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Abstract
Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years. Despite some
progress in one-dimensional problems, there is still a paucity of benchmark studies that are easy to solve using traditional
numerical methods albeit still challenging using neural networks for a wide range of practical problems. We present two
networks, namely the Generalized Inverse Power Method Neural Network (GIPMNN) and Physics-Constrained GIPMNN
(PC-GIPIMNN) to solve K-eigenvalue problems in neutron diffusion theory. GIPMNN follows the main idea of the inverse
power method and determines the lowest eigenvalue using an iterative method. The PC-GIPMNN additionally enforces
conservative interface conditions for the neutron flux. Meanwhile, Deep Ritz Method (DRM) directly solves the smallest
eigenvalue by minimizing the eigenvalue in Rayleigh quotient form. A comprehensive study was conducted using GIPMNN,
PC-GIPMNN, and DRM to solve problems of complex spatial geometry with variant material domains from the field of
nuclear reactor physics. The methods were compared with the standard finite element method. The applicability and accuracy
of the methods are reported and indicate that PC-GIPMNN outperforms GIPMNN and DRM.

Keywords Neural network · Reactor physics · Neutron diffusion equation · Eigenvalue problem · Inverse power method

1 Introduction

In the nuclear engineering domain, the fundamental mode
solution of the K-eigenvalue problem based on the steady-
state multigroup neutron diffusion theory is crucial for
simulation and analysis of nuclear reactors. The eigenvalue
equation can be expressed as follows:
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where φg ≡ φg(r) denotes the neutron flux at spatial point
r in the g-th energy group, Dg, �

R
g , �g′→g, χg and ν�f

g′
denote spatially dependent (possibly discontinuous) param-
eters that reflect the material properties in a reactor core
[1]. Nuclear engineers and analysts must numerically deter-
mine the fundamental mode eigenvalue (commonly called
Keff ) and the corresponding eigenvector for a given geom-
etry/material configuration. For numerical solution, Eq. (1)
must be discretized and reduced to a set of G-coupled alge-
braic equations, which can be expressed using matrices as
follows:

M� = 1

K
F�. (2)

This is often termed as the generalized eigenvalue problem
because coefficient matrices occur on both sides of the equa-
tion. Many mature numerical methods, such as the finite
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difference method [2], nodal collocation method [3], finite-
element method [4–6], and nodal expansion method [7–9],
have been proposed to solve neutron diffusion equations.
Among the methods, the nodal expansion method is widely
used because it is easier to implement and requires less com-
putational effort than other methods. The power iteration
method is themostwell-knownnumericalmethod for solving
the principal K-eigenvalue [10]. A detailed review of conven-
tional numerical methods for solving K-eigenvalue problems
is available in recent nuclear reactor physics textbooks [1, 11,
12]. Although traditional and mature numerical methods are
currently widely used in nuclear reactor physics to solve K-
eigenvalue problems with acceptable engineering accuracy
and computational cost, state-of-the-art neural networks to
solve K-eigenvalue problems are still in the infancy stages.
However, neural networks exhibit the potential to provide
another option to solve nuclear engineering problems with
the progress of new algorithms and hardware.

As mentioned above, many traditional numerical meth-
ods were proposed to solve neutron diffusion equations.
However, a dense mesh is required to ensure highly accu-
rate results. The model consumes more computational
resources if the mesh is extremely dense. Inaccurate solu-
tions are obtained if the mesh is coarse. Moreover, for
high-dimensional problems, classical methods are either less
efficient or not successful due to the problems involving
dimensionality. A neural network can potentially enhance
its performance by using a capable hypothesis space due to
its relatively low statistical error [13].

Neural networks exhibit multiple potential benefits in
solving nuclear engineering problems when compared with
conventional numerical methods.

• They providemesh-free solutions to approximate physics
fields in nuclear reactors, inwhichmesh generation is sig-
nificantly complex due to high heterogeneity of geometry
and material.

• They provide a general framework to solve high-
dimensional problems governed by parameterized PDEs,
particularly for original neutron transport equation.This
equation comprises seven variables: three spatial vari-
ables, two directional variables, one energy variable, and
one temporal variable.

• They are able to seamlessly incorporate prior data (poten-
tially with noise) into existing algorithms given that data
assimilation is necessary as a post-process for conven-
tional numerical methods [14–19].

• They provide a general framework to solve inverse prob-
lems with hidden physics. Conversely, they are typically
prohibitively expensive and require different formula-
tions and elaborate computer codes for conventional
numerical methods.

In recent years, neural networks have been widely used to
solvePartialDifferential Equations (PDEs) [20] and achieved
remarkable success.

Basedonneural networks, a largenumber ofmethodswere
proposed to solve PDE, such as the deep backward stochastic
differential equation (BSDE)method [21, 22], deep Galerkin
method (DGM) [23], deep Ritz method (DRM) [24], and
Physics-Informed Neural Network (PINN) [25]. The deep
BSDE method reformulates PDEs using backward stochas-
tic differential equations and approximates the gradient of
an unknown solution using neural networks. Although DGM
and PINN appear independently under two names in the lit-
erature, they are similar. They both train neural networks
by minimizing the mean squared error loss of the residual
equation. However, DRM reformulates the original prob-
lem into a variational problem and trains neural networks by
minimizing the energy function of the variational problem.
Specifically,DRMandPINN[25] attractedwidespread atten-
tion. Extensive studies focused on these methods to solve
a variety of problems, including fiber optics [26], hypere-
lasticity [27], solid mechanics [28], heat transfer problems
[29–31], inverse problems [32–35], and uncertainty quantifi-
cation [36–39]. However, a few studies focused on solving
eigenvalue problems [24, 40–45].

The need to solve eigenvalue problems can be traced
back to 2018 [24]. A deep Ritz method to solve variational
problems was proposed, and several examples elucidated
on how to use DRM to solve eigenvalue problems [24].
First, the original eigenvalue problem was transformed into
a variational problem. Then, a specially defined loss func-
tion was constructed, termed as the Rayleigh quotient, using
the variational principle [46]. The Rayleigh quotient is a
well-known approximation of the eigenvalue of matrix A,
which is defined by R = xTAx

xT x
. Finally, they minimized the

loss function and obtained the smallest eigenvalue. Similarly,
some studies [41, 42] directly used PINN to solve eigen-
value problems. In contrast to DRM transferring the original
problem to a variational problem, the PINN solves eigen-
value problems without variation. Neural networks are used
in PINN to represent the function, and automatic differentia-
tion (AD) [47] is used to acquire the vector impacted by the
differential operators. The loss function is obtained using the
Rayleigh quotient. The smallest eigenvalue and correspond-
ing eigenvector were then solved using optimization tools.
Moreover, the deep forward-backward stochastic differential
equation (FBSDE)method [48] was proposed to solve eigen-
value problems, which is an expansion of the deep BSDE
method. In the method, the eigenvalue problem is reformu-
lated as a fixed-point problem of semigroup flow induced by
the operator. Other studies [43, 44] proposed an alternative
method to learn the eigenvalue problem by adding one or two
regularization terms to the loss function. More recently, Ref.
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[49], a neural network framework based on the powermethod
[50]was presented to solve eigenvalue problems and smallest
eigenvalue problems, where the eigenfunction is expressed
by the neural network and iteratively solved following the
idea of the power method or inverse power method. How-
ever, the scope was limited to linear operators and certain
special eigenvalue problems.

In a recent study, PINN was applied to solve neutron dif-
fusion equations [45, 51], where the authors used a free
learnable parameter to approximate the eigenvalue and a
novel regularization technique to exclude null solutions from
the PINN framework. A conservative physics-informed neu-
ral network (cPINN) was proposed in discrete domains for
nonlinear conservation laws [52].Moreover, cPINN [53] was
applied to solve heterogeneous neutron diffusion problems in
one-dimensional cases, which develops PINN for each sub-
domain and considers additional conservation laws along the
interfaces of subdomains (a general consideration in reactor
physics [11]), which is involved in neural network training
as the variable to be optimized.

More recently, a data-enabled physics-informed neural
network (DEPINN) [40] was proposed to solve neutron
diffusion eigenvalue problems. To achieve acceptable engi-
neering accuracy for complex engineering problems, it is
suggested that a very small amount of prior data from phys-
ical experiments be used to improve the training accuracy
and efficiency. In contrast to PINN, which solves the neutron
diffusion eigenvalue problem directly, an autoencoder-based
machine learning method in combination with the reduced-
order method [54, 55] was proposed [56] to solve the same
problem. However, it still relies on solving governing equa-
tions with traditional numerical methods such as the finite
difference method.

Although DRM provides a way to solve eigenvalue
problems with neural networks, as shown in Sect. 4.2.2,
results indicate that DRM is not stable when solving two-
dimensional cases. First, DRM learns the eigenvalue and
eigenfunction at the early stageof the trainingprocess. Subse-
quently,DRMattempts to learn a smaller eigenvalue after it is
close to the true eigenvalue. Finally,DRMsuccessfully learns
one smaller eigenvalue that may be close to the true eigen-
value and one incorrect eigenfunction that ismeaningless and
far from the true eigenfunction. Additionally, the framework
of a neural network based on the powermethod [50] is unsuit-
able for generalized eigenvalue problems. Therefore, it is
necessary to propose a new algorithm to solve K-eigenvalue
problems.

The study focuses on eigenvalue problems, which are also
interface problems in which the eigenfunctions are continu-
ous on the interface, and the derivatives of the eigenfunction
are not continuous at the interface. Specifically, in the nuclear
reactor physics domain, this is a general problem in which
the reactor core is composed of fuel assemblies of differ-

ent fissile nuclides enrichments [1]. Some studies focused
on the use of neural networks to solve elliptic interface
problems. Some researchers [57] use the idea of DRM and
formulated the PDEs into the variational problems, which
can be solved using the deep learning approach. They pre-
sented a novel mesh-free numerical method for solving
elliptical interface problems based on deep learning [58].
They employed different neural networks in different sub-
domains and reformulated the problem as a least-squares
problem. A similar case exists, in which the authors [53]
enforce the interface conditions using piecewise neural net-
work. In contrast to the methods, a discontinuity-capturing
shallowneural network (DCSNN) [59] has been proposed for
elliptic interface problems. The crucial concept of DCSNN
is that a d-dimensional piecewise continuous function can
be extended to a continuous function defined in (d + 1)-
dimensional space, where the augmented coordinate variable
labels the pieces of each subdomain. However, to the best of
the authors’ knowledge, only a few studies focused on the
use of neural networks to solve eigenvalue problems that
incorporate interface problems involving regions of different
materials. However, challenges exist at least on three fronts.

• Designing a neural network that is more suitable for K-
eigenvalue problems for more complicated/medium-size
test problems.

• Dealing with the interface problem in a more general
and understandable manner when designing the neural
network.

• Proposing a framework effectively enhances the robust-
ness of the neural network and improves the efficiency
of utilizing the noisy prior data.

To address the aforementioned challenges and advance
beyond the state-of-the-art research [45, 51, 53], we initially
introduced the study [40]. This served as a preliminarily
demonstration of the applicability of the PINN approach to
reactor physics eigenvalue problems in complex engineering
scenarios. The contributions of this study are as follows.

• Firstly, we extend the Inverse PowerMethod Neural Net-
work (IPMNN)[49] to the so-called Generalized Inverse
Power Method Neural Network (GIPMNN) to solve
the smallest eigenvalue and the related eigenfunction
of the generalized K-eigenvalue problems. Compared
to DEPINN from our previous study [53], we omit the
prior data in the training process and attempt to solve
the K-eigenvalue problems from a data-free mathemati-
cal/numerical perspective.

• Then, we propose a Physics Constrained GIPMNN (PC-
GIPMNN) to address the interface problem in a more
general and understandable manner with respect to pre-
vious studies [45, 51, 53].
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• Finally, we conduct a thorough comparative study of
GIPMNN, PC-GIPMNN, and DRM using a variety of
numerical tests. We evaluate the applicability and accu-
racy of these three methods using typical 1D and 2D
test cases in reactor physics, particularly accounting for
material discontinuities in different geometries. In the
1D example, we determine the optimal ratio of outer to
inner iterations, a finding that may be particularly rele-
vant for GIPMNN. Additionally, we observe the failure
of DRM in the 2D experiments, whereas PC-GIPMNN
consistently outperforms GIPMNN and DRM over a set
number of epochs.

The rest of this paper is organized as follows. The govern-
ing equations for the eigenvalue problems are presented in
Sect. 2. In Sect. 3, we propose GIPMNN and PC-GIPMNN
and introduce DRM in our cases. In Sect. 4, the results of
1D and 2D test cases are listed to verify the three meth-
ods. Finally, conclusions and future research are discussed
in Sect. 5.

2 K-eigenvalue problems

This section introduces the equations that govern the neutron
criticality over a spatial domain. We recall Eqs. (1) and (2).
The generalized K-eigenvalue problem can be formulated as
follows:

{
Lφ = λQφ, in �,

Bφ = g, on ∂�,
(3)

where domains � ⊂ R
d, L,Q, and B denote the differential

operators acting on the functions defined in the interior of
� and at the boundary of �( ∂�). Furthermore, φ denotes
the eigenfunction of the system and λ denotes the associated
eigenvalue. In this preliminary study, inspired by the notable
work in [56], we utilize the one-group steady-state diffusion
equation for criticality, framing it as a generalized eigenvalue
problem. It is expressed as:

−∇ · (D∇φ) + �aφ = λv�fφ, (4)

where eigenfunction φ denotes the neutron flux, which is a
scalar quantity used in nuclear reactor physics. It corresponds
to the total length travelled by all free neutrons per unit time
and volume. �a, �f, and v denote the absorption cross sec-
tion, fission cross section, and average number of neutrons
produced per fission event, respectively. We follow [56] and
use the diffusion coefficient approximation

D = 1

3(�a + �s)
. (5)

Here, �s denotes the cross-section where a neutron scatters
in a different direction. The eigenvalue λ is obtained by mul-
tiplying the neutron source in Eq. (4). The value balances the
terms that produce neutrons with those that account for the
losses. This is defined as the reciprocal of keff, i.e., λ = 1

keff
,

where

keff = number of neutrons in one generation

number of neutrons in the preceding generation
.

(6)

Two main boundary conditions are imposed on the diffu-
sion equation. One condition represents a surface on which
neutrons are reflected back into the domain (reflective condi-
tion), and the other condition represents surfaces that allow
neutrons to escape from the system (vacuum or bare condi-
tion). Both the conditions are satisfied by relating the flux
solution to its gradient on the boundary, i.e.,

−1

2
D∇φ · n =

⎧
⎨

⎩

1

4
φ bare surface,

0 reflective surface,
(7)

where n denotes an outward point normal to the surface.

2.1 PINN as a Eigenvalue solver

In this subsection, we discuss using PINN to solve the gen-
eralized eigenvalue problem (Eq. (2)).

The eigenfunction of the operator L is approximated by
N θ , i.e., φ(x) = N θ (x). Then,Lφ andBφ can be computed
using the AD. For the boundary conditions: A penalty term
(Eq. (8)) is added to the loss function in PINN, which penal-
izes the discrepancy between the approximated value on the
boundary and exact boundary condition, where Nb denotes
the number of sampling points on the boundary ∂� and xi
is one point in the sampling set {xi }Nb

i=1.

Lossb =
Nb∑

i=1

|B�(xi ) − g(xi )|2. (8)

λ = 〈Lφ, φ〉
〈φ, φ〉 . (9)

As mentioned previously, we are concerned with the
smallest eigenvalue and associated eigenfunction. Hence, the
eigenvalue (Rayleigh quotient) is viewed as a loss term in
PINN to attain the lowest eigenvalue.

Finally, the total loss function (Eq. (10)) in PINN corre-
sponds to the weighted sum of the two objectives (Eq. (8))
and (Eq. (9)), where α and β corresponds to the weights.

Losstotal = αλ2 + βLossb. (10)
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Unfortunately, PINN does not work for the cases in the
study and even performs worse than DRM. Therefore, we
only compared the results of our method with those of DRM.

Remark 1 It should be noted that the square of the eigenvalue
is used as the loss function in PINN. Given that the smallest
eigenvalue implies that the absolute value is the smallest,
PINN attempts to determine a negative infinity value without
using a square term.

3 Methodologies

In this section, we extend our previous study [49] and dis-
cuss the use of a neural network to numerically solve the
smallest eigenvalue problem. The main concept is to use a
neural network to approximate the eigenfunction and com-
pute the eigenvalue based on the Rayleigh quotient using
an eigenvector expressed by the points calculated using the
eigenfunction.

3.1 Neural network architecture

Next, we discuss the neural network structure used to approx-
imate eigenfunction φ(x). The neural network architecture
employed in the study is the same as ResNet [60], which is
built by stacking several residual modules. It is one of the
most popular models used in Deep Learning, and it is also
commonly used in the field for solving PDEs via neural net-
works [24, 61, 62]. Eachmodule has one skip connection, and
each block consists of two fully connected layers as shown
in Fig. 1.

In the network, let x, xk ∈ R
d be the input and let W l

and bl , l = 1, 2, 3, 4 and 5 be the parameters in the fully
connected layers. We use W rk and brk and k = 1 and 2 to
denote the parameters in the residual connections. The results
s1 and s2 for the modules can be expressed as follows:

s1 = σ(W2(σ (W1x + b1)) + b2) + r1(x), (11)

s2 = σ(W4(σ (W3s1 + b3)) + b4) + r2(s1), (12)

whereσ denotes the activation function and is chosen as tanh.
Furthermore, rk, k = 1, and 2 are functions in the residual
connections, which can represented as follows:

rk(xk) = σ(W rkxk + brk). (13)

Subsequently, the neural network N θ (x) is expressed as

N θ (x) = W5s2(s1(x)) + b5. (14)

Therefore, the eigenfunction φ(x) = N θ (x), where θ

denotes neural network parameters.

Fig. 1 Neural network architecture consists of two modules and one
linear output layer. Each module contains two fully-connected layers
and a skip connection

Remark 2 Given that φ(x) is the scalar of the neutron pop-
ulation and denotes the density of the free-moving neutron
distribution over the spatial domain, we obtain φ(x) ≥ 0.
Therefore, the eigenfunction can be expressed as φ(x) =
(N θ (x))2.

3.2 Recap of inverse powermethod neural network

We consider the following linear eigenvalue problem:

Lφ = λφ, in �, (15)

which differs from the generalized eigenvalue problemLφ =
λQφ.

Inspired by the idea of the inverse power method, IPMNN
[49] was proposed to solve for the smallest eigenvalue and
associated eigenfunction. Equation (16) depicts the key step
of the inverse power method, and equation (17) is analogous
to equation (16), where A denotes a matrix, and λk−1 and
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φk−1 denote the results of previous iteration. Therefore, λk
and φk are obtained by using Eq. (16).

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pk = A−1φk−1,

φk = pk
‖ pk‖

.

λk = 〈Aφk,φk〉
〈φk,φk〉

.

(16)

L�k

‖L�k‖ = �k−1. (17)

Here, the neural networkN θ represents the approximated
eigenfunction �k at the kth iteration of Eq. (17). Given that
�k−1, which is obtained from the last iterative step and fol-
lows the main idea of inverse power method, we must solve
�k using Pk = L−1�k−1 and �k = Pk/‖Pk‖. However, it
is difficult to obtain the inverse operatorL−1 for the differen-
tial operator L. Therefore, �k is obtained without knowing
the inverse operator. The termL�k is computed using AD in
Eq. (17). The main idea is that it is not necessary to calculate
L−1, and the eigenfunction can be approximated iteratively
by minimizing the defined loss (18) to approach Eq. (17),
where xi ∈ S is the dataset, and N denotes the number of
points in S. The eigenvalue in the kth iteration is obtained by
using (19).

Lossipmnn(θ) =
N∑

i=1

(L�k(xi )
‖L�k‖ − �k−1(xi )

)2

. (18)

λk = 〈L�k,�k〉
〈�k,�k〉 . (19)

3.3 Generalized inverse powermethod neural
network

In standard nuclear engineering procedures, we normally
employ the inverse power method to solve for the small-
est eigenvalue and associated eigenvector, which relies on
the discretization of Eq. (3). IPMNN [49] was proposed to
solve the smallest eigenvalue problem, which is a mesh-free
method realized by a neural network. However, themethod is
restricted to solving the equation Lφ = λφ, which is a sim-
ple form. Therefore, we propose GIPMNN to solve Eq. (3).
Details of algorithm of GIPMNN is presented in Algorithm
1.

First, the generalized inverse power method is used to
solve Eq. (20). The key step to focus on is given in Eq. (21),
where A and B are two matrices and λk−1 and φk−1 are the
results of the previous iteration. Therefore, λk and φk are
obtained by using Eq. (21).

Aφ = λBφ. (20)

⎧
⎨

⎩

Aφk = λk−1Bφk−1,

λk = 〈Aφk,φk〉
〈Bφk,φk〉

.
(21)

Weuse a neural networkN θ to represent the approximated
eigenfunction �.

⎧
⎨

⎩

L�k = λk−1Q�k−1,

λk = 〈L�k,�k〉
〈Q�k,�k〉 .

(22)

In GIPMNN, Eq. (22) is an analog of Eq. (21), where
L and Q denote linear differential operators implemented
by AD as opposed to specially discretized matrices. In a
manner similar to the generalized inverse power method,
we record the results λk−1 of previous iteration. In contrast
to the generalized inverse power method, instead of record-
ing φk−1, we record Q�k−1. It should be noted that �k−1

denotes the eigenfunction represented by the neural network
in (k − 1)th iteration, andQ�k−1 is realized by AD. In k-th
iteration, we directly compute �k using the neural network,
i.e., �k = N θ , and calculate L�k using AD. We obtain
�k directly through the neural network instead of solving
the equation L�k = λk−1Q�k−1, We define the loss func-
tion Lossgipmnn in Eq. (23) to propel the neural network to
learn �k . When the neural network converges, we obtain the
smallest eigenvalue, and the associated eigenfunction can be
expressed using a neural network.

Lossgipmnn =
N∑

i=1

|L�k(xi ) − λk−1Q�k−1(xi )|2. (23)

Remark 3 In the algorithm of GIPMNN, given that the initial
function�0 is not represented by the neural network, it is not
possible to obtain Q�0 using the AD. Therefore, we chose
an arbitrary function Q�0.

The Neumann and Robin boundary conditions were used
for the eigenvalue problem. It is difficult to enforce them by
encoding the boundary conditions into a neural network, as
in [49, 63, 64], where the Dirichlet and periodic boundary
conditions are used.

We form the loss function Lossb in Eq. (8), where Nb

denotes the number of sampling points on ∂�, and xi is a
point in the sampling set {xi }Nb

i=1.
Therefore, the loss function is defined in Eqs. (24) and

(25) as follows: where the surface indicates that neutrons
are reflected back into the domain or that the surface allows
neutrons to escape from the system.
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Algorithm 1:GIPMNN for Finding the Smallest Eigen-
value
Given N denotes the number of points for training the neural
network, Nb denotes the number of points on the boundary ∂�,
Length denotes a measure of ∂�, Nepoch denotes the maximum
number of epochs, and ε denotes the stopping criterion
Step 1: Build data set S for the loss of the Rayleigh quotient and
data set Sb for the loss of boundary.
Step 2: Initialize a neural network with random initialization of
parameters.
for k = 1, 2, · · · , Nepoch do

Input all points in S and Sb into neural network Nθ .
Let �k(xi ) = N θ (xi ), where xi ∈ S

⋃
Sb;

Lossdrm = α
<L�k ,�k>
<Q�k ,�k>

+β
Length
Nb

∑Nb
i=1 |B�k(xi )−g(xi )|2.

Update parameters θ of the neural network via gradient
descent.
θk+1 = θk − η∇θ J (θk), where η is the learning rate and θk is
the vector of parameters in k-th iteration.
if Lossdrm < ε then

Record the best eigenvalue and eigenfunction.
If the stopping criterion is met, then the iteration can be
stopped.

end
end

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lossb =
Nb∑

i=1

|−1

2
D(xi )∇�(xi ) · n|2 bare surface,

(24)
Nb∑

i=1

|−1

2
D(xi )∇�(xi ) · n − 1

4
�(xi )|2 reflective surface.

(25)

The total loss function (Eq. (26)) denotes the weighted
sum of the objectives (Eq. (23)) and (Eq. (8)). For the process
of GIPMNN, refer to Algorithm 1.

Losstotal = αLossgipmnn + βLossb. (26)

Remark 4 In Eq. (26), α and β denote the weights of the two
losses. It is noted that β ≥ α when training the neural net-
work, particularly in the method GIPMNN. Given this issue,
it is easy for a neural network to determine the eigenvalue
and eigenfunction.

3.4 Physics constrained generalized inverse power
method neural network

Although GIPMNN can solve the eigenvalue problems of
Eq. (3), it is still difficult to solve eigenvalue problems with
discontinuous coefficients in different regions. We discuss
interface problems,which implies that the eigenfunctionmay
be continuous at the interface, and the derivatives of the
eigenfunction may not be continuous at the interface. The
enforcement of interface conditions is very important for
GIPMNN.

In the study, inspired by the idea of a piecewise deep neural
network [58], we propose a PC-GIPMNN to solve eigen-
value problems with interface conditions. However, instead
of employing different neural networks in different subdo-
mains, we use only one neural network and multiple neurons
in the output layer, as shown in Fig. 2. It should be noted that
each neuron in the output layer corresponds to a subdomain.
Therefore,we can obtain outputs in different subdomains that
can be used to enforce the conditions at the interface.

Suppose that there are two domains �l and �r , with
an interface �, which is the cross region between the two
domains. Given the properties of the neutron population
φ(x), we can summarize that the eigenfunction will satisfy
two interface conditions, i.e., (27) and Eq. (28), where φl

and φr represent the eigenfunctions defined in �l and �rm,
respectively, and n denotes the normal vector pointing from
�r to�l . Dl and Dr are the coefficients defined in�l and�r ,
respectively, which are discontinuous at the interface. Equa-
tion (27) indicates that the eigenfunction is continuous at the
interface, i.e., the neutron flux is continuous at the interface.
Equation (28) indicates that neutron flow is continuous at the
interface.

{
φl = φr , (27)

−Dl∇φl · n = −Dr∇φr · n. (28)

Assume that S� corresponds to the set of points at the
interface � and |S�| denotes the number of points in S� . We
then introduce two penalty terms to enforce the two interface
conditions: Equation (29) and Eq. (30), where xi ∈ S� .

Fig. 2 Illustration of
PC-GIPMNN architecture
diagram. There are multiple
neurons in the output layer,
which denote the eigenfunctions
in different subdomains
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Lossi1 =
|S� |∑

i=1

|�l(xi ) − �r (xi )|2, (29)

Lossi2 =
|S� |∑

i=1

|(−Dl∇�l(xi ) · n) − (−Dr∇�r (xi ) · n)|2.

(30)

By combining (26), (29), and (30), Equation (31) is the
total loss defined in ourmethod PC-GIPMNN,whereα,β, γ ,
and δ are the weights of the different losses. In subsequent
experiments, we chose 1. In the study, we focused on the
proposed algorithms and neglected the influence of weights.
We are expecting that our proposed algorithms are universal
and achieve better results, evenwithout adjusting theweights.
Therefore, we select all weights as 1.

Losstotal = αLossgipmnn + βLossb + γ Lossi1 + δLossi2.

(31)

Moreover, the eigenfunction can be represented as:

φ = llφl + lrφr , (32)

where, ll and lr denote the indicator functions, ll = 1 in �l ,
ll = 0 in �r , lr = 1 in �r and lr = 0 in �l .

Remark 5 ConservativePINN(cPINN) [53] developedPINN
for each subdomain and considered additional conservation
law along the subdomains’ interfaces (a general consider-
ation in reactor physics [11]). However, in neural network
training, eigenvalue is involved as a variable to be optimized,
and the numerical examples that are presented correspond to
only one-dimensional cases. Furthermore, the relative errors
of keff in these cases are 4.4800× 10−04 and 3.3500× 10−04.
Similarly, we use Eqs. (29) and (30) to enforce the interface
conditions. As shown below, our methods are more generic
and yield better results.

Remark 6 In [45], the impact of the interface conditions was
ignored, and the relative errors of keff in their cases corre-
sponded to 1.3 × 10−03 and 4.4 × 10−03, respectively, and
the study did not involve the smallest eigenvalue problem. In
this study, we obtain the lowest eigenvalue using the inverse
power method as opposed to using a free learnable param-
eter to approximate the eigenvalue. Our numerical results
demonstrate that accurate results can be obtained in more
complicated cases.

3.5 Deep Ritz method

DRM is a deep-learning-based method for numerically solv-
ing variational problems [24]. It reformulates the original
PDEs into equivalent variational equations and defines the

loss function based on variational formulations. The solu-
tions of PDEs are represented by a neural network, and the
derivatives are calculated using AD. DRM [24] is also used
to solve eigenvalue problems. Furthermore, we specify how
to use DRM to solve Eq. (3).

We consider the variational principle of the smallest eigen-
values.
⎧
⎪⎨

⎪⎩

min

∫
�
Lφ · φdx∫

�
Qφ · φdx

,

s.t. Bφ|∂� = g,

(33)

where Rayleigh quotient was used. The boundary conditions
were enforced by adding a penalty term.

min
∫

∂�

|Bφ − g|2d s, (34)

and the total loss function Lossdrm is defined as:

Lossdrm = α

∫
�
Lφ · φdx∫

�
Qφ · φdx

+ β

∫

∂�

|Bφ − g|2ds, (35)

where α and β denote the weights of different losses. We
chose α = 1 and β = 1 for our experiments.

After the optimal approximation is obtained by solving the
optimization problem (35), we obtain the smallest eigenvalue

λ =
∫
� Lφ·φdx∫
� Qφ·φdx and eigenfunction represented by the trained

neural network. It should be noted that Lφ, Qφ, and Bφ are
computed using the AD. For the process of DRM, refer to
Algorithm 2.

Remark 7 We enforced the boundary condition by adding
a penalty term, (34). However, if the boundary condition
is the Neumann or Robin boundary condition, we do not
use the penalty term (34) because the boundary condition
is incorporated into the Rayleigh quotient based on Green’s
first identity [65].

4 Experiments

In this section, we present numerical experiments to compare
the applicability and accuracy of GIPMNN, PC-GIPMNN,
and DRM for solving the smallest eigenvalue problems in
reactor physics. In all the experiments below, we chose
the Adam optimizer with an initial learning rate 10−3 to
minimize the loss function. Furthermore, we trained the neu-
ral network with the architecture of ResNet on a server
equipped with CentOS 7 system, one Intel Xeon Platinum
8358 2.60-GHz CPU, and one NVIDIA A100 80GB GPU.
Moreover, unless otherwise specified, the activation function
was selected as the tanh function.
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Algorithm 2:DRM for Finding the Smallest Eigenvalue
Given N denotes the number of points for training the neural
network, Nb denotes the number of points on the boundary ∂�,
Length denotes a measure of ∂�, Nepoch denotes the maximum
number of epochs, and ε denotes the stopping criterion
Step 1: Build data set S for the loss of the Rayleigh quotient and
data set Sb for the loss of boundary.
Step 2: Initialize a neural network with random initialization of
parameters.
for k = 1, 2, · · · , Nepoch do

Input all points in S and Sb into neural network Nθ .
Let �k(xi ) = N θ (xi ), where xi ∈ S

⋃
Sb;

Lossdrm = α
<L�k ,�k>
<Q�k ,�k>

+β
Length
Nb

∑Nb
i=1 |B�k(xi )−g(xi )|2.

Update parameters θ of the neural network via gradient
descent.
θk+1 = θk − η∇θ J (θk), where η is the learning rate and θk is
the vector of parameters in k-th iteration.
if Lossdrm < ε then

Record the best eigenvalue and eigenfunction.
If the stopping criterion is met, then the iteration can be
stopped.

end
end

Fig. 3 Macroscopic cross-sections for the 1D slab reactor, which is
modified based on the figure reported in [66]. There are three regions
with different materials and functions

4.1 One-dimensional slab reactor

We consider one-dimensional case with a simple slab reactor
consisting of a domain bounded by vacuum or bare surfaces,
as shown in Fig. 3. The length of each slab reactor was 10cm.
It consists of fuel and control rod regions labeled 1, 2, and 3.
The control rods were located between 2.2 and 2.5 cm and
between 7.5 and 7.8 cm on the x-axis.

As shown in Fig. 3, there were two control rods in the one-
dimensional slab reactor. Either device can be withdrawn or
inserted. Three scenarios were designed to model the reac-
tor and completely simulate the actions of the control rods.
The three situations are labeled F1, F2, and F3 in Table 1.
They indicate that both rods are withdrawn, only the left rod
is inserted, and only the right rod is inserted. We also con-
sidered three other problems, R1, R2, and R3 in Table 1.
Problem R1 is the same as F1, which is designed to simu-
late the withdrawal of both control rods. Here, we use R1 to
facilitate comparison with R2 and R3. Although problems
R2 and R3 denote that all the control rods are inserted, prob-
lem R2 resembles heavily inserted control rods, and problem
R3 resembles slightly inserted control rods.

Table 1 Six sets of material cross-sections in the work [66] are used to
test GIPMNN and DRM

Problem Region �a(cm−1) �s(cm−1) v�f (cm−1)

F1 Region1 0.4 2.0 0.5

Region2 0.4 2.0 0.5

Region3 0.4 2.0 0.5

F2 Region1 0.4 2.0 0.5

Region2 0.6 2.0 0.3

Region3 0.4 2.0 0.5

F3 Region1 0.4 2.0 0.5

Region2 0.4 2.0 0.5

Region3 0.6 2.0 0.3

R1 Region1 0.4 2.0 0.5

Region2 0.4 2.0 0.5

Region3 0.4 2.0 0.5

R2 Region1 0.4 2.0 0.5

Region2 0.6 2.0 0.3

Region3 0.6 2.0 0.3

R3 Region1 0.4 2.0 0.7

Region2 0.5 2.0 0.4

Region3 0.5 2.0 0.4

To generate the necessary data to validate the accuracy
of GIPMNN, PC-GIPMNN, and DRM, FreeFEM [67–73] is
utilized to solve these problems in Table 1. FreeFEM is a par-
tial differential equation solver for non-linear multi-physics
systems using the finite element method. We choose num-
ber of cells in the x-direction N = 1001 and mesh size
�x = 10−3. The solution of the baseline is obtained byFEM,
and uniform cells are used to train GIPMNN, PC-GIPMNN,
and DRM.

Remark 8 When solving all the parameter-dependent prob-
lems below, parameters �a, �s, and v�f are selected based
on whether the data point x belongs to a related region. For
PC-GIPMNN, the data points on the interface are considered
to belong to multiple regions simultaneously. Therefore, we
can enforce the interface conditions using data points on the
interface.

Remark 9 As unsupervised algorithms, ourmethods use only
points to train a neural networkwithout any prior knowledge.
Therefore, there was no test set for the proposed algorithm.

4.1.1 Using GIPMNN to solve for Eigenvalue

In this one-dimensional example, we select 20 neurons for
each hidden layer in ResNet and Nepoch = 50000. Without a
loss of generality, the weights α and β of the different losses
are not adjusted to achieve better results. Therefore, α and β

were set to one.
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In Eq. (21), we must solve for φk using the eigenval-
ues λk−1 and φk−1. To accelerate the training process and
obtain more accurate results using Algorithm 1, we split the
iterations in the original Algorithm 1 into inner and outer iter-
ations, which can be observed in Algorithm 3, where Ninner

and Nouter denote the number of inner and outer iterations,
respectively.

We chose the ratios of the outer and inner iterations as
1 : 1, 1 : 10, 1 : 100, 1 : 1000, and 1 : 10000 to investigate
the effect of the ratio on the results. Ratio 1 : n implies that
the outer code is executed once,whereas the inner code is exe-
cuted n times. For comparison, the total number of iterations
wasfixed at Ntotal = 100000 and Ntotal = Ninner×Nouter. The
relative errors of keff and eigenfunction for different ratios
of outer and inner iterations during the training process are
shown in Fig. 4. The results of kreleff are shown in the first row
and those of φrel are shown in the second row, where the
relative errors of keff and eigenfunction are calculated by

kreleff = |keff(FEM) − keff(NN )|
keff(FEM)

, (36)

φrel =
max
x

(|φ(FEM) − φ(NN )|)
max
x

(|φ(FEM)|) , (37)

respectively. As shown in the figures, the best ratio is 1 : 1
because the relative errors of keff and eigenfunction of the
ratio 1 : 1 is relatively smaller than the others when training
the neural network. The convergence worsens when the ratio
of the outer and inner iterations changes from 1 : 1 to 1 :
10000. Therefore, we trained GIPMNN using a ratio 1 : 1 to
solve 1D and 2D problems.

Moreover, we fixed the number of outer iterations
Nouter = 1000 and retrained the neural network using the
ratios. The results are shown in Fig. 5. The opposite results
are observed when compared with the results in Fig. 4. The
ratio 1 : 1 is the worst ratio because increases in inner iter-
ations lead to a better approximation of the eigenfunction in
the next outer iteration. This is consistent with the results of
the inverse power method.

4.1.2 Using PC-GIPMNN to solve for Eigenvalue

We divided the slab reactor into five parts from left to right.
The output layer included five neurons, and five functions
were defined in different subdomains. Here, u, w, and q
denote the functions defined in Region 1, v and p are those
defined in Regions 2 and 3, respectively.

As shown in Fig. 3, the four points are denoted as xi1=2.2,
xi2=2.5, xi3 = 7.5, and xi4 = 7.8. The interface conditions

Algorithm 3: Iterations in Algorithm 1 are split into
inner iterations and outer iterations.
for k = 1, 2, · · · , Nouter do

for j = 1, 2, · · · , Ninner do
Input all points in S and Sb into neural network N θ .
Let �k(xi ) = N θ (xi ), where xi ∈ S

⋃
Sb;

Lossgipmnn = ∑N
i=1|L�k(xi ) − λk−1Q�k−1(xi )|2.

Lossb = ∑Nb
i=1|B�k(xi ) − g(xi )|2,

Losstotal = αLossgipmnn + βLossb ,
if j = Ninner then

�k−1 = �k/‖�k‖.
λk−1 = <(L�)k ,�k>

<(Q�)k ,�k>
,

end
Update parameters θ of the neural network via gradient
descent.
θk, j+1 = θk, j − η∇θ Losstotal (θk, j ), where η denotes the
learning rate and θk, j denotes the vector of parameters in
(k j)-th iteration.

end
if Losstotal < ε then

Record the best eigenvalue and eigenfunction.
If the stopping criterion is met, then the iteration can be
stopped.

end
end

(29) and (30) are implemented as loss functions defined in
(38) and (39) in the 1D example.

Lossi1 = |u(xi1) − v(xi1)|2 + |v(xi2) − w(xi2)|2
+|w(xi3) − p(xi3)|2 + |p(xi4) − q(xi4)|2, (38)

Lossi2 = |(−D1ux (xi1)) − (−D2vx (xi1))|2
+|(−D2vx (xi2)) − (−D1wx (xi2))|2
+|(−D1wx (xi3)) − (−D3 px (xi3))|2
+|(−D3 px (xi4)) − (−D1qx (xi4))|2. (39)

The eigenfunction can be expressed as follows:

φ = ul1 + vl2 + wl3 + pl4 + ql5, (40)

where l1, l2, l3, l4, and l5 are indicator functions that are 1 or
0 based on the input x inside or outside the subdomain.

4.1.3 Using DRM to solve for Eigenvalue

The configuration of DRM is identical to that of GIPMNN.
Given that it is a variational formulation, and the boundary
condition is incorporated into the Rayleigh quotient, we do
not use the penalty term to enforce the boundary condition.
The loss function Lossdrm is defined as:
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Fig. 4 (Color online) Relative error of keff and φ for problems F1, F2, and F3 (from (a) to (c)) with respect to different ratios of outer and inner
iterations during training process. The first row shows the results of kreleff and the second row shows the results of φrel. The neural network is trained
with Ntotal = 100000

Fig. 5 (Color online) Relative error of keff and φ for problems F1, F2, and F3 (from (a) to (c)) with respect to different ratios of outer and inner
iterations during training process. The first row shows the results of kreleff and second row shows the results of φrel. The neural network is trained
with Nouter = 1000
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Lossdrm =
Lengthslab

N

∑N
i=1 D|∇φ(xi )|2 + 1

2 (φ(xl)2 + φ(xr )2) + Lengthslab
N

∑N
i=1 �aφ(xi )2

Lengthslab
N

∑N
i=1 v�fφ(xi )2

, (41)

where Lengthslab denotes the length of the slab reactor, xl
and xr denote points that show the positions of the endpoints
of the slab reactor, and N denotes the number of points used
to approximate the integral. Therefore, the smallest eigen-
value λ can be obtained after the neural network converges.

4.1.4 Results

The results for the one-dimensional example are listed in
Tables 2, 3, and 6. The values of keff and their relative errors
are listed in Table 2. For problems F1 and R1, which have
continuous coefficients, the results obtained byGIPMNN are
better than those obtained by PC-GIPMNN and DRM. For
problem F2, the relative error of keff obtained by DRM is bet-
ter than those obtained by other methods. For other problems
with discontinuous coefficients, the results obtained using the
PC-GIPMNNare better than those obtained byGIPMNNand
DRM. The relative error of keff computed by PC-GIPMNN is
approximately 10−5, which is lower than 10−4 as computed
by DRM. The relative errors in the eigenfunctions are listed
in Table 3. For all problems, PC-GIPMNN can attain better
results than GIPMNN and DRM.

In Fig. 6, the eigenfunctions of GIPMNN, PC-GIPMNN,
and DRM are compared with those of FEM. Specifically,
we follow the conventional normalization process in nuclear

reactor physics [1], where the normalization constant is gen-
erally computed to make the average reactor power equal to
unity; thus, the eigenfunctions are normalized by Eq. (42),
where N denotes the number of training points in the entire
domain.

φnorm = N
∑N

i=1 φ(xi )
φ. (42)

The figures in the first row show the results for problems F1,
F2, and F3 and those in the second row show the results for
problems R1, R2, and R3. In each figure, we plot the eigen-
function obtained by FEM and compare the relative errors of
the eigenfunctions computed by GIPMNN, PC-GIPMNN,
and DRM. Evidently, the results obtained by PC-GIMPNN
are better than those obtained by the other methods, which is
consistent with the results in Table 3.

As reported in a previous study, [49], IPMNN can attain
more accurate eigenvalues when compared to those obtained
with DRM when linear eigenvalue problems without inter-
face are considered. Therefore, IPMNN and GIPMNN are
suitable to determine the eigenfunction of a problem with a
strong form, and DRM is similar to FEM in that DRM is
applicable for finding the eigenfunction of a problem with
a weak form. Consequently, DRM is better than GIPMNN

Table 2 Results obtained by GIPMNN, PC-GIPMNN, and DRM compared with those obtained by FEM for problems in Table 1. kreleff denotes the
relative error of keff

Problem keff(FEM) keff(GIPMNN) keff(PC-GIPMNN) keff(DRM) kreleff (GIPMNN) kreleff (PC-GIPMNN) kreleff (DRM)

F1 1.2127 1.2127 1.2127 1.2128 2.5142 × 10−06 3.7743 × 10−06 5.8568 × 10−05

F2 1.1973 1.1970 1.1973 1.1972 2.3429 × 10−04 2.6246 × 10−04 1.1679 × 10−04

F3 1.1973 1.1972 1.1973 1.1971 5.5503 × 10−05 1.6898 × 10−05 1.6809 × 10−04

R1 1.2127 1.2127 1.2127 1.2128 2.5142 × 10−06 3.7743 × 10−06 5.8568 × 10−05

R2 1.1715 1.1697 1.1715 1.1707 1.5629 × 10−03 3.2020 × 10−05 7.2244 × 10−04

R3 1.6498 1.6484 1.6498 1.6487 8.5897 × 10−04 2.9838 × 10−05 6.7968 × 10−04

The bold numbers are the best results

Table 3 Results obtained by
GIPMNN, PC-GIPMNN, and
DRM compared with those
obtained by FEM for problems
in Table 1. φrel denotes the
relative error of eigenfunction

Problem φrel
(GIPMNN) φrel

(PC-GIPMNN) φrel
(DRM)

F1 2.7301 × 10−03 6.3620 × 10−04 2.6313 × 10−03

F2 2.6279 × 10−02 1.6140 × 10−03 8.2217 × 10−03

F3 2.7403 × 10−02 1.0120 × 10−03 6.2428 × 10−03

R1 2.7301 × 10−03 6.3620 × 10−04 2.6313 × 10−03

R2 2.5768 × 10−02 7.5946 × 10−04 6.8807 × 10−03

R3 1.4559 × 10−02 7.5257 × 10−04 8.1038 × 10−03
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Fig. 6 (Color online) Eigenfunctions obtained by GIPMNN, PC-
GIPMNN, and DRM are compared with those obtained by FEM for
one-dimensional example. The eigenfunctions are normalized. The first

row shows the results of problems F1, F2, and F3, and the second row
shows the results of problems R1, R2, and R3

in this one-dimensional example with discontinuous coef-
ficients. However, given that the interface conditions are
well implemented in PC-GIPMNN, it successfully learns the
eigenvalue and eigenfunction and achieves better results than
GIPMNN and DRM, as shown in Tables 2 and 3.

Remark 10 Specifically, DRM is applicable to determine the
eigenfunction of a problem with a weak form, which implies
that the eigenfunction exhibits low regularity. Subsequently,
as shown in the implementation of GIPMNN, it is necessary
for the eigenfunction obtained fromGIPMNN to exhibit high
regularity. Therefore, the learned eigenfunction is in a strong
form. Hence, GIPMNN is unable to obtain accurate values
at the interface. However, PC-GIPMNN does not require the
eigenfunction to exhibit a higher regularity at the interface
but instead guarantees continuity and physical constraints by
realizing the interface conditions. Therefore, PC-GIPMNN
successfully learns the eigenvalue and eigenfunction and
obtains better results when compared toGIPMNNandDRM.

4.2 Two-dimensional reactor

As shown in Fig. 7, a two-dimensional reactor is modeled
in a square-shaped domain with 90-cm sides. The reactor
was surrounded by a neutron reflector with graphite material,
which implies that Robin boundary condition was selected.
The main bulk of the reactor corresponds to the fuel region.
Within its central region, four control rods can be inserted or

Fig. 7 Geometry of a 2D reactor core with graphite, fuel, and four
control-rod regions labeled as 1, 2, 3, and 4. The figure is similar to the
figure in a previous study [66]

withdrawn. When the control rods are withdrawn, materials
in the regions are replaced with water, which corresponds
to common practice in many reactor designs. Table 4 lists
five different materials used in the mock reactor. However,
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Table 4 Cross section data for various materials of the 2D reactor. This
data are similar to those reported in a previous study [66]

Material �a(cm−1) �s(cm−1) v�f (cm−1)

Fuel 1 0.075 0.53 0.079

Fuel 2 0.072 0.53 0.085

Water 0.01 0.89 0.0

Control rod 0.38 0.2 0.0

Graphite 0.15 0.5 0.0

the two types of fuels in Table 4 are designed to simulate
different fuel materials. Fuel type 1 defines the standard fuel
used in most problems, and fuel type 2 defines an adjusted
fuel composition that is different from fuel type 1. Fuel type
2 in problem R7 was used to test whether our methods can
be affected by different types of fuels.

As shown in Table 5, there are 12 problems in validat-
ing the accuracy of the proposed method. Five full models
which are labeled as F1-F5, were proposed to simulate the
reactor with all control rods removed and then with only one
control rod inserted in the regions of the control rods. As
previously discussed, when the control rod was removed, the
material in the region was replaced with water. Therefore, W
is used to denote water in Table 5. Other seven reactor config-
urations, denoted by R1-R7, were proposed to simulate the
cases where more control rods were inserted. Problems R1
and R2 are equivalent to the full model problems F1 and F2:
Problems R3-R6 utilized different combinations of inserted
and rejected control rods. It should be noted that in prob-
lem R7, the material configuration differs from the material
configuration of other problems. The fuel type was replaced
with fuel type 2, and the control rods were assumed to be par-
tially inserted, which implies that the materials in the regions
corresponded to a mix of control rods and water materials.

In the two-dimensional case, we use FreeFEM to solve
the problems listed in Table 5. We chose uniform grids
with �x = 1

90 and �y = 1
90 . We trained GIPMNN, PC-

GIPMNN, and DRM with Nx = 91 and Ny = 91.

4.2.1 Using GIPMNN and PC-GIMPNN to solve for
Eigenvalue

The number of points N = Nx Ny is used to calculate
Lossgipmnn and number of points Nb = 2(Nx −2)+2(Ny −
2) + 4 is used to calculate Lossb. The number of neurons
is 20 for each hidden layer in ResNet and Nepoch = 500000
for both GIPMNN and PC-GIPMNN. Without a loss of gen-
erality, α and β are set to one. As mentioned previously, we
use the optimal ratio of the outer and inner iterations, which
is 1 : 1.

The 2D reactor is divided into six parts, as shown in Fig. 7.
The output layer includes six neurons, and there are six func-
tions that are defined in different subdomains and are labeled
as u, v, w, r , p, and q, where u, v, w, and r denote functions
defined in CR1, CR2, CR3, and CR4, and p and q denote
functions defined for Fuel and Graphite, respectively. SCR1,
SCR2, SCR3, SCR4, and SGF denote different datasets at dif-
ferent interfaces.

For PC-GIPMNN, interface conditions (29) and (30) are
implemented as loss functions (43) and (44) in the 2D exam-
ple.

Lossi1 =
|SCR1|∑

i=1

|u(xi ) − p(xi )|2

+
|SCR2|∑

i=1

|v(xi ) − p(xi )|2 +
|SCR3|∑

i=1

|w(xi ) − p(xi )|2

+
|SCR4|∑

i=1

|r(xi ) − p(xi )|2

Table 5 Configurations for
reactor problems with different
materials. The configurations
are similar to those in a previous
study [66]. C-R denotes the
control rod region, CR denotes a
control rod material, and W
denotes water

Problem Fuel type C-R1 C-R2 C-R3 C-R4

F1 Fuel 1 W W W W

F2 Fuel 1 CR W W W

F3 Fuel 1 W CR W W

F4 Fuel 1 W W CR W

F5 Fuel 1 W W W CR

R1 Fuel 1 W W W W

R2 Fuel 1 CR W W W

R3 Fuel 1 W CR CR W

R4 Fuel 1 W W CR CR

R5 Fuel 1 CR CR W CR

R6 Fuel 1 CR CR CR CR

R7 Fuel 2 1
4CR+

1
2W

1
10CR+

9
10W

3
10CR+

7
10W

1
5CR+

4
5W
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+
|SGF|∑

i=1

|p(xi ) − q(xi )|2, (43)

Lossi2

=
|SCR1|∑

i=1

|(−DCR1∇u(xi ) · n) − (−DFuel∇ p(xi ) · n)|2

+
|SCR2|∑

i=1

|(−DCR2∇v(xi ) · n) − (−DFuel∇ p(xi ) · n)|2

+
|SCR3|∑

i=1

|(−DCR3∇w(xi ) · n) − (−DFuel∇ p(xi ) · n)|2

+
|SCR4|∑

i=1

|(−DCR4∇r(xi ) · n) − (−DFuel∇ p(xi ) · n)|2

+
|SGF|∑

i=1

|(−DFuel∇ p(xi ) · n) − (−DGraphite∇q(xi ) · n)|2.

(44)

The eigenfunction is expressed as follows:

φ = ul1 + vl2 + wl3 + rl4 + pl5 + ql6, (45)

where l1, l2, l3, l4, l5 and l6 denote indicator functions.

Remark 11 In the experiment, it was important to use Eq.
(42) instead of the original L2 norm, which is too small to
optimize the neural network. Specifically, the L2 norm of
the eigenfunction corresponds to one if we attempt to find
a normalized eigenfunction. If the total number of points N
is excessively high, then the value of each component of the
eigenvector is excessively low to such an extent that it is
difficult for the neural network to learn the eigenfunction.

4.2.2 Using DRM to solve for Eigenvalue and the failure of
DRM during the 2D experiments

Given that the homogeneous Neumann boundary condition
is used, the loss function in DRM can be defined as:

Lossdrm

=
Areasquare

N
∑N

i=1 D|∇φ(xi )|2 + Areasquare
N

∑N
i=1 �aφ(xi )

2

Areasquare
N

∑N
i=1 v� f φ(xi )2

,

(46)

where Areasquare denotes the area of the square domain as
shown in Fig. 7.

We use the number of epochs Nepoch = 500000 in DRM.
First, we found that the DRM can learn the eigenvalues and
eigenfunctions at an early stage of the training process. Sub-
sequently, the DRM attempts to learn a smaller eigenvalue
after it is close to the true eigenvalue. Finally, the DRM suc-
cessfully learns one smaller eigenvalue that may be close
to the true eigenvalue and one terrible eigenfunction that is
meaningless and far from the true eigenfunction. This phe-
nomenon is illustrated in Fig. 8.

As listed in Table 6, although the neural network in DRM
fails to learn the eigenfunction, the eigenvalue is close to
the true value. This phenomenon may be caused by min-
imization of Rayleigh quotient. As mentioned in [49], the
loss approaches zero, whereas the eigenvalue may not reach
zero.

In Fig. 8, we observe that the failure of DRM during the
2D experiments occurs after Nepoch ≥ 60000. Therefore, we
select Nepoch = 50000 to train DRM again and record the
results. In a previous study [40], the stopping criteria of train-
ing process for PINN was investigated. In future studies, we
will follow the technique discussed in [40] to determine the
stopping criteria for DRM. In the next section, we compare

Fig. 8 (Color online) Failure of DRM during the 2D experiments. DRM fails to learn the eigenfunctions of F1-F5 and R3-R7
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Table 6 Failure of DRMduring the 2D experiments. The eigenfunction
of F1-F5 and R1-R7 is not correct, but the eigenvalue is to the true value

Problem keff(FEM) keff(DRM) kreleff (DRM) φrel
(DRM)

F1 1.0118 1.0423 3.0156 × 10−02 16.6580

F2 1.0052 1.0399 3.4538 × 10−02 21.8882

F3 1.0000 1.0428 4.2782 × 10−02 29.5368

F4 1.0079 1.0533 4.5361 × 10−02 26.4549

F5 1.0052 1.0450 3.9598 × 10−02 32.0516

R1 1.0118 1.0423 3.0156 × 10−02 16.6580

R2 1.0052 1.0399 3.4538 × 10−02 21.8882

R3 0.9921 1.0399 4.8250 × 10−02 166.2996

R4 1.0017 1.0397 3.7884 × 10−02 163.6593

R5 0.9780 1.0498 7.3430 × 10−02 182.7224

R6 0.9668 1.0492 8.5210 × 10−02 87.2200

R7 1.1018 1.1517 4.5337 × 10−02 36.6777

the results of the DRM trained with Nepoch = 50000 with
the results of GIPMNN and PC-GIPMNN.

Remark 12 The numerical results in Fig. 8 are not due to
hardware problems or code errors but can be attributed to the
nature of the neural network. The eigenvalue was approxi-
mated by constructing aRayleigh quotient in theDRM.Then,
the eigenvalue is treated as a loss function to optimize the
neural network. However, this mechanism of minimizing the
eigenvalue leads to overfitting of the neural network, as the
neural network always attempts to find a point where the loss
function tends toward zero.

4.2.3 Results

Similar to the results of the one-dimensional case, the relative
errors of keff and eigenfunction φ are shown in Tables 7 and
8. It can be observed that both the relative errors for keff
obtained via all the methods are small, and the results for the
DRM are trained with Nepoch = 50000.

For problems F1, F2, F4, and R7, the relative error of
keff obtained by DRM was smaller than that obtained by
GIPMNN, except for problems F3, F5, R3, R4, R5, and
R6. However, although the relative error of keff obtained
by GIPMNN is small, the relative error of φ simulated by
GIPMNN is larger than that obtained by DRM. It is observed
that kreleff obtained by the PC-GIPMNN is smaller than that
obtained by GIPMNN and DRM for all problems. Further-
more, the relative errors of φ computed by the PC-GIMPNN
are smaller than those obtained by the GIPMNN and DRM
for all problems. Therefore, the PC-GIPMNN can success-
fully learn eigenvalues and eigenfunctions.

In Fig. 9 and 10, the eigenfunctions computed by the FEM
are shown in the first column, and the relative errors of the
eigenfunctions obtained by theGIPMNN, PC-GIPMNN, and
DRM are shown in the other columns for different problems.
It is observed that the relative errors of the eigenfunction
computed by the PC-GIPMNN and DRM are smaller than
those obtained by the GIPMNN, which failed to learn some
details. Compared to the eigenfunctions computed by the
FEM, the results obtained by the PC-GIPMNN are the best
among the three methods.

Table 7 Results obtained via GIPMNN, PC-GIPMNN, and DRM compared with FEM for problems in Table 5, kreleff denotes the relative error of
keff. Especially, DRM is trained with Nepoch = 50000

Problem keff(FEM) keff(GIPMNN) keff(PC-GIPMNN) keff(DRM) kreleff (GIPMNN) kreleff (PC-GIPMNN) kreleff (DRM)

F1 1.0118 1.0094 1.0121 1.0096 2.3574 × 10−03 2.8227 × 10−04 2.1558 × 10−03

F2 1.0052 1.0023 1.0055 1.0024 2.8782 × 10−03 2.9864 × 10−04 2.7674 × 10−03

F3 1.0000 0.9968 0.9999 0.9965 3.2380 × 10−03 1.2475 × 10−04 3.4253 × 10−03

F4 1.0079 1.0053 1.0081 1.0054 2.5913 × 10−03 2.4834 × 10−04 2.4439 × 10−03

F5 1.0052 1.0025 1.0054 1.0024 2.7120 × 10−03 3.1435 × 10−04 2.7394 × 10−03

R1 1.0118 1.0094 1.0121 1.0096 2.3574 × 10−03 2.8227 × 10−04 2.1558 × 10−03

R2 1.0052 1.0023 1.0055 1.0024 2.8782 × 10−03 2.9864 × 10−04 2.7674 × 10−03

R3 0.9921 0.9937 0.9927 0.9878 1.5981 × 10−03 6.0649 × 10−04 4.3297 × 10−03

R4 1.0017 1.0014 1.0015 0.9987 3.5502 × 10−04 2.4851 × 10−04 3.0409 × 10−03

R5 0.9780 0.9759 0.9781 0.9721 2.1223 × 10−03 1.6160 × 10−04 6.0148 × 10−03

R6 0.9668 0.9639 0.9680 0.9584 3.0188 × 10−03 1.2722 × 10−03 8.6348 × 10−03

R7 1.1018 1.0929 1.1020 1.0953 8.0309 × 10−03 2.1827 × 10−04 5.9042 × 10−03

The bold numbers are the best results
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Table 8 Results obtained via
GIPMNN, PC-GIPMNN, and
DRM when compared with
FEM for problems in Table 5,
φrel denotes the relative error of
the eigenfunction. Especially,
DRM is trained with
Nepoch = 50000

Problem φrel
(GIPMNN) φrel

(PC-GIPMNN) φrel
(DRM)

F1 4.6050 × 10−02 3.0937 × 10−02 4.4186 × 10−02

F2 8.9731 × 10−02 3.6713 × 10−02 7.0763 × 10−02

F3 8.9385 × 10−02 4.1200 × 10−02 6.7164 × 10−02

F4 8.5110 × 10−02 4.3430 × 10−02 5.9907 × 10−02

F5 7.9413 × 10−02 4.6256 × 10−02 6.6049 × 10−02

R1 4.6050 × 10−02 3.0937 × 10−02 4.4186 × 10−02

R2 8.9731 × 10−02 3.6713 × 10−02 7.0763 × 10−02

R3 1.1047 × 10−01 6.2990 × 10−02 8.4720 × 10−02

R4 1.3013 × 10−01 2.9511 × 10−02 6.8647 × 10−02

R5 2.5852 × 10−01 2.9718 × 10−02 7.7923 × 10−02

R6 4.6253 × 10−01 5.1511 × 10−02 9.1424 × 10−02

R7 1.1612 × 10−01 1.8635 × 10−02 7.2148 × 10−02

4.3 2D IAEA benchmark problem

We also considered the classical 2D IAEA benchmark
problem reported in the study by Yang et al. [40], which
was modeled using two-dimensional and two-group diffu-
sion equations. Here, one-group neutron diffusion equation,
defined in Eq. (4) is considered, and multigroup problems
are considered in our future study. Its geometry is shown in
Fig. 11. The main bulk of the reactor consists of two fuel
regions, labeled 1 and 2, representing the two types of fuel
materials. Within its central region, there are four control
rods,which are all labeled as 3. The last region, labeled 4,was
composed of water. Cross-sectional data for the 2D IAEA
benchmark problem are presented in Table 9. It is worth not-
ing that only one quarter of the reactor is shown in this figure
because the rest can be inferred by symmetry along the x-
and y-axes. Therefore, this 2D IAEA benchmark problem is
confined to the two types of boundary conditions defined in
Eq. (7). The problem is confined to the Neumann boundary
condition on the x- and y-axes and to the Robin boundary
condition on the other boundaries.

In this two-dimensional case, we used FreeFEM to solve
the 2D IAEA benchmark problem with the parameters listed
in Table 9. We selected uniform grids with �x = 1

170 and
�y = 1

170 . We trained GIPMNN, PC-GIPMNN and DRM
with Nx = 171 and Ny = 171.

4.3.1 Using GIPMNN and PC-GIMPNN to solve for
Eigenvalue

The number of points N = Nx Ny is used to calculate
Lossgipmnn. The number of points NNb on the x- and y-
axes and number of points NRb on the other boundaries
were used to calculate LossNb and LossRb, which enforced
the Neumann and Robin boundary conditions. The num-
ber of neurons was 20 for each hidden layer in ResNet
and Nepoch = 500000 for GIPMNN and PC-GIPMNN. As

mentioned previously, we used the optimal ratio of the outer
and inner iterations, which was 1 : 1.

The 2D reactor is divided into seven parts, as shown in
Fig. 11. The output layer has seven neurons, and seven func-
tions are defined in different subdomains and labeled as u, v,
w, r , p, q, and h, where u, v, w, and r denote the functions
defined in the control rods and p, q, and h are the functions
defined in the fuel and water regions, respectively. Sup, Svp,
Swp, Srp, Srq , Spq , and Sqh denote different datasets at dif-
ferent interfaces.

For the PC-GIPMNN, the interface conditions (29) and
(30) are implemented as the loss functions (47) and (48),
respectively, in the 2D example.

Lossi1 =
|Sup |∑

i=1

|u(xi ) − p(xi )|2 +
|Svp |∑

i=1

|v(xi ) − p(xi )|2

+
|Swp |∑

i=1

|w(xi ) − p(xi )|2

+
|Srp |∑

i=1

|r(xi ) − p(xi )|2 +
|Srq |∑

i=1

|r(xi ) − q(xi )|2

+
|Spq |∑

i=1

|p(xi ) − q(xi )|2

+
|Sqh |∑

i=1

|q(xi ) − h(xi )|2, (47)

Lossi2 =
|Sup |∑

i=1

|(−D3∇u(xi ) · n) − (−D2∇ p(xi ) · n)|2

+
|Svp |∑

i=1

|(−D3∇v(xi ) · n) − (−D2∇ p(xi ) · n)|2

+
|Swp |∑

i=1

|(−D3∇w(xi ) · n) − (−D2∇ p(xi ) · n)|2
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Fig. 9 (Color online) First column shows the heatmap of the eigenfunc-
tion of FEM (the first column) and the other columns show the heatmaps
of the relative error of GIPMNN (the second column), PC-GIPMNN
(the third column), and DRM (the fourth column) for problems F1, F2,

F3, F4, and F5. Evidently, GIPMNN less favorable results than DRM.
However, by enforcing the interface conditions, PC-GIPMNN outper-
forms GIPMNN and DRM, as shown in the third column

+
|Srp |∑

i=1

|(−D3∇r(xi ) · n) − (−D2∇ p(xi ) · n)|2

+
|Srq |∑

i=1

|(−D3∇r(xi ) · n) − (−D1∇q(xi ) · n)|2

+
|Spq |∑

i=1

|(−D2∇ p(xi ) · n) − (−D1∇q(xi ) · n)|2

+
|Sqh |∑

i=1

|(−D1∇q(xi ) · n) − (−D4∇h(xi ) · n)|2.

(48)

The eigenfunction can be expressed as follows:

φ = ul1 + vl2 + wl3 + rl4 + pl5 + ql6 + hl7, (49)

where l1, l2, l3, l4, l5, l6, and l7 are the indicator functions.

4.3.2 Using DRM to solve for Eigenvalue

Given that the homogeneousNeumann boundary condition is
used, the loss function in DRM omits the impact of the Neu-
mann boundary condition and focuses on theRobin boundary
condition. The loss function is defined as follows:
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Fig. 10 (Color online) First column shows the heatmap of the eigen-
function of FEM (the first column) and the other columns show the
heatmaps of the relative error of GIPMNN (the second column),
PC-GIPMNN (the third column), and DRM (the fourth column) for

problems R3, R4, R5, R6, and R7. Obviously, GIPMNN yields less
favorable results than DRM. However, by enforcing the interface con-
ditions, PC-GIPMNN outperforms GIPMNN and DRM, as shown in
the third column

J =
Area
N

∑N
i=1 D|∇φ(xi )|2 + Length

NRb

∑NRb
i=1

1
2φ(xi )2 + Area

N

∑N
i=1 �aφ(xi )2

Area
N

∑N
i=1 v� f φ(xi )2

, (50)

where Area denotes the area of all regions, Length indicates
the length of the boundaries other than the x- and y-axes in
Fig. 11, and NRb denotes the number of points on the Robin
boundary.

4.3.3 Results

As discussed above, we also trained the DRMwith the num-
ber of epochs Nepoch = 500000 and found that DRM failed
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Fig. 11 (Color online) Geometry of the 2D IAEA benchmark prob-
lem with two fuel regions, four control-rod regions, and a water region
labeled as 1, 2, 3m and 4. This figure is similar to the figure reported in
a previous study [40]

Table 9 Cross section data for the 2D IAEA benchmark problem

Region �a(cm−1) �s(cm−1) v�f (cm−1) Material

1 2.0 0.53 0.079 Fuel 1

2 0.087 0.55 0.085 Fuel 2

3 0.38 0.20 0.0 Control rod

4 0.01 0.89 0.0 Water

to learn the eigenfunction again. In this case, DRM attains
a good keff = 0.9750 and the relative errors of keff and φ

are 6.4023 × 10−03 and 0.9557, respectively. Therefore, we
retrained the DRM with Nepoch = 50000 and stored the best
results.

The relative errors of keff and eigenfunctionφ are shown in
Table 10 and Table 11. It was observed that all three methods
obtained good results, and the relative errors of keff of DRM
were small. However, the ability of DRM to learn the eigen-
function was worse than that of GIPMNN and PC-GIPMNN
and the relative errors of φ were the largest. Thus, it can
be concluded that the PC-GIPMNN successfully learned the
eigenvalues and eigenfunctions. The same conclusion can be
drawn from the graphs in Fig. 12.

Table 11 Results obtained via GIPMNN, PC-GIPMNN, and DRM
when compared with FEM for the 2D IAEA benchmark problem. φrel

denotes the relative error of the eigenfunction. Especially, DRM is
trained with Nepoch = 50000

Problem φrel
(GIPMNN) φrel

(PC-GIPMNN) φrel
(DRM)

IAEA 8.5688 × 10−02 4.7381 × 10−02 8.9602 × 10−02

For the 1D slab reactor, the computation time of FEM
is 1.25 s, and the training times of DRM, GIPMNN, and
PC-GIPMNN are 4788.37 s, 10614.57 s, and 16052.16 s,
respectively. For the 2D reactor, the computation time of
FEM is 3.64 s, and the training times of DRM, GIPMNN,
and PC-GIPMNN are 5827.91 s, 18444.39 s, and 108072.41
s, respectively. For the 2D IAEA benchmark, the computa-
tion time of FEM is 5.22 s, and the training times of DRM,
GIPMNN, and PC-GIPMNNare 29352.83 s, 64546.74 s, and
137812.92 s, respectively.

Although PC-GIPMNN was better than DRM and
GIPMNN, it required significantly more training time to
obtain accurate results. Comparedwith FEM, neural network
methods require excessive time. However, neural networks
are an emergingmethod andwe believe that theywill achieve
better results in the near future.

5 Conclusion

In this study, we proposed two methods, GIPMNN and PC-
GIPMNN, to solve generalized K-eigenvalue problems in
nuclear reactor physics. We also conducted a comprehen-
sive study of GIPMNN, PC-GIPMNN, and DRM. GIPMNN
follows the main idea of the inverse power method to find
the smallest eigenvalue. The PC-GIPMNN enforce interface
conditions through multiple neurons in the output layer. The
concept of DRM is to define the function of the Rayleigh
quotient and form an optimization problem. Unlike DRM
solving for the smallest eigenvalue by directly minimizing
the eigenvalue (Rayleigh quotient), the GIPMNN and PC-
GIPMNN attain the smallest eigenvalue using the iterative
method. All the methods used neural networks to represent
functions and the differential was implemented using AD.
Finally, we applied these three methods to problems in reac-
tor physics.

Three numerical experimentswere conducted to verify the
applicability and accuracy of the GIPMNN, PC-GIPMNN,
and DRM. In the first 1D example, we used inner and outer

Table 10 Results obtained via GIPMNN, PC-GIPMNN, and DRM when compared with FEM for the 2D IAEA benchmark problem. Specifically,
kreleff denotes the relative error of keff. Especially, DRM is trained with Nepoch = 50000

Problem keff(FEM) keff(GIPMNN) keff(PC-GIPMNN) keff(DRM) kreleff (GIPMNN) kreleff (PC-GIPMNN) kreleff (DRM)

IAEA 0.9688 0.9692 0.9691 0.9685 4.0370 × 10−04 3.0812 × 10−04 2.8218 × 10−04

The bold numbers are the best results
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Fig. 12 (Color online) First column shows the heatmap of the eigen-
function of FEM (the first column) and the other columns show the
heatmaps of the relative error of GIPMNN (the second column), PC-
GIPMNN (the third column), and DRM (the fourth column) for the 2D

IAEA benchmark problem. However, by enforcing the interface condi-
tions, PC-GIPMNN outperforms GIPMNN and DRM, as shown in the
third column

iterations for the simulation. According to our test, the best
ratio of outer and inner iterations was 1 : 1. Furthermore,
we compared the results of the GIPMNN, PC-GIPMNN,
and DRM with those of the FEM. For the continuous prob-
lem, the solution learned by the GIPMNNwasmore accurate
than those learned by the DRM and PC-GIPMNN. For inter-
face problem, the eigenvalue and eigenfunction learned by
PC-GIPMNN were better than that learned by DRM and
GIPMNN. This is due to the interface conditions that are
implemented in the loss function of PC-GIPMNN.

In the 2D examples, we observed the failure of DRM on
the 2D experiments. The DRM can learn the eigenvalue and
eigenfunction at the early stage of the training process, and
the results decrease when Nepoch increases. Therefore, we
selected Nepoch = 50000 to train the DRM and compare
the results obtained by the GIPMNN, PC-GIPMNN, and
DRM with those obtained by the FEM. The results show
that the PC-GIPMNN outperforms the GIPMNN and DRM
for the results of eigenvalue and eigenfunction.Moreover, the
GIPMNN and PC-GIPMNN are more stable than the DRM.

Although good results were obtained, there are still some
aspects that need to be examined in the future. First, given
that the architecture of a neural network significantly influ-
ences the accuracy of our methods, it is important to design a
universal network architecture to achieve high accuracy. For
example, MLP is widely used in the current field of solving
PDEs using neural networks, and ResNet [60] is effective
in improving the convergence rate and may even obtain bet-
ter results than MLP. Recently, a transformer [74] was used
for operator learning and better results were obtained. Sifan
Wang et al. [62] investigated the effect of MLP on opera-
tor learning and proposed a modified MLP [61], which is a
new architecture of MLP that improves accuracy. Although
GIPMNN and PC-GIPMNN are more stable than DRM and
PC-GIPMNN is more accurate than DRM, they require a
large number of iterations and a long training time to achieve
good results. Therefore, improving convergence and reduc-
ing training time will be investigated in our future study.
Furthermore, the failure of DRM on 2D experiments on the

eigenvalue problem should be studied and clarified. Finally,
for the interface problem, a suitable sampling algorithm can
facilitate the training process and provide a better approxima-
tion. The next study could also involve the implementation
of the proposed networks in emerging reactor digital twins
[75–77] as core solvers.
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