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Abstract As modern accelerator technologies advance

toward more compact sizes, conventional invasive diag-

nostic methods of cavity detuning introduce negligible

interference in measurements and run the risk of harming

structural surfaces. To overcome these difficulties, this

study developed a non-invasive diagnostic method using

knowledge of scattering parameters with a convolutional

neural network and the interior point method. Meticulous

construction and training of the neural network led to

remarkable results on three typical acceleration structures:

a 13-cell S-band standing-wave linac, a 12-cell X-band

traveling-wave linac, and a 3-cell X-band RF gun. The

trained networks significantly reduced the burden of the

tuning process, freed researchers from tedious tuning tasks,

and provided a new perspective for the tuning of side-

coupling, semi-enclosed, and total-enclosed structures.

Keywords Cavity detuning � Convolutional neural
network � Equivalent circuit

1 Introduction

Frequency detuning is an ineluctable concern for

accelerator cavities. Cavity frequency detuning can be

caused by a drift in temperature and humidity during

machining, deformation of thermal stress during welding,

vibration caused by mechanical movement during trans-

portation, and breakdown of RF pulses during conditioning

[1]. Concentrating solely on the machining process, the

derivative of TM010 mode frequency of a cylindrical res-

onator with respect to its radius yields the following esti-

mation formula: df MHz½ � � �ð2:9� 107Þ=r2dr½lm�. For
X-band structures, an error of 1 lm in the cavity radius

results in frequency detuning of approximately 1 MHz.

An accelerator can be considered equivalent to a cou-

pled-cavity chain. The field amplitude and phase advance

of each cavity are determined by the frequencies and

couplings of the chain. To guarantee proper field distri-

butions and phase advancements, the accelerator cavities

must be tuned prior to operation [2]. Two conventional

methods generally work in low-frequency bands and even

in some X-band structures. One is the so-called SLAC-type

method that diagnoses cavity detuning by inserting two

inflexible conductive probes into the accelerator and

measuring the resonant frequencies of each individual

cavity and neighbor-coupled cavities one by one [3]. To

measure the frequency of each resonant cavity accurately,

the position of the probes must be adjusted carefully so that

the resonant peak signal of the vector network analyzer no

longer drifts with small movements of the probe. However,

this is a time-consuming task. In addition to the growing

risk of harming the soft inner surface, the measurement

results become sensitive to the probe positions for cavities

in higher-frequency bands because of their more compact

This work was supported by the National Natural Science Foundation

of China (No. 11922504).

& Jia-Ru Shi

shij@tsinghua.edu.cn

1 Department of Engineering Physics, Tsinghua University,

Beijing 100084, China

2 Key Laboratory of Particle and Radiation Imaging, Tsinghua

University, Beijing 100084, China

123

NUCL SCI TECH (2022) 33:94(0123456789().,-volV)(0123456789().,-volV)

https://doi.org/10.1007/s41365-022-01069-z

https://orcid.org/0000-0002-4592-0957
https://orcid.org/0000-0001-5416-6557
https://orcid.org/0000-0002-2189-685X
http://crossmark.crossref.org/dialog/?doi=10.1007/s41365-022-01069-z&amp;domain=pdf
https://doi.org/10.1007/s41365-022-01069-z


size. The second method, initially verified by Khabi-

boulline et al. in 1995, is to measure the field distributions

by bead-pulling to invert the correlative cavity frequencies

[4]. Later, Shi et al. extended this method to the coupler

tuning process [5], and Yang et al. simplified the equivalent

circuit and solved the matrix coefficients directly from field

distributions [6]. The bead-pulling method is an on-axis

field-distribution measurement technique that uses a ten-

sioned string to pull a dielectric bead, and calculates the

on-axis field amplitude by measuring the frequency shift

caused by the field perturbation of the bead. However,

applying the bead-pulling technique to non-through struc-

tures, such as RF guns or side-coupling structures, is dif-

ficult and imprecise. Moreover, the bead-pull line and

rotations of the bead may cause considerable frequency

drift in higher-frequency bands. Consequently, non-inva-

sive diagnostic methods have attracted considerable

attention. An emerging idea is based on the scattering

parameters of the structures. Habel et al. were the first to

compute the detuning of a superconducting linac using its

dispersion parameters [7]. Owing to the lossless simplifi-

cation caused by superconductivity, the equivalent circuit

of the superconducting linac has the form of a tridiagonal

matrix, which is easily solved using the conventional least-

squares method. However, the situation is different at room

temperature. Ni et al. devised a genetic algorithm to

diagnose a normal conducting linac based on its scattering

characteristics without the lossless simplification intro-

duced by superconducting [8]. Complex numbers were

added to the matrix. Ni et al. applied the nonlinear least-

squares method with the NL2SOL operator to accelerate

the convergence speed of the algorithm. Unfortunately,

because of its strong reliance on the starting datasets, this

method performed poorly on actual accelerators.

As a new discipline that is developing rapidly, artificial

intelligence has shown increasing advantages in feature

extraction and data modeling. At the junction of accelera-

tors and artificial intelligence, groundbreaking work such

as the computation of space charge force, beam line

operation, and quench error diagnosis have been accom-

plished. Knowledge of Taylor maps was first reported in a

polynomial neural network by Ivanov and Agapov for fast

simulations of beam dynamics. The trained network

approximated the dynamic beam system with perfect

accuracy. With additional experimental data as the network

input, they provided a means to tune network weights in

real time [9]. Based on the same idea, Zou et al. success-

fully applied the asynchronous advantage actor–critic

machine learning algorithm to the real-time tuning of the

low-energy beam transport section (LEBT) of the Xi’an

Proton Application Facility [10]. Considering the two-di-

mensional phase-space as a spatial image, Ren et al. sim-

ulated thousands of pairs of electron beams and X-ray

power profiles to train convolutional neural networks, and

used the trained networks to predict the X-ray power pro-

files with the input of electron beam phase spaces. This

approach demonstrated a significant improvement over the

traditional algorithm for a range of conditions [11]. Kain

et al. used reinforcement learning algorithms that learned

the optimal policy for a certain control problem and

increased the efficiency of optimization algorithms for

accelerator controls. They developed a continuous model-

free reinforcement learning deep network with up to 16

degrees of freedom that can avoid the time-consuming

exploration phase required for numerical optimizers after

training [12]. With the knowledge of electromagnetic-

based modeling, Rayas-Sánchez developed RF circuit

designs using artificial neural networks. By designing the

neural network training scheme to incorporate available

knowledge, which can be obtained from an empirical

equivalent circuit model based on quasi-static approxima-

tions, the knowledge-based neural network (KBNN)

approach has become the most mature and automated

technique for the development of neuromodels of RF cir-

cuits [13].

Following the footprints of pioneers, this study offers a

novel diagnostic approach for cavity detuning based on

convolutional neural networks (CNN) and the interior point

method (IPM). The measured S11 is used as input to the

CNN to obtain a coarse estimate of cavity detuning, and the

IPM optimizes the coarse model based on the derivative

computed from formulaic circuit theory. The remainder of

this paper is organized as follows: Sect. 2 explains the

diagnosis steps, describes the construction of the convo-

lution neural network, and computes the derivatives of

scattering parameters with respect to the frequency of each

cavity; Sect. 3 documents the experimental results for three

typical structures, including an X-band traveling-wave

linac, an S-band standing-wave linac, and a 3-cell X-band

RF gun, and discusses the performance of the method with

respect to errors in other cavity parameters and sampling

noise; finally, Sect. 4 concludes with a brief summary.

2 Method

Owing to the advantage of easy accessibility, the scat-

tering parameters (e.g., S11) are considered to be the

starting point of our non-invasive diagnostic method. In

addition, for most linacs with a completed package of

electron guns and dose conversion targets, the scattering

parameters are the only physical quantities accessible that

reflect the RF states of the linac. The common finishing

error is approximately 10 lm to 20 lm, resulting in a fre-

quency detuning of approximately 10 to 20 MHz for X-

band structures (11.424 MHz) or 5 to 10 MHz for S-band
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structures (2.998 MHz); therefore, the diagnosis of cavity

detuning is precisely a constrained optimization problem

that involves finding a set of resonant frequencies xi in the

above constrained zone to minimize jjS11;c � S11;mjj2,
where S11;c represents the S11 calculated by the diagnostic

method, while S11;m is the measured S11 in reality.

Although many traditional algorithms are available for

solving optimization problems, the diagnosis of cavity

detuning is strongly non-convex and nonlinear. Under

these circumstances, traditional algorithms are highly

likely to converge to a local optimum. Inspired by the

applications of neural networks in the design of RF devices

[14], the powerful fitting ability of artificial neural net-

works may provide a coarse estimate of cavity detuning

close to the global optimum, and empower a traditional

algorithm to cross the local optima in the constrained

multidimensional space of the cavity diagnosis problem.

Therefore, the diagnostic method for cavity detuning is

divided into two steps. First, the scattering parameters

measured from the waveguide of the structure coupler are

normalized as the input of the neural network to obtain a

coarse approximation of the cavity detuning. Starting from

this coarse estimate, the IPM algorithm [15] based on an

equivalent circuit model is applied to compute the fine

detuning parameters. The role of the neural network is to

circumvent the limitations of local optima in traditional

optimization algorithms.

2.1 Construction of the neural network

The first step of the diagnostic method is to train a

proper artificial neural network to predict the frequency

detuning of each cavity based on the measured S11. Hop-

field neural networks (HNN), recurrent neural networks

(RNN), and convolutional neural networks are three types

of networks that are generally used in data regression

prediction. Of these, convolutional neural networks

(CNNs) have been widely used in the field of computer

vision. For the diagnostic problem, the input of the network

should be a vector whose elements correspond to the

measured values S11 from the input port, whereas the

output of the network is a vector whose elements corre-

spond to the frequency of each cavity. As shown in Fig. 3,

the S11 of an accelerator has significant characteristics that

can be considered as a superposition of multiple Lorentzian

resonance peaks, each of which contains information

regarding the resonant frequency and Q-factor of the cor-

responding mode. Considering the S11 signals as a one-

dimensional picture, many of the experiences learned from

using convolutional neural networks for computer vision

problems can be applied to our diagnostic problem.

Therefore, we intuitively choose the CNN to process the

input S11 information. We hope to obtain suitable convo-

lution kernels through network training to express the

intrinsic connection between the scattering parameters and

detuning. After several cycles of modifications and

debugging, the CNN, as shown in Fig. 1, comprises an

input layer, a drop layer, a fully connected layer, an output

layer with the mean square error as its loss function, and

three convolutional units consisting of a convolution layer,

normalization layer, rectified linear unit (ReLU), and

pooling layer [16].

The S11 value of a normal conducting accelerator mea-

sured from its coupler is a complex array within a circle of

radius 1. To take full advantage of the information in the

real and imaginary parts of the measured S11, the input

layer of the CNN is a two-dimensional array composed of

the magnitude and phase parts of the S11 measured from the

feeding coupler. Each dimension contains measurements of

2048 frequency points. The frequency band of the mea-

surement varies with the accelerator design. To avoid the

difference in the weight sizes of the two dimensions of the

input data, both the magnitude and phase parts of the input

S11 are normalized to (0,1) using Eq. (1).

CNNinput ¼
1� mag S11ð Þ
phase S11ð Þ=p

� �
ð1Þ

To accelerate the training and reduce the sensitivity to

network initialization, the second layer is a standard batch

normalization layer. This first calculates the mean and

standard deviation of the input mini-batch and normalizes

the input mini-batch by subtracting the mean and dividing

by the standard deviation. The input mini-batch is then

added and scaled by a learnable offset factor b and learn-

able scale factor c.
The third layer is the first convolutional layer. This

applies 48 sliding convolutional filters to the layer input,

computes the dot product of the learnable weights of the

filters with the layer input, and then adds a learnable bias

term to the result. To better capture the resonance peak

characteristics of the input, the size of the convolution

kernel was first set to [64,1]. The length of the kernel is

close to the full width at half maximum of the S11 resonant

peaks of normal conducting accelerators. However, the

large size of the kernel was found to slow the training

speed and result in overfitting during numerical tests.

Therefore, the kernel size was reset to [4,1]. With the

following pooling process, the convolution kernel can still

capture long-range characteristics.

Another batch normalization layer follows the convo-

lution layer. The fifth layer is an activation layer, with the

ReLU function as its activation function. The ReLU

function performs a threshold operation on the input ele-

ments. Layer input values larger than 0 are set equal to
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each other, whereas values less than 0 are set to 0. This

avoids the gradient explosion and gradient disappearance

problems of network training and reduces the overall

computational cost of neural networks. The sixth layer is a

pooling layer with a pooling region size of [2,1]. The

pooling layer divides the layer input into pooling regions

and computes the maximum value of each region. It can

reduce the dimensionality of the data and represent input

information with higher-level features.

A convolutional layer, batch normalization layer, ReLU

layer, and pooling layer together comprise a convolutional

unit. Three of these units comprise the main body of the

CNN. Through iterative testing, the number of convolution

kernels for each unit was respectively tuned to 48, 24, and

12. To prevent the network from overfitting, a dropout

layer is connected to the last convolutional unit. This

randomly sets the layer input elements to zero, with a fixed

probability of 0.1. A fully connected layer multiplies the

output of the previous dropout layer by a learnable weight

matrix and then adds a learnable bias vector. The fully

connected layer combines all of the features and reflects

them to the frequency of each cavity. To avoid the

appearance of a network weight with large fluctuations, the

output of the network is normalized using Eq. (2), where

xdesign and Dxi represent the design frequency and

expected detuning range of each cavity, respectively.

CNNoutput ¼
xi � xdesign

Dxi

� �
ð2Þ

2.2 Model of the equivalent circuit

Based on the coarse outputs of the CNN, more accurate

detuning can be iterated using the IPM algorithm. The

gradient required for the algorithm can be calculated using

the equivalent circuit model. As described by Wangler

[16], an accelerator can be considered equivalent to a series

of coupled circuits made up of lumped resistances,

capacitances, and inductances, and the beam loading effect

and RF power source can be equivalent to a voltage or

current source. Each circuit obeys Kirchhoff’s equation,

and all the equations combine to form the equivalent

matrix, as shown in Fig. 2 and Eqs. (3) and (4) for electric

and magnetic coupling, respectively.

e1 � k1
2

. .
.

� ki�1

2
ei � ki

2

. .
.

� kn�1

2
en

2
6666666666664

3
7777777777775

X1

..

.

Xi

..

.

Xn

2
66666664

3
77777775
¼

0

..

.

Ve

..

.

0

2
66666664

3
77777775

ð3Þ

m1 � k1
2

. .
.

� ki�1

2
mi � ki

2

. .
.

� kn�1

2
mn

2
6666666666664

3
7777777777775

X1

..

.

Xi

..

.

Xn

2
66666664

3
77777775
¼

0

..

.

Vm

..

.

0

2
66666664

3
77777775

ð4Þ

In Eqs. (3) and (4), ei ¼ 1þ j x 1þbð Þ
xiQi

� x2

x2
i

,

mi ¼ 1� j xi 1þbð Þ
xQi

� x2
i

x2, Ve ¼ 2jx
ffiffiffiffiffi
Ci

p ffiffiffiffiffiffiffiffiffiffiffiffi
P0bRi

p
, and

Vm ¼ 2
ffiffiffiffiffiffiffiffiffi
P0bRi

p
jx
ffiffiffi
Li

p ; Qi is the quality factor of each cavity, and ki

is the coupling between two adjacent cavities. Ri, Ci, and Li
are the lumped parameters; Xi is related to the amplitude of

the cavity field, ie;i represents the beam current, and x, P0,

and b represent the RF frequency, power, and coupling

degree correlated with the feeding coupler (denoted as c).

Fig. 1 (Color online) Construction of the convolutional neural network
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Focusing on the circuit of the accelerator coupler, the

coupler is equal to a voltage transformer with a ratio of n,

where n ¼
ffiffiffiffiffiffi
bRc

Zc

q
and Zc is the normalized impedance of the

coupler waveguide. Assuming that the equivalent voltage

of the RF power source is Uc, and the current flowing along

the waveguide is Ic, one can derive the relationship

between the current flowing along the waveguide and the

field amplitude in the coupled cavity as Ic ¼ nXc

ffiffiffiffiffi
Cc

p
. Then

the normalized impedance of the accelerator coupler can be

derived as Z ¼ Uc�IcZc
ZcIc

¼ �1þ j xQc

xcbXc
. Because the scatter-

ing parameter S11 satisfies S11 ¼ Z�1
Zþ1

, the value of S11

measured from the accelerator coupler and its derivative

with respect to the frequency of each cavity xi can finally

be derived as

S11;ele ¼ 1� j
2xb
xcQc

Xc; S11;mag ¼ 1þ j
2xcb
xQc

Xc ; ð5Þ

dS11;ele
dxi

¼ �j
2xb
Qc

d 1
xc

dxi
Xc þ

1

xc

dXc

dxi

 !
;

dS11;mag

dxi
¼ j

2b
xQc

dxc

dxi
Xc þ xc

dXc

dxi

� �
;

ð6Þ

where the subscripts ‘‘ele’’ and ‘‘mag’’ represent the elec-

tric and magnetic coupling structures, respectively.

Abbreviate Eqs. (3) and (4) as MX ¼ b, the expression dXc

dxi

is further derived as Eq. (7), where nji is the element in row

j and column i of matrix M�1 and dmii is the diagonal

element of matrix M.

dXc

dxi
¼ �nji

dmii

dxi
Xc ð7Þ

Equations (5)–(7) provide the derivatives required for the

IPM. For our diagnostic problem, that is,

argminðjjS11;cðxiÞ � S11;mjj2Þ, such that xi �xi;upper,

xi �xi;lower, i ¼ 1; 2; :::;N, the logarithmic penalty func-

tion FðxiÞ and its derivative with respect to the frequency

of each cavity xi used for the IPM can be written as

FðxiÞ ¼ jjS11;cðxiÞ � S11;mjj2

� lðkÞ
XN
i¼1

ðln ðxi � xi;lowerÞÞ

� lðkÞ
XN
i¼1

ðln ðxi;upper � xiÞÞ;

ð8Þ

dFðxiÞ
dxi

¼ 2ðS11;c � S11;mÞ
dS11;c
dxi

� lðkÞ
XN
i¼1

1

xi;lower � xi

� �

� lðkÞ
XN
i¼1

1

xi;upper � xi

� �
;

ð9Þ

where k is the iteration number, lðkÞ is the penalty factor

that satisfies lð0Þ [ lð1Þ [ :::::lðkÞ [ 0, and lim
k!þ1

lðkÞ ¼ 0.

The steps of the IPM are:

(1) Choose lð0Þ ¼ 1 as the starting penalty factor;

(2) Choose a starting point within the frequency range as

described above;

(3) Optimize Eq. (8) with the derivatives calculated via

Eqs. (5)–(9) until the maximal frequency error of the

iteration is less than 1� 10�3, or the number of

Fig. 2 Equivalent circuits for accelerators in different couplings:

a Electric coupling; b magnetic coupling

123

A non-invasive diagnostic method of cavity detuning... Page 5 of 11 94



iterations reaches 100. Otherwise, repeat from

step(2) and multiply lð0Þ ¼ 1 by 0.1.

Combining the CNN with the IPM, the diagnostic steps can

be summarized as follows:

(1) Data Preparation based on the structure designs,

randomly generate groups of xi in a constraint zone,

then calculate the associated S11 for each group using

Eq. (5);

(2) Network Training divide the prepared data into a

training set and validation set, and normalize the

input and output arrays using Eqs. (1) and (2) to train

the CNN illustrated in Fig. 1;

(3) Coarse Estimation for a linac to be diagnosed,

measure and convert its S11 to the input data form,

and transmit it to the trained network to estimate the

coarse detuning;

(4) Fine Calculation further optimize the residual error

jjS11;c � S11;mjj2 using the IPM algorithm with the

gradients determined by Eq. (6), to precisely diag-

nose the cavity state.

3 Results and discussion

Numerical studies were performed using three typical

acceleration structures, including a 13-cell S-band stand-

ing-wave linac (SS13), a 12-cell X-band traveling-wave

linac (XT12), and a 3-cell X-band RF gun (XG3). SS13 is a

double-period axial coupling linac with an output beam

energy of 6 MeV, XT12 is a short prototype of a constant

impedance structure with 72 similar cavities used for high-

gradient studies [17], and XG3 is a field-emission gun

whose first cavity operates in TM02 mode. Although the

accelerator structures selected for the numerical experi-

ments include only S-band and X-band structures, the

experimental findings can be generalized to any frequency

band, because of the frequency normalization process of

the CNN output layer. The inputs to both the CNN and IPM

are dimensionless data, and the diagnostic results of our

algorithm are related to the relative sizes of the constrained

zone and bandwidth of the input frequencies. Therefore,

the results can be scaled to an arbitrary frequency band.

The simulation results obtained using HFSS [18] for the

vacuum part and the design S11 of each structure are plotted

in Fig. 3. The characteristics of both separated and heavily

overlapped resonance peaks were considered in the

experiments. 213 sets of training data and 210 sets of vali-

dation data were prepared for XT12 and XG3, and 215 sets

of training data were prepared for SS13 for better gener-

alization performance. The network was trained using

ADAM [19] with a mini-batch size of 2048 and a constant

learning rate of 10�4. A comparison between the S11 of a

random validation set and the recalculated S11 from the

diagnosis result is plotted in Fig. 4 for all three structures,

and all are perfectly matched on the Smith charts. The

training process for XG3 was the fastest to converge,

whereas the training process for SS13 had the slowest

convergence rate and largest diagnostic error. The root

mean square (RMS) diagnostic error for the validation

datasets for XG3, XT12, and SS13 are 160 Hz, 300 kHz,

and 500 kHz, respectively. These results are related to the

complexity of the accelerator structures. XG3 has the

fewest cavities, whereas SS13 has the most, and the shunt

impedance and quality factor vary greatly among the

cavities of SS13. Further increasing the depth of the net-

work may improve the diagnostic results for SS13; how-

ever, owing to limited computational resources, this has not

yet been investigated further.

Because SS13 has the highest complexity, a comparison

experiment was performed with SS13 to examine the per-

formance for three different scenarios: diagnosis using the

IPM algorithm only, using the CNN only, and using both as

in Sect. 2.2. We defined the diagnostic error as the sub-

traction of the diagnostic cavity frequency from the cor-

responding cavity frequency of the validation dataset.

Figure 5 shows the RMS diagnostic error histograms of

each cavity obtained using the three different methods. The

IPM produced the highest diagnostic error, with a maxi-

mum diagnostic error of IPM of 10 MHz. The error of the

CNN has a Gaussian-like distribution, with an average

value of 0 MHz and a standard deviation of approximately

1.2 MHz. The combination of the CNN and IPM achieved

the best diagnostic performance. More than 95% of the

combined results were accurate to within 	500KHz,

which satisfies most engineering requirements. This com-

parison proves that the coarse estimate of the cavity

detuning computed by the CNN successfully helps the IPM

algorithm overcome local optima. The detuning estimation

of the neural network in the first step and the optimization

of IPM in the latter step are complementary, and neither

step can accomplish the diagnosis task on its own.

Figure 6a shows a statistical histogram of the root mean

square error of the SS13 diagnosis. Comparing the diag-

nostic accuracy of the neural network for the different

cavities in Fig. 6a, it can be seen that cavity No.7, which is

directly connected to the coupler, has the smallest RMS

diagnostic error, whereas cavity No.1, which is the farthest

away from the coupler, has the largest RMS error. The

RMS error increases with the distance between the corre-

sponding cavity and the coupler. This can be explained by

coupled S-parameter calculation (CSC) theory [20]: an

accelerator can be considered equivalent to a topological
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network constructed from a series of dual-port or triple-

port units. Considering a dual-port unit as shown in Fig. 7,

the sorted scattering matrix of the unit can be derived using

Eq. (10), where ai and bi are the incident and reflected

waves of each port, respectively, S11;N�1 denotes the total

scattering measured from the iris between the ðN � 1Þth

cavity and the N th cavity, and S11, S12, S21, and S22 are the

scattering parameters of the isolated N th cavity. According

to CSC theory, the transformation matrices P and F from

the intrinsic wave vector to the canonical wave vector can

be derived using Eq. (11), and S11;N of the whole acceler-

ator can then be written as an iteration formula as shown in

Eq. (12). It can be seen from Eq. (12) that the S11;N of the

whole accelerator is most comparable to the S11 of the

individual coupler. The S11;N of the cavity farthest from the

coupler is multiplied by an iteration factor of less than 1 in

each topological layer. The effect of the S11;N of the far-

thest cavity on the S11;N of the whole accelerator becomes

negligible. Therefore, the neural network will strengthen

the feature extraction of the coupler cavity and surrounding

cavities, while the features of the cavities far from the

Fig. 3 (Color online) Vacuum parts, magnitude, and phase of S11 of the test structures: a XT12; b SS13; c XG3

Fig. 4 (Color online) Smith chart of random validation samples of the three structures: a XT12; b SS13; c XG3
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coupler are encrypted layer by layer and become more

difficult to be learned by the network. Thus, for structures

with additional couplers, such as traveling-wave accelera-

tors, further addition of the scattering parameters from

different couplers may improve the network performance.

a1;N�1

a1

a2

2
64

3
75 ¼

S11;N�1

S11 S12

S21 S22

2
64

3
75

a1;N�1

a2

a1

2
64

3
75

¼ S
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a2
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3
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ð10Þ
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Fig. 5 (Color online) Diagnostic error histograms for each cavity of

SS13. The blue squares are results from the IPM only, the red squares

are results from the CNN only, and the green squares are results from

the combination of the CNN and IPM

Fig. 6 (Color online) Diagnostic RMS error for each cavity with

different validation sets: a with frequency detuning only; b with

incorrect values of b, Qi, ki; c with data sampling noise
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To study the influence of sampling noise and errors of b,
Qi, and ki, additional numerical experiments were con-

ducted on SS13. Random Db generated within [�1%, 1%],

random DQi generated within [�1:5, 1.5%], and random

Dki generated within [-5, 5%] were added to the validation

data sets. Figure 6b shows the diagnostic RMS error for

each cavity. When incorrect values of b, Qi, and ki were

introduced, the RMS error of the network estimation

increased. This is because the network was trained with

only frequency detuning data, and the network forcibly

attributed the contributions of b, Qi, ki to cavity frequency

detuning. However, the IPM can still converge to a better

diagnosis value based on the network output. In addition, a

sampling noise of Gaussian distribution with a signal-to-

noise ratio of 60 dB was added to the validation datasets,

while the network was still trained with noiseless datasets.

Figure 6c shows the RMS diagnostic errors. As shown by

the red bins in Fig. 6c, the output error has a similar dis-

tribution between the non-noisy dataset and the noise-

added dataset. This implies that the network is partially

resistant to sampling noise, probably because of the pool-

ing layers. The pooling layers serve to downsample the

data to reduce the computational cost of the neural net-

work. During this process, the data can be considered to

have passed through a low-pass filter, which has the effect

of filtering out noise.

A well-trained network for XG3 was used to guide the

tuning procedure of a real gun, as shown in Fig. 8a. A

testing cathode with a hole in its center was installed on the

gun for bead-pulling. The field distributions of the three

different working modes were measured to apply the

diagnostic method based on field distributions. Diagnosis

results from our method were compared with those based

on the field distribution. As shown in Fig. 8c, the frequency

diagnosis differences between the two methods for the first

and third cavities are 190 KHz and 230 KHz, respectively,

whereas the difference for the second cavity is 3.2 MHz.

This is because the field distributions in the second cavity

were almost zero in p=2 mode, resulting in a singular

matrix in the bead-pulling method. A slight difference or

jittering of the pulling string may introduce significant

measurement errors into the field distribution of the second

cavity. Therefore, it is difficult for a diagnostic method

based on field distributions to compute the frequency of the

second cavity accurately. Under the guidance of our new

method, the p mode frequency of the gun was tuned to

11.424 GHz, and the on-axis electric field distribution was

consistent with the design value, as shown in Fig. 8e. The

new diagnostic method completely satisfies the tuning

requirements of the gun cavity. Another network was

trained to help tune a standing-wave linac (SS13-2). SS13-

2 is similar to SS13, but differs in the coupler position. The

coupler position of SS13-2 was at the 9th cavity, whereas

that of SS13 was at the 7th. The comparison shown in

Fig. 8d was made between the diagnosis results of our

method and those of the probe insertion method. The dif-

ference between the two was less than 500 KHz. Figure 8d

shows that the results of our method fluctuate around those

obtained by the probe insertion method. This can be

explained in the same way as the difference in the

numerical experiments with deliberately incorrect values of

b, Qi, and ki. The actual values of these parameters for the

tested SS13-2 were slightly different from the design val-

ues, adding a frequency shift to the diagnostic results.

Including the parameter values in the IPM step may

eliminate this frequency shift. Figure 8f shows a compar-

ison of S11;m and S11;c for SS13-2. Owing to these factors,

there is also a small deviation between the two lines.

However, for our engineering needs, this error was negli-

gible. In summary, these two results prove that the com-

bined CNN and IPM diagnostic method is in good

agreement with both conventional methods and has a major

advantage in that the detuning data can be obtained in

almost real time after training. After training with prepared

data sets, one can obtain the accelerator cavity detuning

information immediately, while other methods require time

for field measurements or probe adjustments. As the tuning

process needs to be repeated several times, the conven-

tional methods may take several hours of processing time

in total, but the combined CNN and IPM method can

reduce the processing time to a few minutes.

4 Conclusion

In conclusion, we developed a non-invasive diagnostic

method for cavity detuning. This approach first trains a

convolutional neural network to estimate the frequency

detuning of each cavity with the input of the measured S11
and then uses this estimation value as the starting point for

the IPM algorithm to further optimize the divergence

Fig. 7 (Color online) Topology of the accelerator cavity chain
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between the calculated S11 using equivalent circuits and the

measured S11. The convolutional neural network has a total

of 15 layers. The 3rd, 7th, and 11th layers are convolutional

layers with 48, 24, and 12 kernels, respectively. The net-

work was trained using simulation datasets generated from

the equivalent circuits. Numeric experiments were

Fig. 8 (Color online) Testing with real structures: a XG3 gun; b
SS13-2 linac; c benchmark comparison between the CNN & IPM

method and the field method; d benchmark comparison between the

CNN & IPM method and the probe insertion method; e on-axis

electric field distribution of XG13; f comparison between the S11;c and
S11;m of SS13-2

123

94 Page 10 of 11 L.-Y. Zhou et al.



successfully completed on three different acceleration

structures, including a 13-cell S-band standing-wave linac,

a 12-cell X-band traveling-wave linac, and a 3-cell X-band

RF gun. Owing to the topological nature of the structure,

the diagnostic accuracy of this method decreases as the

distance from the cavity to the coupler increases. This

method is robust to sampling noise owing to the use of

pooling layers. The well-trained network also aided in

tuning real structures. The diagnostic results of this method

were in good agreement with those of conventional

methods.

This approach provides a fresh perspective on the

diagnosis of high-frequency bands, long cavity chains, and

encapsulated accelerators. After hours of pre-training,

detuning information can be obtained in situ simply by

measuring the S11 parameters. We anticipate that this

method will significantly reduce the burden of the tuning

process and provide a new approach for monitoring the

status of encapsulated linacs. In future work, we will

continue to tune the structure of the network and attempt to

include other accelerator parameters in the diagnostic

algorithm to enable the diagnosis of more complex accel-

eration structures.
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