination process to

evaluate the different methods. The Gaussian noise X
^

follows

thedistributionX
^

�N 0; 0:2ð Þ, and the intensity level is defined

Fig. 2 (Color online) Discrimination results with pre-processed data

for the following methods: a Charge Comparison, b Pulse Coupled

Neural Network, c Zero Crossing, d Vector Projection, and e Falling

Edge Percentage Slope. For the excellent discrimination result, two

bands should be separated to leave the minimum possible number of

counts between the two bands. Each band should be centrally

distributed, thereby maintaining the shape of Gaussian distribution
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as a constant c. The artificial noise added to the n-c PSs is cX
^

.

However, it is not possible to represent the effectiveness of a

method under a given noise level by the result of a single

experiment because different random sequences X
^

generated

in every independent experiment can lead to different dis-

crimination results. The average discrimination performance

tended to be stable only when the number of independent

experiments was sufficient. This average performance repre-

sents general effectiveness under specific noise conditions.

The following steps were performed to determine the effec-

tiveness of the method under a given noise level:

• Independently repeat the discrimination experiment

4000 times.

• A comparison of the averaged FoM-value of the first

2000 times and that of the rest ensures that the

difference between them is sufficiently low (less than

0.001).

• The average FoM-value of all 4000 experiments as the

discrimination performance under a specific noise level.

Hence, we avoided variation in the FoM-value due to

random noise, and thus the average performance under a

specific circumstance is distinct. The experiment was

Fig. 3 (Color online) Discrimination results using raw data for the following methods: a Zero Crossing, b Charge Comparison, c Vector

Projection, d Pulse Coupled Neural Network, and e Frequency Gradient Analysis
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divided into two groups, similar to the former. First, the

n-c PSs were filtered via the Fourier filter before dis-

crimination, thereby ensuring that the effect of noise

mainly originates from the artificially added Gaussian

noise with a controllable level. Second, raw n-c PSs were
fed to the discrimination process, and thus the original

noise from the radiation detection system remained

unchanged and was further artificially increased by Gaus-

sian noise to evaluate the performance of different meth-

ods. Their performance was quantified by the FoM-value

and its fluctuation, which is defined as the absolute value of

the difference between the FoM-value of n-c PSs without
artificially added Gaussian noise and FoM-value under a

given level of artificially added noise. For each noise level,

the discrimination experiment for each method was per-

formed multiple times (over 4000 times in this study) to

obtain an average fluctuation in FoM-value, which denotes

the general performance of the method under this specific

noise scenario. The experimental results are shown in

Figs. 4, 5.

In Fig. 4a, in a manner similar to the intuitive results

shown in Fig. 2, the discrimination methods are easily

separated into two groups according to their performance.

The FoM-values of the PCNN and CC methods fluctuate at

approximately 1.7 while those of the other methods are

roughly in the range of 1.0 to 1.2 and generally tend to

decline as the noise level increases. As shown in Fig. 4b,

the FEPS method is the most sensitive to noise, and its

fluctuations significantly increase when the noise level

increases. This is because the FEPS method relies on the

calculation of a certain area’s slope of the falling edge, and

this requires n-c PSs to be highly smooth. They are no

longer smooth when Gaussian noise is added to the signals.

Hence, the discrimination performance of the FEPS

degrades significantly. Given this characteristic, the FEPS

method cannot work properly without the filtering process,

and it requires a filter to smooth n-c PSs. The VP, CC, and
ZC methods exhibit a similar tendency of fluctuation in the

FoM-value, which slowly increases with increases in the

noise level. With respect to the PCNN method, its fluctu-

ation initially shares the same pattern with other methods

and then surprisingly decreases to zero. This is because the

discrimination effect of the PCNN initially improved

slightly at the low noise level (as shown in Fig. 4b) and

then decreased when the noise level exceeded 0.01. This

implies that the PCNN can realize a better discrimination

performance under a low-noise scenario than that without-

noise scenario. This property is realized by tuning the

parameters of the PCNN, thereby making it more capable

of anti-noise characteristics while sacrificing minimal dis-

crimination performance. The parameter selection strategy

is explicitly illustrated in Sect. 4.3.

Figure 5a shows the experimental results without fil-

tering process wherein it is observed that PCNN and CC

methods still yield the optimal FoM-value and exhibit

stable performance under high noise conditions. However,

FGA and VP methods perform poorly under the high noise

circumstances wherein the FoM-value fluctuates around 1

and 0.8 values, respectively, which are unacceptable in

many n-c discrimination applications. Additionally, the

effect of PCNN does not improve at the low artificial noise

level as in the former experiment, thereby suggesting that

raw n-c PSs already contain excessive noise.

As shown in Fig. 5b, the anti-noise ability of the VP

method is unsatisfactory, and its fluctuations increase

immediately when artificial noise is added. A comparison

of the discrimination performance of the VP method with

and without pre-processing indicated that its FoM-values

significantly decrease from a normal level to a level that

cannot be considered successful. The fluctuations in the

Fig. 4 (Color online) Discrimination performance under noise conditions with filtering process. a FoM-value of different discrimination

methods under serval noise levels; b Fluctuations in FoM-value of different discrimination methods under serval noise levels
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FGA method initially increased and then decreased at a

higher noise level. Given the frequency domain-based

property of the FGA method, it can work well in such high

noise condition, with its FoM-value fluctuating at approx-

imately 1.03 and does not show a clear decline tendency.

With respect to the CC and ZC methods, their fluctuations

in FoM-value were the most stable and remained at a low

level under all noise conditions. Finally, for the PCNN

method, the change in the fluctuations in FoM-value are

almost identical to those of the CC and ZC methods below

0.01 noise level. However, at higher levels, the fluctuations

of the PCNN increase faster than those of the CC and ZC

methods. The detailed discrimination performances of

different methods under different situations are listed in

Table 1. The best results of evaluation criteria under each

noise condition are marked in bold.

In conclusion, as shown in Table 1, the PCNN method

exhibits optimal discrimination performance with and

without the filtering process, with FoM-values significantly

exceeding those of all other methods. Additionally, the

anti-noise ability of the PCNN exceeded that of other

methods under filter conditions and reached the same level

as the other fluctuation-stabilized methods (such as the CC

and ZC methods) when the filtering process was removed.

Although the anti-noise performance of ZC and FGA

methods is good, their poor discrimination performance is a

disadvantage that cannot be ignored. The CC method

exhibited a discrimination performance second only to that

of the PCNN and even better anti-noise performance under

extreme noise conditions. Therefore, for high-noise appli-

cations, the PCNN method is recommended because it can

remain stable under varying noise conditions and can

exhibit an outstanding discrimination performance. How-

ever, if the noise conditions are extremely poor, then the

use of the CC method is recommended to cross-check

discrimination results of the PCNN method for ensuring the

accuracy and effectiveness of discrimination results.

4.3 Selection strategy of the parameters of PCNN

The discrimination performance and anti-noise capa-

bilities are closely related to the parameters of the PCNN.

Hence, it is important to determine the behavior of the

PCNN when these parameters change. In this section, we

evaluated the effect of the six main parameters of the

PCNN. When a parameter is changed, the other parameters

are fixed to the values mentioned in Sect. 4.1. For each

parameter, experiments were conducted for different noise

levels to determine its effect on anti-noise performance and

under a zero artificial noise scenario to estimate its impact

on discrimination performance. The experimental results

are shown in Fig. 6. In the figure, the Y-axis on the left side

denotes fluctuations in the FoM value measured for dif-

ferent noise levels, and the Y-axis on the right side repre-

sents the FoM value measured without artificial noise.

As shown in Fig. 6a, the FoM-value declines from

approximately 1.85 to 1.65, with some periodical fluctua-

tion when the value of aF increases while the fluctuations in
FoM-value stabilize at their lowest level when the value of

aF is approximately 0.325. The aF is responsible for the

decay rate of the FI. A larger aF value indicates a faster

return of activated neurons to the resting state. Hence, it

increases the ignition frequency of the neuron. If the aF-
value is excessively low, then the ignition frequency of

each neuron in the PCNN decreases, thereby adversely

affecting the information recognition ability of the PCNN.

Conversely, if the aF-value is excessively high, it sup-

presses the effect on a neuron from its former iteration, and

thus the FI is heavily reliant on the outer stimulus, which

can deteriorate the discrimination and anti-noise

Fig. 5 (Color online) Discrimination performance under noise conditions without the filtering process. a FoM-value of different discrimination

methods under serval noise levels; b Fluctuations in FoM-value of different discrimination methods under serval noise levels
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performance of the PCNN. Hence, aF should be selected as

approximately 0.325. As shown in Fig. 6b, a change in aL
does not affect the discrimination or anti-noise capabilities

over a wide range. This is because aL is responsible for the

behavior of the LI, whereas the LI is not extremely

important in n-c discrimination applications. The discrim-

ination process mainly depends on the FI to extract infor-

mation from n-c PSs, whereas the LI only slightly

moderates the internal activity of neurons. Any value from

0.34 to 0.36 is acceptable for aL.
As shown in Fig. 6c, the FoM-value fluctuated at

approximately 1.7 when the M changes without an obvious

pattern whereas the fluctuations in FoM-value tended to

decrease when the value of M increased. The M affects the

contribution of the surrounding neurons to the central

neuron. Increases in the value make the connection

between neighboring neurons closer. A stronger connection

between neurons decreased the sensitivity of PCNN to the

random fluctuation of the pulse signals, i.e., it improved in

terms of ignoring extraneous noise and focusing on the

information carried by the signals. The recommended

range of M-value was 0.15 0.28. As shown in Fig. 6d, the

performance of the PCNN was steady for b values of b
lower than 0.72. For values exceeding this value, the

performance of discrimination and noise immunity signif-

icantly decreased. This degradation originated from the

relationship imbalance between FI and LI. As previously

mentioned, FI is more important in n-c discrimination

applications. When the b value increased, the contribution

of LI to the internal activity also increased, which directly

decreased the contribution of FI’s because the internal

activity consisted of FI and LI. Thus, if the contribution of

one increases, that of the other must proportionally

decrease. Therefore, the b values should be lower than

0.65.

Figure 6e and f shows the effect of the two parameters

related to the dynamic threshold. The ah, which is

responsible for the decay speed of the dynamic threshold,

exhibited an apparent optimal value range of approxi-

mately 0.083–0.088. In this range, discrimination and anti-

noise capabilities were good. With respect to the amplifi-

cation coefficient Vh, the FoM-value decreased from 1.9 to

1.5 when Vh increased. The fluctuations in FoM-value

initially ameliorated when the value of Vh increased from

15 to 17. However, the fluctuations significantly increased

when Vh exceeded 17. The Vh affects the amplification

speed of the dynamic threshold. A larger Vh-value leads to

a faster amplification speed, thereby curtailing the ignition

Table 1 Discrimination

performance under various

noise conditions

Method/Noise level 0 0.5 1 1.5 2

Discrimination results under influence of noise with filtering process

ZC (FoM) 1.097 1.094 1.091 1.084 1.075

CC (FoM) 1.618 1.602 1.597 1.587 1.574

VP (FoM) 1.024 1.011 1.008 1.006 1.001

FEPS (FoM) 1.184 1.165 1.148 1.119 1.081

PCNN (FoM) 1.720 1.741 1.740 1.731 1.721

Method/Noise level 0 0.5 1 1.5 2

ZC (FoM fluctuation) 0 0.003 0.005 0.011 0.020

CC (FoM fluctuation) 0 0.009 0.013 0.018 0.026

VP (FoM fluctuation) 0 0.011 0.015 0.017 0.021

FEPS (FoM fluctuation) 0 0.015 0.029 0.054 0.086

PCNN (FoM fluctuation) 0 0.012 0.011 0.006 0.000

Discrimination results under the effect of noise without filtering process

ZC (FoM) 1.104 1.107 1.103 1.100 1.091

CC (FoM) 1.563 1.572 1.566 1.557 1.546

VP (FoM) 0.870 0.892 0.892 0.892 0.892

FGA (FoM) 1.034 1.072 1.065 1.058 1.052

PCNN (FoM) 1.744 1.736 1.734 1.723 1.698

Method/Noise level 0 0.5 1 1.5 2

ZC (FoM fluctuation) 0 0.002 0.001 0.003 0.011

CC (FoM fluctuation) 0 0.005 0.002 0.003 0.011

VP (FoM fluctuation) 0 0.025 0.025 0.024 0.024

FGA (FoM fluctuation) 0 0.037 0.030 0.023 0.017

PCNN (FoM fluctuation) 0 0.004 0.005 0.012 0.026
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process of the neurons and decreasing the ignition fre-

quency. This negatively impacts the information extraction

ability of the PCNN and results in a decrease in the FoM-

value as shown in Fig. 6f. Meanwhile, the considerable

amplification speed makes it difficult for the dynamic

threshold to be exceed by the stimulus of noise, which

explains increases in the PCNN’s noise immunity in the

middle range of Vh value. The value of Vh should be in the

16–16.5 range.

In general, all parameters of the PCNN can be selected

from a wide range and still achieve an

acceptable discrimination performance (with FoM-value

from 1.6 to 1.9) and anti-noise performance (with fluctu-

ations in FoM-value under 0.04). The result indicates that

the PCNN method is not heavily constrained by its

parameters when applied to n-c discrimination. In addi-

tion, the effect of many parameters on discrimination and

anti-noise performance steadily fluctuated when the values

of the parameters were within a reasonable range whereas

the performance significantly decreased when the values

were selected at extremes. The reason for this phenomenon

was that the PCNN was composed of several closely

Fig. 6 (Color online) Effects of different parameters on the FoM-

value and fluctuations in FoM-value under serval noise conditions.

a Decay time constant of feedback input aF; b Decay time constant of

link input aL; c Weighting matrixes M; d Linking strength b; e Decay

time constant ah; f Amplification coefficient Vh. The Y-axis on the left
side denotes the fluctuations in FoM-value, measured for different

noise levels; and the Y-axis on the right side represents the FoM-

value, which is measured without artificial noise
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connected parts. Hence, when the parameter responsible

for one part exhibited significant changes, the other parts

modulated it to make it work accurately. For example, if

the aF was excessively low, the decay speed of the FI

significantly decreased, and the FI increased accordingly

and provided a stronger stimulus to the internal activity.

Nevertheless, the internal activity did not make the neurons

stay activated forever. The dynamic threshold was ampli-

fied more times than in the usual aF-value scenario such

that the neurons returned to the initial state. However, the

modulation ability exhibited certain limitations. Modula-

tion failed if the selected parameter was excessively radical

to maintain the connection between different parts of the

PCNN, thereby decreasing the performance of the PCNN.

5 Conclusion

In the study, the anti-noise performance of the PCNN

method for n-c discrimination was evaluated. The n-c
pulses used in the study were generated via a plastic

scintillator (EJ299-33) under 241Am-Be excitation. A 9821

B photomultiplier and an oscilloscope with 200-MHz

bandwidth, 1-GS/s sampling rate, and 8-bit vertical reso-

lution were used to collect data. It is noted that the sam-

pling rate of the oscilloscope influences the discrimination

performance. The experiments were divided into two runs

as follows: in the first run, pulses were pre-processed using

the Fourier filter to reduce original noise in the signals, and

in the second run, original raw signals were used to sim-

ulate an extremely high-noise scenario. For each run,

artificial Gaussian noise at different levels was added to the

signals before the discrimination process. Under these

circumstances, the performance of the PCNN was evalu-

ated and quantified via FoM-values and their fluctuations.

The performance of the PCNN was compared with the

other five commonly used methods, namely zero crossing,

charge comparison, vector projection, falling edge per-

centage slope, and frequency gradient analysis.

The experimental results indicated that the PCNN method

outperforms most other methods (CC is close) in FoM-value

under all noise conditions. Furthermore, the fluctuations in

FoM-values were lower for the PCNN than for the other

methods when the pulse signals are pre-filtered under most

conditions. Only for the additional artificial noise at high

levels, the fluctuations in the FoM-values of the PCNN

exceeded those of the CC and ZC methods. The results

demonstrated that the PCNN method exhibits outstanding

anti-noise capability and can be applied to high-noise

applications. Additionally, experiments were conducted to

evaluate the effect of PCNN parameters. Variations in FoM-

values and their fluctuations were observed under different

noise conditions. The experimental results suggested that

PCNN does not rely on strict parameter settings and can

realize satisfactory performance over a wide parameter

range. In conclusion, the PCNN method is suitable for use in

high-noise scenarios due to its stability and excellent dis-

crimination performance. A future study will further validate

the feasibility of the PCNN in processing pulse signals

recorded for different scintillator materials.
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