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Abstract In the field of neutronics analysis, it is impera-

tive to develop computer-aided modeling technology for

Monte Carlo codes to address the increasing complexity of

reactor core components by converting 3D CAD model

(boundary representation, BREP) to MC model (construc-

tive solid geometry, CSG). Separation-based conversion

from BREP to CSG is widely used in computer-aided

modeling MC codes because of its high efficiency, relia-

bility, and easy implementation. However, the current

separation-based BREP-CSG conversion is poor for pro-

cessing complex CAD models, and it is necessary to divide

a complex model into several simple models before

applying the separation-based conversion algorithm, which

is time-consuming and tedious. To avoid manual segmen-

tation, this study proposed a MeshCNN-based 3D-shape

segmentation algorithm to automatically separate a com-

plex model. The proposed 3D-shape segmentation algo-

rithm was combined with separation-based BREP-CSG

conversion algorithms to directly convert complex models.

The proposed algorithm was integrated into the computer-

aided modeling software cosVMPT and validated using the

Chinese fusion engineering testing reactor model. The

results demonstrate that the MeshCNN-based BREP-CSG

conversion algorithm has a better performance and higher

efficiency, particularly in terms of CPU time, and the

conversion result is more intuitive and consistent with the

intention of the modeler.

Keywords BREP to CSG conversion � Computer-aided

modeling � cosVMPT � Intelligent pre-segmentation �
MeshCNN

1 Introduction

The first 3D boundary representation (BERP) to con-

structive solid geometry (CSG) conversion algorithm is an

improved 2D ASV [1] algorithm. Although the improved

ASV is easy to implement, its convergence cannot be

guaranteed and it is only suitable for converting polyhe-

drons. Shapiro [2, 3] presented a solution to the BERP-

CSG conversion for 3D solids in the 1990s, in which they

solved a general conversion problem from BREP to half-

space-based CSG. Shapiro proposed three concepts for

generalizing the BERP-CSG algorithm: canonical inter-

section, a describable theorem based on half-spaces of

boundaries, and half-space separation. The proposed

algorithm can be used to construct half-space-based CSGs

for solids bound by quadric surfaces. Moreover, half-space

domination was proposed to simplify the CSG represen-

tation of a solid. Suzanne [4] proposed the BHC algorithm

based on the fundamental work of Shapiro et al., who

presented an effective representation method for an
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intermediate model that avoids the extra computation of

computing a resultant solid after each pass of dominating

half-space factorization. Additionally, half-spaces are fac-

tored one at a time, avoiding the additional post-processing

computation required to minimize the resultant CSG-tree.

Shapiro and Suzanne laid the theoretical foundation for 3D

BREP-CSG conversion.

Monte Carlo (MC) particle transport codes [5] are

widely used in the field of nuclear analysis, and require a

3D CSG model as the input. With the increasing com-

plexity of nuclear facilities, it is necessary to use CAD

software for modeling; however, the resulting model is the

BREP model. Therefore, it is crucial to develop computer-

aided modeling technologies to satisfy the conversion

demands of CAD models (BREPs) to MC models (CSGs).

To conduct this conversion, Luo [6] proposed a separation-

based BREP-CSG conversion algorithm based on the the-

ories of Shapiro and Suzanne. The core idea is to decom-

pose a complex CAD model into a set of simple convex

solids by using Boolean operations. The corresponding

convex solids are represented by half-spaces of the

boundary surfaces. Separation-based BREP-CSG conver-

sion is reliable and easily implemented, resulting in soft-

ware development for computer-aided modeling, including

MCAM [7–9] and McCAD [10–12].

However, separation-based BREP-CSG conversion

relies heavily on a large number of Boolean operations

because it is time consuming and error-prone, particularly

for models with complex structures. Additionally, the

likely occurrence of excessive decomposition reduces the

conversion efficiency and increases the computation time

of the MC code. Luo [13] proposed feature-based BREP-

CSG conversion to optimize BREP-CSG conversion, the

basic idea of which is to identify the predefined features of

a model using feature recognition technology. These fea-

tures were used as tree nodes, and a separation-based

BREP-CSG conversion was employed to convert each

feature. Unfortunately, the model characteristics are

inconspicuous or features are difficult to define. This limits

the applicability of the proposed algorithm. Other opti-

mization techniques [12] have been proposed to improve

conversion efficiency, including replacing Boolean opera-

tions with triangle collisions, adding an auxiliary splitting

surface algorithm to reduce the generation of irregular

solids, and introducing a priority-sorting algorithm for

splitting surfaces. Although the optimized conversion

algorithm improved the conversion efficiency and stability,

it required rules of thumb summarized by users. These

rules frequently rely on low-level geometric elements, such

as edges and faces, without considering the high-level

features of the 3D models. Moreover, owing to the limi-

tations of these rules, it is extremely difficult, or even

impossible, to find a universal rule for all models.

Therefore, it is necessary to manually preprocess a com-

plex model before conversion to avoid errors, particularly

when converting a model with highly complex structures,

such as the Chinese fusion engineering testing reactor

(CFETR) [14, 15]. Figure 1 shows diagrams of the com-

plex models. Relatively regular models are obtained

through manual preprocessing and can be converted using

computer-aided modeling software (e.g., cosVMPT).

However, manual model preprocessing is time-consuming

and tedious, and it is imperative to develop model pre-

processing technology.

Manual model preprocessing decomposes a complex

model into relatively regular sub-models according to the

intention of the modeler. Generally, this process can be

categorized as a 3D shape segmentation. To date, several

studies have been conducted on 3D-shape segmentation

[16–20]. Compared with other methods, deep learning-

based segmentation has been widely studied owing to its

effectiveness (see Sect. 2). Considering the high similarity

between components, as shown in Fig. 2a, the vacuum

vessel (VV) shares similar component structures with the

thermal shield (TS). Moreover, there are some components

in the other sectors, as shown in Fig. 2b. Therefore, con-

sidering the characteristics of a fusion model, deep learn-

ing-based 3D-shape segmentation can play a significant

role in 3D model preprocessing. Accordingly, an intelligent

pre-segmentation algorithm is proposed to learn prepro-

cessing rules by inputting pre-segmented cases, with the

learned rules then used to guide complex model

segmentation.

The cosVMPT [21, 22] is a visual modeling platform

that converts CAD models into MC models and utilizes

OpenCascade (OCC) as a CAD geometry engine. The

FreeCAD framework is a graphical user interface, and

VTK provides data visualization. The cosVMPT was suc-

cessfully applied to complex CFETR fusion devices com-

prising tens of thousands of solids (Fig. 3), including the

plasma chamber, blanket, divertor, cryostat, VV, TS, tor-

oidal field coil (TFC), poloidal field coil, and central

solenoid. An intelligent pre-segmentation algorithm was

proposed to optimize the BREP-CSG conversion algorithm

to prevent the need for manual intervention in model pre-

processing and improve the conversion performance.

Intelligent pre-segmentation is a combination of deep-

learning-based 3D model segmentation with separation-

based BREP-CSG conversion. The 3D model segmentation

algorithm was used to learn the preprocessing rules for the

segmentation of the CAD model and intermediate model

generation, according to the intention of the modeler. A

separation-based BREP-CSG conversion algorithm was

used to convert the intermediate models to optimize BREP-

CSG conversion. An intelligent pre-segmentation algo-

rithm was applied to cosVMPT and applied practically.
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Fig. 1 (Color online) Diagrams

of the conversion of certain

complex models

Fig. 2 (Color online) A fusion

component with high similarity

Fig. 3 (Color online) CAD

engineering model of the

CFETR
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2 3D-shape segmentation algorithm

3D-shape segmentation technology has remained a

research hotspot in the field of computer graphics. It has

been widely used in model retrieval, feature recognition,

and model reconstruction. Traditional segmentation meth-

ods, such as a conditional random field [23] and extreme

learning machine [24], require manual definition of 3D-

shape feature descriptors. The quality of feature extraction

directly affects segmentation quality and directly depends

on the quality of manually defined feature descriptors. In

recent years, Convolutional Neural Networks (CNNs) have

demonstrated excellent performance (recognition, classifi-

cation, and object detection) in image classification,

semantic segmentation, target detection, and other tasks.

Compared to a traditional neural network, a CNN adopts a

convolution kernel to extract features automatically. Gen-

erally, CNN concepts are useful for 3D-shape segmentation

algorithms. The intrinsic data structure of a 3D-shape

representation file does not resemble the regular and

ordered datasets of images required by the CNNs. This

leads to difficulties in the direct convolution of these 3D-

shape representations. In light of the inadaptability of

CNNs to the irregular structures of datasets, tricky strate-

gies have been adopted to avoid convolution. For example,

3D shapes are typically converted into regular 3D voxel

grids [18] or sets of images [19] (e.g., multi-views).

Although volumetric representations have the advantage of

simplicity, they are time consuming and require significant

computational resources.

Point clouds are the simplest representation of 3D-

shaped data because a point-cloud-based technique is

superior in terms of easily accessible data acquisition and

simple representation. Additionally, it is convenient to

convert them into other representations. Therefore, CNNs

for point clouds have been proposed in recent years.

PointNet [20] is a representative application of a CNN for

irregular and sparse point clouds and adopts a T-Net to

obtain a transformation matrix that is used to initialize the

point cloud and ensure the invariance of rotation and

translation. To make the model invariant to input permu-

tation, a symmetric function was designed to solve the

disorder of the point cloud. Although PointNet is efficient,

Multi-Layer Perceptron (MLP) is performed on a single

point, ignoring local information, and its performance is

poor for 3D shape segmentation. Furthermore, the density

of cloud data was not considered in PointNet. Inspired by

CNNs, PointNet?? [25] was proposed to partition points

into local regions, extract local features at multiscale and

multiresolution, and obtain deep features using a multi-

layer network structure. PointCNN [26] is a generalized

CNN capable of handling irregular data represented in

point clouds. The core of PointCNN is the X-Conv oper-

ator, which weighs and permutes input points and features.

Mesh is another representation used to draw and store

3D models in computer graphics. The primary advantage of

mesh representation is that a significant amount of infor-

mation can be easily stored in less memory. For example, a

large but simple surface can be represented by a small

number of polygons. Another advantage of a mesh is its

connectivity. However, the intrinsic data structure of the

mesh representation is complex and irregular. For example,

the number of elements in a mesh may vary significantly

between different 3D shapes, and their permutations are

arbitrary. Despite these problems, meshes are more capable

of describing 3D shapes than are other representation

methods. In this case, effectively using a mesh to represent

3D graphics is a new challenge and related studies are

limited. Recently, MeshCNN [17], which is specifically

designed for triangular meshes, has been invariant to

translation, rotation, and scaling. Simultaneously, convo-

lution and pooling operations for irregular and non-uniform

structures are redefined to allow the direct application of

MeshCNN to irregular triangular meshes with better

robustness and higher accuracy. Figure 4 shows the

application of state-of-the-art deep learning networks to the

segmentation of 3D models (the data in Fig. 4a are derived

from [27] and the data in Fig. 4b are derived from [17]).

PointNet, PointNet??, PointCNN, and MeshCNN exhib-

ited relatively high classification accuracies. Considering

segmentation, MeshCNN had a higher accuracy. Consid-

ering that CAD models are easily represented by a mesh,

this study adopted MeshCNN as the deep learning

framework.

MeshCNN first directly applies a CNN to a polygonal

mesh by utilizing a similar definition and implementation

of CNN standard blocks for irregular and non-uniform

meshes. On the one hand, the basic object of convolution is

an edge that is similar to a pixel in an image. As each edge

is incident on at most two faces (triangles), a local and

fixed-size neighborhood is defined in a simple manner for

convolution on irregular structures. On the other hand, the

designed features are invariant to rotation, scaling, and

translation.

MeshCNN is applied to manifold meshes, which guar-

antees that each edge is connected to two triangular patches

at most. This results in each edge being adjacent to the

other four. As shown in Fig. 5, the neighbors of each edge

e are edge a, edge b, edge c, and edge d. The vertices of a

triangular patch are ordered counterclockwise and two

orders are defined for the four neighbors of each edge. For

example, the neighbors of edge e can be sorted into (a, b, c,

d) or (c, d, a, b). This blurs the convolutional receptive field

and hinders the formation of the invariant features. Two
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actions address this issue and guarantee invariance to the

similarity transformations (rotation, translation, and scale).

MeshCNN adopts two methods to solve this problem,

making the network convolution invariant. The main

results are as follows.

• With respect to edge feature extraction, the features of

each edge were carefully designed as a five-dimen-

sional vector composed of the dihedral angle, two inner

angles, and two edge-length ratios for each triangular

patch. These features contain only relative geometric

properties without absolute position information, and

have invariance in rotation, scaling, and translation.

Therefore, unlike common representations (such as

point-based representations), features do not contain

vertex coordinate information, which makes it better to

generalize shape features and promote the invariance of

the similarity transformation.

• Symmetric functions are designed to eliminate the

fuzziness caused by the order of the edges, and the

unique symmetry of the triangular mesh is used to

eliminate the duality of the neighborhood order to make

it invariant to translation, rotation, and scaling. The

four edges are aggregated into two pairs of edges (a and

c, b, and d) and a sum (b and d), and new features are

generated by applying a simple symmetric function to

each pair (abs(b, d) and sum(b, d)), which are then used

for convolution.

3 MeshCNN-based brep to CSG conversion

3.1 Dataset generation for 3D CAD Model

Training datasets are crucial for deep learning. How-

ever, unlike images, it is difficult to create a dataset for 3D

CAD models for four reasons. (1) The 3D CAD model is

difficult to obtain and needs to be created manually,

resulting in scarce availability of geometric datasets. (2)

The more complex CAD model, which is generally rep-

resented by BREP, is unsuitable for most deep learning

Fig. 5 (Color online) A

convolution structure for edge

irregular triangular meshes

Fig. 4 (Color online) Outline of the converting methods for 3D shapes. The X-axis indicates the proposed method, and the Y-axis indicates the

classification accuracy
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methods. It is difficult to convert CAD models into regular-

format data. (3) Labels must be manually marked for the

3D-shape segmentation, and manual labeling cannot be

extended. (4) In many cases, the semantics of the CAD

model are unclear, and it is difficult to represent a 3D CAD

model using semantic parts. Therefore, this study focused

on how to easily generate datasets. The following section

presents a dataset creation method for the CAD models

commonly used in fusion reactors.

3.1.1 Labeling

A geometric processing pipeline was developed based

on the OCC CAD engine, which was used to deal with

CAD models to generate mesh, edge label, and weight files.

Triangulation of the CAD model is a key step in the design

of a model dataset. OCC provides a powerful mesh-gen-

eration algorithm that supports multiple CAD file formats

(such as STEP, IGES, and STL) and includes various

integrated mesh-generation algorithms. Defining a CAD

model as having different semantic parts is difficult

because semantics depend on the preferences of the mod-

eler. Figure 6 shows an example of a labeled CAD model.

Figure 6a is a representative CAD model in the dataset,

defined as S. Figure 6b is the ideal result of segmentation

according to the preferences of the modeler, defined as

Spart, which is an abbreviation of semantic parts (marked

as Seg1–6). Figure 6c shows the face list for each semantic

part. Figure 6d shows a special semantic part in which

faces are not used to guide the construction of auxiliary

splitting surfaces.

The detailed labeling flow is shown in Fig. 7.

(a) Import a solid model S, traverse each face in S, and

obtain an ordered list of faces defined as Face_List.

(b) Import the subbody model SPart, traverse each solid

in SPart, and obtain an ordered solid list, defined as

SPart_List.

(c) If Face_list[i] is the same as the face in SPart_list[k],

the label of Face_list[i] is set to k. If one face

simultaneously belongs to more than one solid, the

surface is marked as a special class, as shown in

Fig. 6d.

(d) Finally, the label of each face in solid S is obtained

and defined as Label_List.

3.1.2 Generation of a training dataset

The proposed algorithm was integrated into cosVMPT,

which is widely applied in the fusion field. Therefore,

typical fusion CAD engineering models were selected to

generate a training dataset. A training dataset (Fig. 8)

consisting of five typical types of fusion device models was

Fig. 6 (Color online) A diagram of labeling. a An example of a CAD model being labeled. b The ideal segmentation result. c Face list of each
semantic part. d A special semantic part

i=0; N=len(Face_List);Label_List = []

Yes

Yes

j++

No

i<N

j=0; M=len(SPart_List)

j<M

HasCommonFace

(Face_List[i],SPart_List[j])

Label_List.append(j)

Yes

No

i++

Star

End

Fig. 7 Flowchart of model labeling
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constructed; some of the models are shown in Fig. 8. These

models include the cryostat, TFC, VV, and TS. The gen-

eration process of the dataset is as follows:

(a) Model labeling Each model in Fig. 8 was labeled, as

described in the previous section, and a label

dictionary was obtained.

(b) Data augmentation The number of models was

increased through rotation, scaling, and translation.

The name of the generated model is the same as that

of the basic model, and it is numbered successively.

(c) Triangular meshing.

(d) Triangular patch labeling According to the model

name (key), a label list for each face was obtained

from the label dictionary and each triangular patch

was labeled according to its affiliation with each

face.

(e) Generating Training Files Mesh, edge label, and

weight files were generated as training data for the

MeshCNN.

3.2 Intelligent segmentation

This study also focused on a segmentation algorithm to

achieve intelligent segmentation of a CAD model. The

segmentation of a complete model requires the following

processes (Fig. 9): (1) Import the CAD model to be con-

verted. (2) Generate the corresponding mesh file. (3) Call-

trained neural network for classification. (4) Export edge

classification results of MeshCNN. (5) Modify the

Fig. 8 (Color online) Typical models in the training dataset
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classification results. (6) Obtain the classification results of

the faces according to the affiliation relationship between

the faces and edges and then group the faces according to

the labels. (7) Generate auxiliary splitting surfaces based

on the grouping results of the surfaces. (8) Segment the

model using the generated splitting surfaces.

3.2.1 Edge correction

In many cases, some edges may be misclassified, as

shown in Fig. 10a, which makes it difficult to generate split

faces. However, the CAD models are rich in geometric

information. Therefore, a strategy for edge correction was

introduced to further improve the accuracy of edge clas-

sification. For each face, the category with the largest

number was considered as the category of the face by

counting the number of edges Ni of different types on each

surface. Figure 10b shows the revised results.

Pi ¼
NiPn
i¼1 Ni

ð1Þ

3.2.2 Construction of common edge sets

The auxiliary splitting surface is constructed based on

the edges of the model itself, and the classification result of

each edge in the triangular patches cannot be directly used

to generate an auxiliary splitting surface. Therefore, the

first step in constructing an auxiliary splitting surface is to

build common edges between the different segments (de-

fined as Seg_List). The classification of each edge was

obtained using MeshCNN, and the classification of each

face was based on the affiliation relationship between faces

and edges. Finally, faces with the same label were divided

into segments, and a common edge set was generated by

determining whether there were common edges between

the segments. The implementation process is illustrated in

Fig. 11.

3.2.3 Construction of auxiliary splitting faces

Considering the different types of shared edges (e.g.,

lines and arcs), the methods for generating auxiliary

splitting faces also differ. It is necessary to limit the size of

the splitting surface to avoid excessive segmentation of the

model caused by the excessive size of the splitting surface,

which can be achieved by limiting the endpoints of the

common edges. According to the type of common edge, the

following situations are considered in Fig. 12: (1) When

the shared edges are an arc, a plane is constructed with the

arc. (2) When the shared edges are two arcs, a cylindrical

surface is constructed if the generatrix is parallel to the

axis. A conical surface is constructed if the generatrix

intersects the axis. (3) When a shared edge is a straight line,

a plane is constructed using the straight line and the axis of

its connected curved surface. (4) When the shared edges

are two straight lines, two planes are constructed using the

two straight lines and axis of the connected curved surface.

(5) For other curves, a plane is constructed for each curve.

4 Verification and applications

4.1 Performance evaluation

To verify the feasibility and efficiency of the intelligent

pre-segmentation algorithm, certain components (Fig. 13)

Fig. 9 Flowchart of a complete

pre-segmentation

Fig. 10 (Color online) Classification results of edges using

MeshCNN. a Classification results before correction. b Classification

results after correction
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of the latest 360-degree CFETR engineering model were

employed. The main feature of these components is that

they are composed of a large number of high-order surfaces

(torus), which often require manual preprocessing before

they can be correctly converted using cosVMPTs. Fig-

ure 14 shows the decomposition results of the traditional

optimization algorithms and intelligent segmentation

algorithms of a sector (22.5�) for the cryostat, TFC, VV,

and TS. Figure 14d shows the decomposition results from

cosVMPT for the intelligent pre-segmentation results and

Fig. 14e shows the decomposition results of the original

optimization algorithm. An outstanding advantage of

i=0; N=len(Seg_List);CommonEdgeList=[]

i<N-1

j=i+1

j<N

No

i++;CommonEdgeList=[]

No

Yes

Yes

HasCommonEdge(Seg[i],Seg[j])

CommonEdgeList.append(comEdge)

j++

Yes

No

Set common edge list for Seg[i]

Star

End

Fig. 11 Flowchart of

constructing common edge sets

Classify edges by their types 

Yes

No

The arc list is empty The line list is empty

No

Yes

Construct the splitting 

face by arcs

Construct the splitting 

face by lines

Construct the splitting 

face by other curves

Search boundary points

An arc Two arcs More than two arcs A line Two Lines
Construct plans by each curve

Construct plan Busbar Is parallel 

to the axis

Busbar intersects 

with the axis

Construct a 

cylindrical surface
Construct a 

Conical surface

Construct plans 

by each arc

Two faces adjacent to 

the line are both planes

Construct a plan though the 

line edge and the axe

No

Yes

Coplanar
Yes

Construct  a plan 

No

Star

End

Fig. 12 Flowchart of the construction of auxiliary splitting faces
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Fig. 13 (Color online) Some components of the latest 360-degree CFETR

Fig. 14 (Color online) The decomposition results of traditional

optimization and intelligent segmentation algorithms. a is the whole

model to be converted, b is the classification result of triangular

patches, c is the preliminary decomposition results of intelligent pre-

segmentation using generated auxiliary splitting faces, d is the final

decomposition results from cosVMPT for the pre-segmentation

results, and e is the decomposition results of the traditional

optimization algorithm

123

74 Page 10 of 14 Y.-T. Luo et al.



intelligent preprocessing is that the decomposed model is

regular. Intelligent preprocessing prevents the generation

of many thin sheets, which is the main reason for the

failure of the OCC Boolean operation.

The quality of a conversion algorithm can be evaluated

based on the number of final convex solids and the con-

version CPU time. The more regular a model, the fewer the

number of convex bodies, and the better the conversion

algorithm. The presented algorithm was compared with

other traditional algorithms based on cosVMPT [22].

Tables 1 and 2 compare the final convex solids and con-

version CPU times of the original conversion algorithm

without optimization, the traditional rule-based optimiza-

tion algorithm, and our deep learning-based intelligent pre-

segmentation algorithm. The results show that the intelli-

gent pre-segmentation algorithm exhibits a significant

improvement in performance and efficiency, particularly in

the conversion time. For VV and TS, which consist of a

large number of toruses, the CPU conversion time was

reduced by twice to thrice. Simultaneously, according to

the evaluation of the experienced modeler, the conversion

result was more intuitive and consistent with the intention

of the modeler.

In many cases, tangential solids may be generated dur-

ing the conversion. Because of accuracy, when a model is

complex, it often leads to the loss of particles in tangent

places. The modeler must pre-segment the model manually

to avoid the generation of tangent solids, which is time-

consuming and tedious. Therefore, to reduce the generation

of tangent solids, model datasets for local features, which

often need to be handled manually, have been designed

(e.g., VV). Figure 15 presents some of the results. It can be

observed that the segmentation result is more consistent

with the modeler’s intention, and avoids the generation of

tangent solids.

4.2 Robustness evaluation

To further verify the robustness of the intelligent pre-

segmentation algorithm, test cases were designed, such as

locally modifying the model, transforming the model

(translation, rotation, and scaling), and using models with

similar structures but different parameters. Figure 16

shows the validation results, illustrating that the intelligent

pre-segmentation algorithm exhibited strong robustness

and invariance in terms of rotation, translation, and scaling.

The partial absence of a model does not affect the seg-

mentation accuracy. When the model structure was sig-

nificantly changed, as shown in Fig. 16f, the classification

results were not ideal. On the one hand, triangular patches

in a symmetrical position have the same attributes, the

semantics are not obvious, and they are not easy to dis-

tinguish. On the other hand, a face may be recognized as

two half faces by the OCC; therefore, the triangular patches

will be different. This can be further improved through

model repair techniques (e.g., merging surfaces) and by

increasing the diversity of the training sets. In addition, the

auxiliary surface-generation program can be further

improved.

Table 1 Comparison of the final convex solids

Components Original algorithm Traditional optimization algorithm Intelligent pre-segmentation algorithm

Cryostat * 1924 1676

TFC 413 224 193

VV and TS * 1043 855

*Indicates models that cannot be converted correctly

Table 2 Comparison of the conversion CPU time

Components Original algorithm Traditional optimization algorithm (s) Intelligent pre-segmentation algorithm (s)

Cryostat * 3191 1034

TFC 138 s 87 68

VV and TS * 6921 2583

*Indicates models that cannot be converted correctly
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5 Conclusion and prospects

Separation-based BREP-CSG conversion has the

advantages of being efficient, reliable, and easy to imple-

ment. It is widely used in computer-aided modeling of MC

codes. However, separation-based BREP-CSG conversion

relies heavily on a large number of Boolean operations,

which may fail in certain complex models. To improve the

conversion efficiency and avoid errors, a 3D-shape seg-

mentation algorithm based on MeshCNN was creatively

applied to optimize the BREP-CSG conversion while

avoiding manual intervention in the model preprocessing.

The main contributions of this study can be summarized as

follows. (1) A general labeling method for CAD models

and a fast-training dataset generation method were imple-

mented based on OCC. (2) Considering the CAD engi-

neering models commonly used in fusion devices, five

types of datasets were designed. (3) Intelligent pre-seg-

mentation was validated using the representative

components used in the CFETR. The results demonstrate

that the intelligent pre-segmentation algorithm exhibits a

significant improvement in performance and efficiency.

The conversion CPU times of the VV and TS were reduced

by two to three times. Moreover, the conversion result is

more intuitive and consistent with the intention of the

modeler, and avoids the generation of tangent solids. (4)

The robustness of the intelligent pre-segmentation algo-

rithm was verified. Clearly, the intelligent pre-segmenta-

tion algorithm exhibited strong robustness and invariance

in terms of rotation, translation, and scaling.

Training models are very important for the proposed

algorithm, and it is not currently easy to prepare a large

training model. Therefore, it is necessary to develop a

visual interactive model labeling method in which a model

can be marked according to the intention of the modeler to

clarify semantic information (such as triangular patches in

a symmetrical position) in future. Because the proposed

algorithm is a learning-based method, it is suitable for

Fig. 15 (Color online) The decomposition results of traditional

optimization and intelligent segmentation algorithms. a is the model

part to be converted, b is the classification result of the triangular

patches, c is the preliminary decomposition results of intelligent pre-

segmentation using the generated auxiliary splitting faces, d is the

final decomposition results from cosVMPT for the pre-segmentation

results, and e is the decomposition results of the traditional

optimization algorithm

123

74 Page 12 of 14 Y.-T. Luo et al.



areas with multiple components of similar shape, such as

the fusion reactor and reactor core, which are major

application areas of related software (such as cosVMPT,

MCAM, and McCad).
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