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Abstract
To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of 
nuclides in conventional methods, this study introduces two artificial neural network (ANN) algorithms: back-propagation 
(BP) and genetic algorithm-based back-propagation (GA-BP). These algorithms classify pulse signals from distinct α and β 
particles. Their discrimination efficacy is assessed by simulating standard pulse signals and those produced by contaminated 
sources, mixing α and β particles within the detector. This study initially showcases energy spectrum measurement outcomes, 
subsequently tests the ANNs on the measurement and validation datasets, and contrasts the pulse shape discrimination 
efficacy of both algorithms. Experimental findings reveal that the proportional counter’s energy resolution is not ideal, thus 
rendering energy analysis insufficient for distinguishing between 2πα and 2πβ particles. The BP neural network realizes 
approximately 99% accuracy for 2πα particles and approximately 95% for 2πβ particles, thus surpassing the GA-BP’s per-
formance. Additionally, the results suggest enhancing β particle discrimination accuracy by increasing the digital acquisition 
card’s threshold lower limit. This study offers an advanced solution for the 2πα and 2πβ surface emission rate measurement 
method, presenting superior adaptability and scalability over conventional techniques.

Keywords  Pulse shape discrimination · Artificial neural networks · Alpha and beta sources · Multi-wire proportional 
counter · Surface emission rate

1  Introduction

According to international and Chinese standards [1–4], α and 
β plane sources are essential for calibrating, verifying, and 
ensuring the stability of radioactivity measurement and surface 
contamination monitoring instruments. In international com-
parisons [5], most institutions utilize a gas-flow 2π multi-wire 
proportional counter as the detector for 2πα and 2πβ parti-
cle measurements, offering a detection efficiency of almost 
100% for these particles. However, owing to the multi-wire 
proportional counter’s low energy resolution, discriminating 
between particles becomes challenging. Some institutions 
[6–8] continue using the single-channel pulse amplitude analy-
sis method for counting, which measures pulse amplitude but 

fails to discriminate the pulse shapes of varying radio-nuclides. 
With the rapid advancement of digital signal acquisition tech-
nology, some establishments [9] have realized plane-source 
spectrum measurements. Nonetheless, owing to varying plane 
source preparation processes, uncertainty regarding the spec-
tral consistency of the same radionuclide exists. Moreover, for 
contaminated detectors or mixed plane sources infused with 
other radio-nuclides, the conventional 2π multi-wire propor-
tional counter cannot identify radioactive particles or assess 
plane source purity. Historically, α and β particle discrimina-
tion necessitated a blend of energy, time, and frequency analy-
sis techniques. This poses challenges when measuring beta 
particles in a detector contaminated by alpha particles. The 
increased operating voltage results in the ionization effect of 
alpha particles to enter the limited proportional region. Con-
sequently, the collected ionization number N does not align 
proportionally with the initial total ionization N0, thereby lead-
ing to a spike in detector counts. Thus, enhancing the accuracy 
of 2πα and 2πβ surface emission rate measurements demands 
effective particle discrimination.
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Various particle-identification models have been developed 
over the past four decades. Pulse shape discrimination (PSD) 
techniques can be classified into three main categories: time 
domain, frequency domain, and machine learning. These 
methods are listed in Table 1.

Discrimination techniques for particles based on time- or 
frequency-domain attributes and fuzzy C-mean clustering [10] 
utilize limited features of the pulse shape for classification. 
Such methods may overlook other significant pulse signal 
features. Although they exhibit effective discrimination, these 
techniques consume significant processing time for multi-par-
ticle classification, thus compromising efficiency. The artifi-
cial neural network (ANN) approach offers automatic learning 
and parameter adjustment capabilities, thus reducing labor and 
time expenditure. This method can expand the radio-nuclide 
classification with fresh training data, thus enhancing system 
scalability and adaptability.

ANNs have been employed for nuclear pulse shape analy-
sis [11, 12]; however, initial applications were constrained by 
inadequate computational power, limited input parameters, few 
training samples, and a low ADC sampling rate. Over the past 
decade, ANN methodologies have evolved, finding successful 
application in γ particle-specific activity measurements [13], 
α/γ identification [14], n/γ pulse shape discrimination [15–19], 
γ-energy spectrum analysis [20–22], and pulse shape repair 
[23–26]. However, most studies focused on semiconductor and 
scintillator detectors, with ANNs not yet applied to 2πα and 
2πβ particle surface emission rate measurements.

The objective of the current study is to introduce two ANN 
algorithms for the discrimination of 2πα and 2πβ particles. 
Neural network methods are employed to distinguish pulse 
signals adulterated by non-standard ionized particles within a 
simulated environment, considering the detector’s dual stand-
ard-voltage operational states. The study examines the viabil-
ity of this technique for surface emission rate measurement 
systems reliant on 2π multi-wire proportional counters. Fur-
thermore, it discusses the efficacy of different neural network 
architectures and algorithmic parameters. The study initially 
details the experimental setup, training dataset, and validation 
set. Subsequently, it elucidates the characteristics of the two 
ANNs and offers an in-depth overview of their application. 
Finally, the findings derived from the experimental data con-
cerning both ANNs are presented.

2 � Experimental setup

2.1 � Data acquisition methods

In this study, the detector employed was a large-area 2π 
multi-wire proportional counter [27], a product of the China 
Institute of Atomic Energy (CIAE). The detector operates at 
voltages of 2100 V for α sources and 2800 V for β sources. It 
boasts a counting response uniformity exceeding ± 0.4%, an 
effective detection area of approximately 1400 cm2, short-
term stability measurements surpassing 0.3% over 8 h, and 
long-term stability measurements surpassing 0.8% over a 
year. A schematic of the 2π multi-wire proportional counter 
system used in this study is shown in Fig. 1. The counter 
utilized P-10 gas for counting, composed of 90% Ar and 10% 
CH4. The gas flow rate was consistently held at 20–60 mL/
min during the detector’s routine operation. All sources 
deployed in the experiments were calibrated, with their 
traces leading back to the 2πα and 2πβ surface emission rate 
standard devices at CIAE. To align the count rate recorded 
by the digital acquisition card with the plane sources’ sur-
face emission rate, the acquisition card’s pulse amplitude 
trigger threshold was adjusted during the surface emission 
rate calibration experiments. For configuring the acquisi-
tion card, a fixed sampling length was determined based 
on the pulse’s maximum width. A pertinent starting point 
for sampling was selected. Amplitude and time resolutions 
were fine-tuned to prevent signal saturation and to ensure 
comprehensive pulse signal capture across all plane source 
varieties. Each signal sample spanned 1048 ns, with a time 
step of 1 ns, and it was divided into 1048 equidistant com-
ponents. This type of configurations implied that minimal 

Table 1   Classification 
of particle pulse shape 
discrimination techniques

Classification Time-domain features Frequency-domain features Machine learning

Specific methods Rise time Frequency domain pulse gradient Artificial neural network
Charge comparison Wavelet analysis Fuzzy C-means clustering
Pulse gradient – –

Fig. 1   Block diagram for pulse signal acquisition for large area flow-
through 2π multi-wire proportional counter
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saturation or signal pile-up was observed throughout data 
collection. The digital acquisition card was then primed to 
yield an energy spectrum, which is elaborated in Sect. 4.1.

2.2 � Training and verification datasets

In this study, two α plane sources (238Pu and 241Am) and 
two β plane sources (204Tl and 90Sr) were employed for the 
experiments. The chosen α-sources, 241Am and 238Pu, are 
prominent in 2π surface emission rate measurements owing 
to their high purity relative to other α-plane sources. Addi-
tionally, the high-energy β-sources, 204Tl and 90Sr, were 
selected to minimize noise interference and to facilitate 
neural network training with broader and more pronounced 
pulse shapes for effective classification. Six distinct sets of 
pulse measurements were acquired, with each set comprising 
signals from a sole radiation source. Four of these sets cap-
tured measurements of 2πα and 2πβ surface emission rates 
under standard conditions. The remaining two sets simulated 
signals contaminated by extraneous particles. To represent 
particle discrimination and surface emission rate measure-
ments in real-world scenarios, the data were categorized into 

a 2πα measurement dataset and 2πβ measurement dataset. 
The 2πα measurement dataset encompassed α1, α2, and α3. 
Specifically, α1 and α2 correspond to pulse shapes obtained 
from the detector for 238Pu and 241Am, both at a direct cur-
rent (DC) voltage of 2100 V. Whereas α3 contains pulse 
shape data from the 204Tl source, also at 2100 V DC, simu-
lating the pulse data acquired during β particle contamina-
tion in 2πα surface emission rate measurements. The 2πβ 
measurement dataset encompassed β1, β2, and β3. The β1 and 
β2 subsets contain pulse shapes from the detector for 204Tl 
and 90Sr, measured at a DC voltage of 2800 V. Whereas the 
β3 subset contains pulse shape data from the 241Am source 
at 2800 V DC, emulating the pulse data influenced by α 
particle contamination in 2πβ surface emission rate measure-
ments (Tables 2 and 3).

The 204Tl source was consistent in α3 and β1 datasets, 
whereas the 241Am source was utilized in α2 and β3 sets. The 
pulse sample count for the α3 dataset was limited. This was 
because the 204Tl operated at a DC voltage of 2100 V, falling 
beneath the ionization threshold. Hence, the mostly signal 
captured was the detector’s background signal.

Table 2   2πα experimental 
dataset

Dataset Nuclides Operating 
voltage (V)

Total number Training set 
number

Validation 
set number

Description

α1
238Pu 2100 10,000 7500 2500 Normal operation

α2
241Am 2100 10,000 7500 2500 Normal operation

α3
204Tl 2100 6000 4500 1500 β contamination dur-

ing 2πα measure-
ment

Table 3   2πβ experimental 
dataset

Dataset Nuclides Operating 
voltage (V)

Total number Training set 
number

Validation 
set number

Description

β1
204Tl 2800 10,000 7500 2500 Normal operation

β2
90Sr 2800 10,000 7500 2500 Normal operation

β3
241Am 2800 10,000 7500 2500 α contamination 

during 2πβ meas-
urement
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3 � Artificial neural network

The structure of the artificial neural network consists of an 
input layer, a hidden layer, and an output layer, as illustrated 
in Fig. 2. In this structure, “x” represents the input signal. 
Each neuron within the network receives input signals from 
preceding neurons. These signals traverse connections char-
acterized by weights (w1, w2) and biases (b1, b2). The neuron 
then aggregates these to derive a total input value. Subse-
quently, this value is compared with the neuron’s threshold 
value and processed through an activation function. The 
resultant output is forwarded as input to neurons in the sub-
sequent layers.

This study applied two different neural network algo-
rithms for 2πα and 2πβ pulse shape classification prediction: 
back-propagation (BP) and genetic algorithm-based back-
propagation (GA-BP). This section describes the principles, 
network structures, and parameters of the algorithms. Both 
algorithms were implemented in MATLAB (MathWorks, 
Natick, MA, USA). The computational hardware for the BP 
neural network comprised a CPU (Intel i5-12400F) with 
16 GB of RAM, and that for the GA-BP neural network 
comprised a CPU (Intel i9-12900 K) with 16 GB of RAM.

3.1 � BP neural network

3.1.1 � Principle

A BP neural network serves as the fundamental element 
of a feed-forward network. With its straightforward archi-
tecture, numerous tunable parameters, and robust operabil-
ity, it stands as the most prevalent and advanced training 

algorithm. The neural network’s design encompasses the 
count of neurons in the input, hidden, and output layers. 
Initial training parameters encompass the learning rate, max-
imum iteration count, number of validation failures, inter-
layer activation functions, evaluation function, and its mini-
mal value. The error, which is the discrepancy between the 
output layer’s outcome and actual result matching the input 
data, is the back-propagated information. With each forward 
and backward propagation, the neural network updates its 
parameters. Training entails repeated forward and backward 
propagations, which refine their parameters to approximate 
a genuine relationship. In theory, a sufficiently layered and 
node-equipped network can approximate any nonlinear func-
tional relationship.

3.1.2 � Network structure and parameters

The same BP neural network was trained on two datasets: 
2πα and 2πβ. Each dataset encompassed three pulse types 
(α1, α2, and α3 for 2πα and β1, β2, and β3 for 2πβ). The net-
work featured 1048 input neurons, correlating with the 
amplitude vector of a singular pulse on a continuous time 
axis, and three output neurons representing the pulse types. 
The MATLAB function vec2ind was employed to inversely 
normalize and categorize the output neurons. For the 2πα 
dataset, the classification results were defined as follows.

whereas for the 2πβ dataset, the classification results were 
defined as follows.

A sigmoid function was used as the activation func-
tion for our back-propagation neural network. This func-
tion maps the weighted sum of the neurons, x, to a value 
between 0 and 1, effectively capturing the nonlinearity of 
the input signal.

The performance of our back-propagation neural net-
work was evaluated using mean square error (MSE), which 
measures how well the model’s prediction Ŷ matches the 
true label Y. Specifically, MSE can be applied to both lin-
ear regression and simple classification problems. It is 
expressed as follows.
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Fig. 2   Typical structural model of a neural network. (Color figure 
online)
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Four BP neural network models with varying numbers 
of hidden layers and neurons were analyzed. The ideal 
count of hidden layers and neurons often lacks a defini-
tive benchmark and is usually identified through experi-
mentation. Although more hidden layers and neurons can 
enhance the model’s fitting capacity, they may also lead to 
overfitting and pose challenges during training. Models 1 
and 2 incorporate a single hidden layer, whereas Models 
3 and 4 encompass two hidden layers. The number of neu-
rons in each hidden layer was adjusted to assess its impact 
on prediction outcomes. The specifications of the network 
structure are listed in Table 4 and are further elaborated 
upon in Results section. A schematic of the neural network 
system for Models 1 and 2 is illustrated in Fig. 3.

Based on prior experience, the learning rate, maxi-
mum number of iterations, count of validation failures, 
and minimum threshold of the performance index ε were 
determined. To satisfy the criteria for performance and 
gradient, the maximum iteration count should be suffi-
ciently high. Generally, the count of validation failures 
falls between 10 and 20. Thus, herein, a threshold of 
ε = 1 × 10–6 was adopted as the minimum performance 
index value.

(2)MSE =
1

n

n∑

i=0

(
Yi − Ŷi

)2 3.2 � GA‑BP Neural networks

3.2.1 � Principle

Although BP neural networks are widely prevalent, they pre-
sent challenges such as languid convergence, susceptibility 
to local minima, and indeterminate network structures. To 
enhance these attributes, this study employed genetic algo-
rithms for the optimization of the neural networks. Serving 
as models of biological evolution, genetic algorithms mimic 
processes of natural selection and genetic inheritance. In the 
1960s, Holland introduced a mathematical representation of 
these algorithms [28, 29]. This method models the problem-
solving approach, akin to biological evolution, essentially 
encompassing the crossover and mutation [30–32] of genetic 
elements. In this study, genetic algorithms were applied to 
determine superior initial parameters during forward propa-
gation, which were subsequently refined using back-propa-
gation. Figure 4 illustrates a layout of the genetic algorithm-
enhanced back-propagation (GA-BP) neural network. Once 
the structure of the BP neural network was confirmed, its 
weight and bias parameters were transcribed as elements 
of chromosomes within the genetic realm. This step ena-
bled the creation of an initial chromosome assembly. Each 
chromosome was subsequently translated back into a neural 
network, where its output and error metrics were discerned 
through forward computations and back-propagation using 

Table 4   BP neural network structure parameters

Model no. Input layer; 
Number of 
neurons

Output layer; 
Number of 
neurons

Hidden layers; 
Number of 
layers

Number of 
neurons in the 
first hidden 
layer

Number of 
neurons in the 
second hidden 
layer

Learning rate Maximum 
number of 
iterations

Number 
of failed 
validations

Model 1 1048 3 1 10 – 0.01 1000 15
Model 2 1048 3 1 20 – 0.01 1000 15
Model 3 1048 3 2 10 10 0.01 1000 15
Model 4 1048 3 2 20 10 0.01 1000 15

Fig. 3   Block diagram of a BP neural network system with one hidden layer
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training datasets. Subsequently, fitness scores for every chro-
mosome were assessed based on the error metrics or alter-
native measures. An apt fitness function was then engaged 
to evaluate the viability of each chromosome in the col-
lective. A selection of the most promising chromosomes, 
as determined by their fitness scores, was advanced to the 

succeeding generation. Before assembling a new generation, 
crossover and mutation procedures augmented the genetic 
diversity of the group. Following a set number of cycles, the 
chromosome with the foremost fitness score was adopted as 
the concluding outcome. The processes of population ini-
tialization, chromosome inheritance, crossover, and muta-
tion are depicted in Fig. 5.

3.2.2 � Network structure and parameters

An identical GA-BP neural network was employed to train 
with the 2πα and 2πβ measurement datasets. Parameters 
from Model 1 of the BP neural network informed the con-
figuration of the input layer, hidden layer, output layer, acti-
vation function, performance evaluation index, learning rate, 
maximum iteration count, and number of validation failures. 
For the genetic algorithm, the parameters encompassed pop-
ulation size, number of genetic generations, and the choices 
of an appropriate fitness function, selection function, and 
crossover function.

Three distinct GA-BP neural network structures, each 
with varied genetic algorithm parameters, are crafted as 
detailed in Table 5. Models 5 and 6 differ in terms of their 
number of generations, whereas Models 5 and 7 differ in 
terms of their population size. A detailed comparison of 
these models, rooted in their training outcomes, is elabo-
rated upon in Sect. 4.

Genetic algorithm functions were implemented using 
MATLAB’s GAOT toolbox. The fitness function was gab-
pEval, selection function was normGeomSelect (geomet-
ric ranking selection), crossover function was arithXover 
(arithmetic crossover), and mutation function was nonU-
nifMutation (non-uniform mutation). Default parameters 
were maintained for these functions.

4 � Result

Herein, the energy spectrum measurements of plane 
sources were obtained and the two ANNs methods for 
identifying 2πα and 2πβ particles were compared.

4.1 � Results of energy spectrum measurements

The energy spectra of the four-plane sources were meas-
ured using the experimental equipment described in this 
study.

The energy spectra of 238Pu and 241Am used in this study 
are shown in Fig. 6. The proportional counter exhibited a 
low energy resolution, and the particle energies of 238Pu 
and 241Am ranged from 300 to 2500 and from 600 to 3500 

Fig. 4   Schematic of a genetic algorithm-based neural network (GA-
BP)
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channel sites, respectively. Nuclide particles could not be 
identified in the channel address range of 600–2500. Identi-
fication was possible with single-nuclide measurements but 
not with mixed measurements.

Figure  7 shows the energy spectra of the two-plane 
sources. The spectra overlapped considerably and were dif-
ficult to analyze. Only a few particles that were not in the 
energy-crossing region were identified.

4.2 � Results of BP neural network training

Four BP neural network models were trained using rand-
omized data arrangements from 2πα and 2πβ experimental 
datasets. The results for the four network structures are pre-
sented in Table 6.

A comparison of pulse shape discrimination results for 
2πα and 2πβ particles using four BP neural network models 
reveals that Model 4 exhibited the highest accuracy for the 
training and validation sets, as well as the linear regression 

Fig. 5   Population initialization and chromosome inheritance, crossover, and mutation processes in genetic algorithms. (Color figure online)

Table 5   GA-BP neural network 
structure and genetic algorithm 
parameters

Model no Input layer; 
Number of 
neurons

Output layer; 
Number of 
neurons

Hidden layers; 
Number of 
layers

Number of 
neurons in hidden 
layer

Popula-
tion 
size

Genetic 
genera-
tion

Model 5 1048 3 1 10 4 10
Model 6 1048 3 1 10 4 15
Model 7 1048 3 1 10 8 10

Fig. 6   Energy spectra of a 238Pu 
and b 241Am with a cumulative 
measurement time of approxi-
mately 10 s



	 Y.-Q. Li et al.

1 3

153  Page 8 of 12

coefficient. The confusion matrix results of the 2πα particle 
training and validation sets of Model 4 are shown in Fig. 8, 
and the confusion matrix results of the 2πβ particle training 
and validation sets of Model 4 are shown in Fig. 9.

4.3 � Results of GA‑BP neural network training

Three GA-BP models were employed to train 2πα and 2πβ 
experimental datasets. The data arrangements for both 
datasets were randomized. The results for the three network 
structures are presented in Table 7.

A comparison of pulse shape discrimination results for 2πα 
and 2πβ particles using three GA-BP neural network models 

Fig. 7   Energy spectra of a 204Tl 
and b 90Sr with a cumulative 
measurement time of approxi-
mately 10 s

Table 6   Pulse shape 
discrimination results for 2πα 
and 2πβ particles using BP 
neural network model

Model No Type Accuracy (%) Linear regression coefficient R Training 
duration 
(h)Training set Verification set Training set Verification set Total dataset

Model 1 2πα 98.46 98.25 0.95591 0.94279 0.95148 1.67
Model 2 2πα 98.70 98.29 0.96122 0.94583 0.95599 11.20
Model 3 2πα 99.46 98.25 0.99738 0.97479 0.99165 13.88
Model 4 2πα 99.56 98.42 0.99961 0.98563 0.99456 8.07
Model 1 2πβ 94.40 93.00 0.91953 0.91611 0.91504 5.42
Model 2 2πβ 94.77 93.56 0.92117 0.91127 0.91476 36.28
Model 3 2πβ 95.12 93.81 0.93741 0.91590 0.93030 5.88
Model 4 2πβ 95.19 94.42 0.94181 0.91497 0.93666 32.67

Fig. 8   Confusion matrix for 2πα dataset using BP neural network 
(Model 4): a training dataset and b validation dataset. The matrix has 
three rows and three columns; each row represents the classification 
results of true values for α1, α2, and α3 datasets, and each column rep-

resents the classification results of predicted values for α1, α2, and α3 
datasets. Here,1, 2, and 3 denote α1, α2, and α3 datasets, respectively. 
(Color figure online)
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Fig. 9   Confusion matrix for 
2πβ dataset using BP neural 
network (Model 4): a training 
dataset and b validation dataset. 
The matrix has three rows and 
three columns; the rows and 
columns represent the true 
value classification results and 
predicted value classification 
results, respectively. Here, 1, 
2, and 3 denote β1, β2, and β3 
datasets, respectively. (Color 
figure online)

Table 7   Pulse shape 
discrimination results for 2πα 
and 2πβ particles using GA-BP 
neural network model

Model No Type Accuracy (%) Linear regression coefficient R Training 
duration 
(h)Training set Verification set Training set Verification set Total dataset

Model 5 2πα 96.13 95.66 0.94716 0.93453 0.94336 15.05
Model 6 2πα 97.11 96.09 0.96049 0.94532 0.95471 18.07
Model 7 2πα 98.27 97.35 0.96896 0.95561 0.96505 42.07
Model 5 2πβ 91.13 90.64 0.88990 0.88433 0.88664 24.13
Model 6 2πβ 91.82 90.40 0.90305 0.87136 0.89377 30.05
Model 7 2πβ 94.20 91.87 0.93072 0.89286 0.91910 144.05

Fig. 10   Confusion matrix for 
2πβ dataset using GA-BP neural 
network (Model 7): a training 
dataset and b validation dataset. 
The matrix has three rows and 
three columns; the rows and 
columns represent the true 
value classification results and 
predicted value classification 
results, respectively. Here, 1, 
2, and 3 denote α1, α2, and α3 
datasets, respectively. (Color 
figure online)

Fig. 11   Confusion matrix for 
2πβ dataset using GA-BP neural 
network (Model 7): a training 
dataset and b validation dataset. 
The matrix has three rows and 
three columns; the rows and 
columns represent the true 
value classification results and 
predicted value classification 
results, respectively. Here, 1, 
2, and 3 denote β1, β2, and β3 
datasets, respectively. (Color 
figure online)
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reveals that Model 7 exhibited the highest accuracy for the 
training and validation sets, as well as the linear regression 
coefficient. The confusion matrix results of the 2πα particle 
training and validation sets of Model 7 are shown in Fig. 10, 
and the confusion matrix results of the 2πβ particle training 
and validation sets of Model 7 are shown in Fig. 11.

5 � Discussion

The energy spectrum measurements detailed in Sect. 4.1 
indicate that relying solely on energy analysis techniques 
is an ineffective strategy for distinguishing between 2πα 
and 2πβ particles. To accurately differentiate between 
pulse signals, the energy analysis should be combined with 
information on the signal timing and frequency. Nonethe-
less, merging these methods necessitates more resources 
and time, thus compromising efficiency.

Evidently from the results showcased in Tables 6 and 
7, several BP neural network models generally surpass the 
GA-BP neural network models in terms of accuracy rates 
and linear regression coefficients. Importantly, the BP neural 
network models not only demonstrated superior outcomes 
but also necessitated shorter training durations, particularly 
when the computing resources (CPU) were relatively poor.

The performance in distinguishing 2πα particles is illus-
trated in the confusion matrices depicted in Figs. 8 and 10. 
Figures 8a, b highlight Model 4’s high prediction accuracy, 
as all three 2πα signals surpassed 99%. Conversely, the accu-
racy rates for training and validation sets using Model 7 
were somewhat subpar. Figure 10b indicates that 112 pulse 
shapes from the α1 set were incorrectly identified as α2; con-
sequently, the accuracy rate was approximately 95.5%. This 
suggests that Model 7 is more prone to misclassifying α1 sig-
nals as α2. Hence, the BP neural networks were significantly 
more effective in distinguishing 2πα particles.

With respect to the discrimination of 2πβ particles, the 
corresponding confusion matrices are outlined in Fig. 9 
and 11. For β1, both neural network algorithms showcased 
exceptional classification, with Fig. 9b projecting a 99.4% 
accuracy for the β1 validation set. An analysis of the predic-
tive classifications in the matrix to understand the subopti-
mal discrimination shows that the predicted outcomes for 
β1 and β2 datasets are commendable, thereby discounting 
the prospect of a high detector background signal. Thus, the 
poor classification of β2 and β3 datasets can be attributed to 
the resemblance of pulse shapes in the β2 dataset to those 
in the β3 dataset, thus leading to decreased accuracy for the 
overall dataset. The introduction of α-nuclide (241Am) con-
tamination to the detector made it more likely to misidentify 
contaminated signals as belonging to the β2 dataset. Obser-
vations of the β3 set via an oscilloscope revealed that sig-
nals in the β3 dataset mainly consisted of low-energy pulses, 

suggesting that the pulse signals of α at a high voltage of 
2800 V are resemblance to the signals of β of low energy. 
Future research could focus on establishing an apt energy 
threshold to filter these low-energy signals using a digital 
acquisition card, followed by estimating the 2πβ surface 
emission rate post a minor energy adjustment.

6 � Conclusion

In this study, two neural network-driven pulse shape discrim-
ination methods were developed to address the challenges 
inherent in traditional 2πα and 2πβ particle surface emission 
rate measurements. These techniques were assessed over six 
distinct datasets, where four were under standard operation 
and two simulated contamination scenarios. Various network 
architectures and parameters were explored for both method-
ologies, with the optimal parameters being determined based 
on empirical findings.

The results demonstrated the potential of neural net-
work algorithms in distinguishing particle types in radio-
nuclide-contaminated detectors. Following successful 
classification, surface emission rate measurements can 
be derived from a statistical analysis, thus enabling more 
detailed nuclide mixture assessments. However, a notable 
challenge emerged: the absence of a universally accepted 
criterion for tuning neural network algorithm parameters. 
This necessitated adjustments based on hands-on experi-
ments or expert recommendations.

When comparing the two algorithms, the BP neural net-
work exhibited superior efficiency in the training process 
than the GA-BP neural network. The intricacies associated 
with the parameter requirements of the latter may account 
for this discrepancy. If these parameters are not set prop-
erly, then it could initiate an exhaustive series of iterative 
computations, potentially causing the network to prema-
turely converge or become ensnared in a local optimum.

For more accurate 2πβ particle surface emission rate 
assessments and nuclide identification, we suggest an 
adjustment to the energy threshold of the digital acquisi-
tion system. This would ensure the extraction of a more 
refined training dataset.

In summation, the study highlighted the efficacy of neu-
ral networks in 2πα and 2πβ pulse shape discrimination 
and subsequent classification for particle surface emission 
rate evaluations. This approach eliminates the need for sig-
nal preprocessing and significantly enhances pulse shape 
differentiation efficiency. Furthermore, its inherent adapt-
ability and scalability hint at its potential applicability in 
other α and β detection mechanisms.
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