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Abstract The precise vertex reconstruction for large liquid

scintillator detectors is essential. A novel machine learn-

ing-based method was successfully developed to recon-

struct an event vertex in JUNO. In this study, the

performance of machine learning-based vertex recon-

struction was further improved by optimizing the input

images of neural networks. By separating the information

of different types of PMTs and adding the information of

the second hit of PMTs, the vertex resolution was improved

by approximately 9.4 % at 1 MeV and 9.8 % at 11 MeV.

Keywords JUNO � Liquid scintillator detector � Neutrino
experiment � Vertex reconstruction � Machine learning

1 Introduction

Liquid scintillator (LS) detectors have been widely used

in neutrino experiments, such as KamLAND [1], Borexino

[2], Daya Bay [3], Double Chooz [4], and RENO [5]. These

experiments resulted in significant achievements in neu-

trino physics over the past few decades. As the next gen-

eration LS detector, JUNO [6] will continue to probe the

mysteries of neutrinos. The primary goal of JUNO is to

solve the neutrino mass ordering puzzle by precisely

measuring the energy spectrum of reactor neutrinos. JUNO

will also be the first experiment to measure three of the six

neutrino oscillation parameters at the sub-percent level. In

addition, JUNO covers a wide range of other physics

topics, such as supernova neutrinos, solar neutrinos, and

atmospheric neutrinos. In the O(1) MeV regime, particu-

larly for reactor neutrinos, one of the main challenges for

JUNO is the precise vertex and energy reconstruction of

positrons, which are the prompt signals of neutrino inverse

beta decay interactions.

Precise vertex reconstruction will largely help in event

selection, such as the fiducial volume cut and the distance

cut between the correlated prompt positron and delayed

neutron capture signals for reactor neutrinos. Moreover, it

also corrects the energy non-uniformity, which is one of the

main contributors to the energy resolution [7, 8]. Unlike

water Cherenkov detectors such as Super-K [9] (Hyper-K)

[10], which can utilize Cherenkov rings, or time projection

chamber detectors, such as DUNE [11] and PandaX

[12, 13], which can provide track information, LS detectors
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do not have clear rings or tracks, making vertex recon-

struction more challenging.

The energy deposition of positrons in LS usually con-

sists of the two following parts: Kinetic energy that is

roughly point-like and annihilation which produces two

gamma rays whose energy is deposited within a few cen-

timeters rather than a point. As the positron energy

increases, it behaves more similar to a point source. A

maximum likelihood method [14] was previously devel-

oped to reconstruct the vertex of positrons, the energy

deposition center, to be more precise using mainly the time

information of the first photon hit of photomultiplier tubes

(PMTs) along with the scintillation timing profile of LS.

Ref. [14] also demonstrated that the charge distribution of

all PMTs is sensitive to the vertex of the positron, partic-

ularly near the detector boundary. Machine learning is a

powerful tool for analyzing data and has been widely

applied in physics [15, 16]. A novel method [17] based on

machine learning was also applied to JUNO reconstruction.

Each PMT was treated as a pixel, and the ensemble of a

charge or first hit times of tens of thousands of PMTs

formed an image. These images were fed into neural net-

works to reconstruct the positron vertices. In Ref. [17],

different neural network models such as VGG [18] and

ResNet [19] were tested and compared; the detailed

structures of these models were also slightly optimized to

obtain better reconstruction performance. In this study, we

continue to explore the application of machine learning to

vertex reconstruction in large LS detectors using JUNO as

an example. Instead of optimizing the neural network

models, we focused on the input data and attempted to

optimize the input images to the networks for improved

vertex reconstruction.

The remainder of this study is structured as follows:

Sect. 2 briefly describes the JUNO detector and Sect. 3

lists all the data samples used. Section 4 presents an opti-

mization method of the input images by separating differ-

ent types of PMTs. Section 5 demonstrates another

optimization method by including the information of the

second photon hit of the PMTs. Finally, Sect. 6 summa-

rizes the results.

2 JUNO central detector

The central detector (CD) of JUNO is composed of an

acrylic sphere containing 20,000 tons of LS. The acrylic

sphere was supported by a stainless steel shell submerged

in pure water. Approximately 17,600 20-inch PMTs and

25,600 3-inch PMTs were installed on a stainless steel shell

to collect photons. Details regarding the JUNO CD can be

found in Ref. [6, 20]. In this section, additional information

regarding the JUNO PMTs is discussed. JUNO is a good

example of using multiple types of PMTs. All the event

information, such as the vertex, energy, or muon track [21],

is reconstructed from the PMT signals and their precision

heavily relies on the characteristics of the PMTs.

PMTs are widely used in neutrinos and other experi-

ments for photon detection. As the scale of detectors

increases and the requirement for the measurement preci-

sion becomes more stringent, these experiments have dri-

ven the R&D of PMTs. For small- and medium-scale

detectors, such as the Daya Bay [3], Borexino [22], and

SNO? [23], 8-inch PMTs were utilized. Meanwhile, large-

scale detectors such as Kamiokande, Super-K, KamLAND,

JUNO, and Hyper-K unexceptionally use 20-inch PMTs,

given their best performance-to-price ratio.

There are mainly two types of 20-inch PMTs on the

market for experimental usage thus far: the Dynode PMT is

from the Hamamatsu company, and the other one consists

of a novel microchannel plate (MCP) design and is from

the NNVT company (North Night Vision Technology Co.

Ltd.), each of which has particular specifications.

The physical potential is highly dependent on the per-

formance of PMTs. However, it is non-trivial to choose the

most appropriate PMTs for an experiment after considering

not only the PMT characteristics, but also the cost and risk.

Ref. [24] presented a quantitative strategy for the PMT

selection for large detectors. For JUNO, 12,612 MCP

PMTs and 5000 dynode PMTs were tested before instal-

lation [25]. Table 1 presents a comparison of the two types

of PMTs for parameters that are relevant to vertex

reconstruction.

The MCP PMTs have a slightly better photon detection

efficiency, with an average value of 30.1%, with respect to

28.4% for the Dynode PMTs. The intrinsic charge resolu-

tion is slightly better for the Dynode PMTs. The average

dark noise rate for the MCP PMTs is approximately twice

as that for the Dynode PMTs. Another key difference is the

transit time spread (TTS), which is 2.8 ns for the Dynode

PMTs and 12 ns for the MCP PMTs, respectively. As a

result, Dynode PMTs have a significantly better time res-

olution than MCP PMTs. JUNO deliberately chose to use

approximately 28.3% Dynode PMTs to achieve a better

vertex resolution. In addition to the 20-inch (large) PMTs,

JUNO will also install 25,600 3-inch (small) PMTs, as

previously indicated. In principle, small PMTs can be used

Table 1 Comparison of the two types of PMTs in JUNO. Only the

parameters relevant to vertex reconstruction are listed

Dynode MCP

Detection efficiency (%) 28.4 30.1

Dark noise rate (kHz) 15.3 29.6

Charge resolution (%) 27.9 32.9

Transit time spread (ns) 2.8 12.0
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to improve the reconstruction performance. However,

owing to their small geometrical coverage (� 3%) of

photons, they were not considered in this study.

3 Monte Carlo samples and reconstruction
method

To study the vertex reconstruction of the positron events

in JUNO using machine learning techniques, different

positron samples were prepared; the relevant information is

summarized in Table 2. The training sample was used to

train the machine learning models. Training typically

requires a large number of events. Given the large volume

of JUNO, five million Monte Carlo (MC) events were

simulated as the training sample. The vertices of these

events were uniformly distributed over the entire detector

volume, and their kinetic energy ranged from 0 MeV to

10 MeV. Eleven sets of testing samples with kinetic

energies of Ek = (0, 1, 2, ..., 10) MeV were used to eval-

uate the vertex reconstruction performance. These testing

samples were uniformly distributed throughout the entire

detector volume. The statistics for each testing sample are

0.5 million.

A detector simulation was performed for all the samples

with the JUNO offline software based on Geant4 [26] and

ROOT [27, 28], including the LS properties and optical

processes of photon propagation [29, 30]. An event display

software [31, 32] dedicated to JUNO can be used to

dynamically display the entire process. Realistic detector

geometry, such as the arrangement of PMTs and the sup-

porting structures, was also deployed [33, 34]. Unlike Ref.

[17], which did not include the charge smearing and

waveform of PMTs, the MC data samples in this study

underwent the full chain of the detector simulation, elec-

tronics simulation, PMT waveform reconstruction, and

PMT calibration, making them as close to real data as

possible. Two sets of data samples were produced, referred

to as the ideal and real samples, in which electronic effects

such as TTS and dark noise of the PMTs were disabled or

enabled, respectively.

The vertex reconstruction method used in this study was

inherited from Ref. [17]. All PMTs on the spherical

stainless steel shell were projected onto a 2D plane based

on their positions, as shown in Fig. 1. The PMTs were

installed ring-by-ring from the bottom to top of the CD. For

each PMT, its Y-pixel value corresponds to its ring number,

and its X-pixel value was calculated as follows:

Xpixel ¼ Neff �
arctanðx=yÞ

p

� �
þ Nmax

2
;

Neff ¼ Nmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � z2

p

R

" #
;

ð1Þ

where x, y, and z indicate the global position of the PMT, R

is the radius of the central detector, and Nmax ¼ 229 was

optimized to avoid the overlap of the PMTs and minimize

the number of empty pixels. The PMT waveform has a

sampling time interval of 1 ns in JUNO and usually con-

tains several pulses when there are multiple photon hits.

The ith hit time is defined as the starting time of the ith

pulse and is reconstructed by fitting the rising edge of the

pulse with a linear function and then determining its

intersection with the waveform baseline. The charge of

each pulse is estimated from the pulse integral. The charge

or time information of all the PMTs for any event with the

aforementioned projection will form an image whose pat-

tern varies for different event vertices. These images (or

channels in CNN jargon) are then fed into a convolutional

neural network (CNN) as inputs, and the output is the event

vertex. After a specific CNN model is trained, it can be

used to reconstruct an event vertex. In Ref. [17], various

CNN models were compared and VGG and ResNet were

found to provide the best performance. The structures of

the neural networks in these two models were also slightly

optimized and tailored to the specific requirements of

JUNO. Thus, the ‘‘J’’ in VGG-J and ResNet-J stands for

JUNO. These two models have nearly the same perfor-

mance for vertex reconstruction; VGG-J was chosen for all

the analyses in this study owing to its quicker training

process. All the hyper-parameters and the basic network

structure of the VGG-J model were directly obtained from

Ref. [17]; the only difference was the number and content

of the input images. For each of the cases with different

settings of the input images presented in later sections, the

VGG-J model was retrained using only the training sam-

ples and then applied to the testing samples to reconstruct

the vertex.

4 Optimization of input images by separating
different types of PMTs

4.1 Charge versus time

A follow-up topic regarding the JUNO reconstruction

from Ref. [17] was the relative importance of the charge

Table 2 List of the positron samples used for CNN training and

testing

Kinetic energy Statistics Position

Training Uniform in [0, 10] MeV 5 M Uniform in CD

Testing (0,1,2,…,10) MeV 500 k � 11 Uniform in CD
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and time information of the PMTs in vertex reconstruction.

The following three cases were tested with the same data

samples as well as the same CNN model. In Case A, both

the charge and first hit time (FHT) images were used,

whereas in Cases B and C, only the FHT image or the

charge image was used, respectively. Note that the model

was retrained in each case because the input to the CNN

was different.

• Case A: both Charge and FHT images are used

• Case B: only FHT image is used

• Case C: only Charge image is used

Given the rough spherical symmetry of the JUNO CD, the

results of the vertex reconstruction are relatively similar for

the X, Y, and Z components of the vertex, as shown in

Fig. 11 from Ref. [17]. Thus, only the Z component is

presented in this study. We denote dZ as the difference

between the reconstructed Zrec and true Zedep (from the

energy deposition center). After fitting the distribution of

dZ with a Gaussian function, the Gaussian mean and

standard deviation were defined as the vertex bias and

vertex resolution, respectively.

Figure 2 demonstrates how dZ changes with respect to

the cubic radius r3 for the positrons from the testing

samples in the three cases. In all the cases, the vertex bias

represented by the black curve in each plot is close to zero

for the entire detector, which also applies to all the later

cases in this study. Thus, we do not demonstrate the vertex

bias hereafter. Meanwhile, the vertex resolution is better in

the border region with r3 [ 4000 m3, indicated by the

narrower spread of dZ. Overall, the FHT information is

significantly more powerful in constraining the vertex in

the central region with r3\ 4000 m3 compared to the

charge information; however, in the border region, the

performance of the vertex reconstruction is relatively close.

This is clearly shown in Fig. 3, which compares the

dependence of the vertex resolution on energy for the three

cases in the central and border regions, respectively. Fig-

ure 3 also indicates that using both charge and FHT always

provides a better vertex resolution compared to using only

the charge or FHT in both regions. The charge and FHT of

the PMTs provide complementary information, and both

should be used to achieve the best vertex reconstruction.

Fig. 1 (Color online) 2D plane projection of the PMTs. The PMTs

were projected on a plane image (229 � 124) based on their positions,

for which details can be found in the context. The left and middle

plots correspond to the Dynode and MCP PMTs, respectively. The

right plot demonstrates the two types of PMTs overlaid in a small

region. The white spots indicate empty pixels. The size of the image

was optimized to avoid any overlap of PMTs and minimize the

number of empty pixels
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Fig. 2 (Color online) The distribution of dZ as a function of the cubic

radius r3. The left plot corresponds to Case A, for which both charge

and FHT information was used. The middle plot corresponds to Case

B with FHT information only. The right plot corresponds to Case C

with charge information only. The black curve in each plot

demonstrates the vertex bias, which is near 0 in all cases
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4.2 Dynode versus MCP

Similar to the charge vs. time comparison, another issue

is how the two types of PMTs contribute to the vertex

reconstruction. To address this question, vertex recon-

struction was performed using different types of PMTs, as

indicated below. The same data samples and CNN model

were used again; here, the inputs to the CNN included both

the FHT and charge images, and the CNN was retrained for

each case.

• Case 1: only MCP PMTs are used

• Case 2: only Dynode PMTs are used

• Case 3: both types of PMTs are used

A comparison of the vertex resolutions of the three cases is

shown in Fig. 4. The blue dots correspond to Case 1, where

only MCP PMTs were used. The green dots correspond to

Case 2, where only Dynode PMTs are used. The red dots

represent Case 3, where both types of PMTs were used.

Although the total number of Dynode PMTs is less than

half of that of the MCP PMTs, Dynode PMTs have a

significantly better time resolution owing to the signifi-

cantly smaller TTS. As a result, in comparison to Case 1

with only the MCP PMTs, Case 2 with only the Dynode

PMTs provides a better vertex resolution across the entire

energy range, except for the lowest energy point. This is

nearly consistent with what we have learned from the tra-

ditional vertex reconstruction algorithms [14]; the vertex

resolution is approximately proportional to rTTS/
ffiffiffiffi
N

p
,

where N is the number of fired PMTs and rTTS is the time

resolution of the PMTs.

Case 3 would typically be expected to present a sig-

nificantly better vertex reconstruction performance com-

pared to both Case 1 and Case 2, because the information

of both types of PMTs were used; however, this was not the

case. In the high-energy region, Case 3 had a slightly better

vertex resolution than Case 2. Although, in principle, more

information should provide additional constraints to help

improve vertex reconstruction, the manner in which the

information is utilized is also critical. Based on the afore-

mentioned, an analogy can be made for Case 3. Consid-

ering if two cameras with significantly different resolutions

were used to obtain an image of the same object; the two

images would then be overlaid on top of one another to

forge a combined image. A camera with a significantly bad

resolution may not help in improving the quality of the

combined image. On the contrary, it may make the com-

bined image more fuzzy and possibly degrade its quality.

MCP PMTs have a significantly worse time resolution

compared to that of Dynode PMTs; by overlaying their

FHT images, the network and result of the marginal

improvement in the reconstruction performance may be

confused. The number of fired PMTs is more important in

the low-energy region. The use of both types of PMTs

leads to a significantly better vertex resolution.
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4.3 Separation of input images of PMTs

The information of both types of PMTs should be used

to achieve the best vertex reconstruction performance.

However, mixing the information of different types of

PMTs may not be optimal, as indicated in the aforemen-

tioned section. In the traditional vertex reconstruction

method presented in Ref. [14], the two types of PMTs are

handled separately with different residual time PDFs owing

to the varying TTS. Following the same strategy, the FHT

information should be separated into two images (or

channels), one for each type of the PMTs. Given that the

charge resolution is also different for Dynode and MCP

PMTs, the charge information can also be sufficiently

segregated. To test the performance of this new strategy,

several of the following scenarios were considered:

• Default case: both the charge and FHT information are

mixed for the two types of PMTs, and the input to

VGG-J includes one charge image plus one FHT image.

• Partially separated case: the FHT information is

segregated by PMT types and there are three input

images.

• Fully separated case: both the charge and FHT images

are separated, resulting in four input images.

The VGG-J model was retrained for each case, and the

performance of the vertex reconstruction was evaluated

and compared. Figure 5 demonstrates a comparison of the

vertex resolutions for the three cases. The red, blue, and

green dots indicate the default, partially separated, and

fully separated cases, respectively. Following the separa-

tion of the FHT information by PMT type, a large

improvement was observed across the entire energy range

with respect to the default case. For example, at 1 MeV the

vertex resolution decreased from 111 mm to 102 mm, and

at 11 MeV it decreased from 37 mm to 34 mm. A further

separation of the charge information also leads to a better

performance with respect to the partially separated case;

however, it is a small improvement. For example, the

vertex resolution at 1 MeV only improved from 102 mm to

101 mm. This was expected, given the large TTS differ-

ence between the two types of PMTs. On the other hand,

their charge resolution was not significantly different.

For the JUNO CD, although the small PMTs were not

included in this study for simplicity, adding their infor-

mation is simple for vertex reconstruction using the same

strategy as indicated above. When there are multiple types

of PMTs in a detector, the best strategy is to separately

utilize their information, especially when the characteris-

tics of different types of PMTs are significantly different.

This is true for vertex reconstruction, as demonstrated in

this study, and may be applicable to other tasks in general.

By using the camera analogy, each type of the PMTs forms

an independent camera or sub-detector; their images or

measurements should be obtained separately and then

combined to achieve an optimal performance.

5 Addition of second hit

In Ref. [17], as well as all the aforementioned studies,

the inputs to the CNN models are only limited to the total

charge and the first hit time of each PMT. More than one

photon may hit a PMT, which is both energy- and vertex-

dependent. As the event energy increases, more photons

are emitted; consequently, all PMTs are more likely to

detect more photons. On the other hand, when an event

vertex approaches the border of a detector, the PMTs near

the event vertex may likely receive more photons.

Given the large number of PMTs (a total of approxi-

mately 17,600) for the JUNO CD and the rough light yield

of 1300 photons per MeV, for positrons with an energy less

than 11 MeV, most of the PMTs will receive zero or one

photon. Approximately one-third of the fired PMTs will

detect more than one photon on average for all the events

in the training datasets, as shown in Fig. 6. The fraction of

fired PMTs that detect three or more photons drops sharply

because the number of detected photons for each PMT

obeys a Poisson distribution with small mean values.

In principle, all the later photon hits of PMTs also

contain information regarding the event vertex. However,

we only consider the second hit time (SHT) of PMTs in this

study. If the addition of SHT does not improve the vertex
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reconstruction, it is unnecessary to include the third or later

hits because their fraction is even smaller.

5.1 Ideal case without TTS and dark noise

We start from the ideal case in which electronic effects,

such as PMT TTS and dark noise are turned off. In this

scenario, the two types of PMTs can be treated identically.

Figure 7 demonstrates the PMT images for a positron with

E = 8.25 MeV and r = 15.38 m in the JUNO CD in an ideal

case.

The left, middle, and right plots correspond to the

charge, FHT, and SHT images, respectively. The projec-

tion of PMTs onto the 2D plane is the same as that shown

in Fig. 1. Similar patterns in the FHT and SHT images are

observed upon comparison; PMTs closer to the vertex in

the FHT images are more likely to detect two or more

photons and contribute to the SHT image. Presumably, the

SHT information can add additional constraints on the

event vertex. This can easily be verified by adding an SHT

image to the VGG-J model. The reconstruction results are

shown in Fig. 8, which are indicated by the red dots. The

reconstruction results obtained without using the SHT

image are indicated by the blue dots for comparison. In

general, adding SHT improves the vertex resolution, which

becomes more pronounced as the energy increases. At

1 MeV, the vertex resolution improved by approximately

1.6%, from 62 mm to 61 mm, after adding the SHT image,

whereas at 11 MeV it improved by approximately 4.3%,

from 23 mm to 22 mm. This is consistent with our

expectation because the fraction of PMTs with SHT

increases as the energy increases.

5.2 Realistic case with TTS and dark noise

In the previous section, we demonstrated that the SHT

information is also useful for vertex reconstruction in an

ideal scenario. In reality, the TTS and dark noise of PMTs
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Fig. 7 (Color online) Images of PMT charge and time information for a positron with E = 8.25 MeV and r = 15.38 m in the JUNO CD. The left,

middle, and right plots demonstrate the charge, FHT, and SHT images, respectively. The photon counting time window is 1250 ns for the PMTs
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123

Improvement of machine learning-based vertex reconstruction for large liquid scintillator… Page 7 of 10 93



must be considered; in Ref. [14], their impact on vertex

reconstruction was exclusively studied. TTS has a domi-

nant effect because it largely degrades the resolution of

FHT. On the other hand, the contribution of PMT dark

noise on the FHT is small if the rate is not too high. Thus,

its impact on vertex reconstruction is relatively small in

Ref. [14], where only FHT was used. Because PMT dark

noise occurs randomly with respect to time, it does not

contain information regarding the event vertex. These

additional PMT hits from the dark noise contaminate the

real photon hits and should be removed. However, dis-

criminating all dark noise hits from real photon hits is

challenging, and is beyond the scope of this study. For

photons originating from the same particle and arriving at

the same PMT, the corresponding PMT hits have a strong

temporal correlation. This correlation can be used to par-

tially remove the dark noise contribution, particularly for

later hits. The difference between FHT and SHT was

required to be less than 300 ns. This simple cut on the SHT

was optimized to retain 98.9% of the real photon hits, while

48% of the dark noise hits were rejected for SHT. After

applying this cut, the average fraction of the fired PMTs

with SHT for all the events in the training dataset decreased

from approximately 36.3% to 33.8%, which is close to the

33.3% in the ideal case without dark noise. Meanwhile, for

the PMTs with SHT, the fraction of PMTs containing dark

noise hits decreased from approximately 11.3% to 4.4%,

similar to 4.9% for PMTs with FHT.

Given that TTS is not zero in a realistic case, the

information of the two types of PMTs needs to be separated

to achieve the best performance, as shown in Sect. 4.3. In

addition to the charge and FHT images of both types of

PMTs, two additional SHT images were also fed into

VGG-J, accounting for six images in total. Figure 9 com-

pares the vertex resolution with and without the use of SHT

information in a realistic case. The red dots indicate the

fully separated case in Sect. 4.3, where four images were

used, while the blue dots indicate the case where six

images were used. Similar to the ideal case, adding SHT

improves the vertex resolution in a realistic case. However,

the improvement is not as prominent as that in an ideal

case, which is mainly due to the degradation of the PMT

time resolution caused by TTS.

Based on studies regarding both ideal and realistic cases,

it is clear that SHT can improve the performance of vertex

reconstruction. The time resolution of PMTs is an essential

factor. For any future similar detectors, we should attempt

to reduce the TTS of PMTs. We also verified that by

adding SHT, the improvement was similar in the central

and border regions for both cases. It is also noteworthy to

consider that both the charge and time information were

reconstructed from PMT waveforms. This process intro-

duces additional uncertainties in both charge and time.

Thus, we also need to develop a better waveform recon-

struction method to mitigate its impact on both the charge

and time resolution of PMTs. Later hits may also be useful,

provided that they can be sufficiently identified and

reconstructed, which tends to be difficult especially when

they overlap with one another.

6 Performance summary and discussion

Two optimization methods for machine learning-based

vertex reconstruction have been analyzed in this study;

namely, separation of the PMT information by PMT type in

Sect. 4, and addition of the SHT information in Sect. 5.

The improvement in the vertex resolution is demonstrated

in Figs. 5 and 9.

For convenience, Table 3 summarizes the results at 1, 5

and 11 MeV. A default case without optimization is also

shown for comparison. Separation of the PMT information

by PMT type leads to a 10% improvement with respect to

the default case. The further addition of SHT information

results in another 1% improvement.

For machine learning-based vertex reconstruction, there

are a few remaining aspects that need to be further inves-

tigated. First, it is a continuous process for particles to

deposit energy in the LS and emit photons, which resem-

bles a video rather than an image. The use of this temporal

information may pose new challenges. Meanwhile, JUNO

CD is a spherical detector, and any projection of PMTs on

the surface of a sphere to a 2D plane usually causes

deformation and loss of symmetry and continuity. We were

able to borrow astrophysical tools to handle spherical
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images. Third, the robustness of machine learning tech-

niques has to be verified, especially when there are dis-

crepancies between the training and evaluating datasets, or

between the Monte Carlo simulation and real data. Another

issue is determining the uncertainty of the machine learn-

ing-based method. Lastly, we also need to compare the

precision of different vertex reconstruction algorithms with

real data. One possible approach is to use calibration data

with known vertex information. Another approach is to rely

on a Monte Carlo simulation after being tuned to real data.

Moreover, an alternative option is using reinforcement

learning with hybrid training samples of calibration and

simulation data. By addressing these topics in the future,

we aim to achieve the best vertex reconstruction for large

LS detectors with multiple types of PMTs and conse-

quently enhance the detector performance to increase the

physical potential of new discoveries.

7 Conclusion

A high-precision vertex resolution is essential for large

liquid scintillator detectors, such as JUNO. There are

several studies [2, 14, 35] regarding vertex reconstruction

using traditional methods for liquid scintillator detectors,

whereas the novel idea of vertex reconstruction with

machine learning techniques has only been recently applied

to JUNO for the first time [17]. In this study, we continue

to improve the performance of machine learning-based

vertex reconstruction and focus on the optimization of the

input images to the CNN model. Owing to the different

characteristics of various types of PMTs, their information

is separated rather than mixed. Moreover, in addition to the

FHT information of PMTs, the SHT information was also

used. The separation of the two types of PMTs led to a

noticeable improvement in the vertex resolution of

approximately 10% on average across the energy range of

[1, 10] MeV. The further addition of SHT resulted in an

improvement of approximately 1% on average. These two

optimization methods appear to be relatively simple;

however, they can be used as general guidelines for other

detectors with multiple types of PMTs.
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