
Vol.:(0123456789)1 3

Nuclear Science and Techniques (2023) 34:147 
https://doi.org/10.1007/s41365-023-01284-2

Design and optimization of diffraction‑limited storage ring lattices 
based on many‑objective evolutionary algorithms

He‑Xing Yin1   · Jia‑Bao Guan1 · Shun‑Qiang Tian2   · Ji‑Ke Wang1 

Received: 10 May 2023 / Revised: 11 June 2023 / Accepted: 20 June 2023 / Published online: 6 October 2023 
© The Author(s), under exclusive licence to China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese 
Academy of Sciences, Chinese Nuclear Society 2023

Abstract
Multi-objective evolutionary algorithms (MOEAs) are typically used to optimize two or three objectives in the accelera-
tor field and perform well. However, the performance of these algorithms may severely deteriorate when the optimization 
objectives for an accelerator are equal to or greater than four. Recently, many-objective evolutionary algorithms (MaOEAs) 
that can solve problems with four or more optimization objectives have received extensive attention. In this study, two 
diffraction-limited storage ring (DLSR) lattices of the Extremely Brilliant Source (ESRF-EBS) type with different energies 
were designed and optimized using three MaOEAs and a widely used MOEA. The initial population was found to have a 
significant impact on the performance of the algorithms and was carefully studied. The performances of the four algorithms 
were compared, and the results demonstrated that the grid-based evolutionary algorithm (GrEA) had the best performance. 
MaOEAs were applied in many-objective optimization of DLSR lattices for the first time, and lattices with natural emittances 
of 116 and 23 pm∙rad were obtained at energies of 2 and 6 GeV, respectively, both with reasonable dynamic aperture and 
local momentum aperture (LMA). This work provides a valuable reference for future many-objective optimization of DLSRs.
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1  Introduction

Fourth-generation synchrotron radiation light sources, 
also known as DLSRs [1], have been constructed world-
wide. Their natural emittance is approximately one to two 
orders of magnitude lower than that of third-generation light 
sources, generally of the order of tens or hundreds of picom-
eters, which is close to the X-ray diffraction limit. DLSRs 
use a multibend achromat (MBA) structure and strong focus-
ing magnets, which reduce emittance significantly and result 
in high natural chromaticity. High-strength sextupoles can 
correct chromaticity well and introduce a large nonlinear 
force, which can lead to the deterioration of the lifetime and 
dynamic aperture [2]. Optimizing an accelerator requires 
fulfilling many objectives, such as achieving low emittance, 

good nonlinear performance, and excellent performance. 
Optimizing them simultaneously is an enormous challenge 
[3].

The optimization of a DSLR lattice is a nonlinear and 
intricate problem. Previously, the global scan of all stable 
settings (GLASS) [4] was used to explore the global linear 
properties of storage rings and provide a systematic method 
for finding stable optics. Compared to third-generation light 
sources, the number of magnets in DLSRs is remarkably 
higher, and GLASS consumes a significant amount of time. 
Over the last two decades, multi-objective evolutionary 
algorithms (MOEAs) have been widely used in accelerator 
optimization [5–9] to determine a set of reasonable solutions 
for each optimization objective. Among these algorithms, 
multi-objective particle swarm optimization (MOPSO) [10] 
and the multi-objective genetic algorithm (MOGA) [11] are 
the most widely used. Moreover, the High Energy Photon 
Source (HEPS) [12] study demonstrated that combining the 
MOGA and MOPSO in a rational way to optimize the lattice 
can yield better results than using only one algorithm [13].

Recent studies on MOEAs have indicated that classical 
evolutionary algorithms, such as NSGA-II [14] and SEPA2 
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[15], are ineffective in dealing with many-objective opti-
mization problems (MaOPs) if the number of objectives is 
four or more, owing to a decrease in the selection pressure 
on the Pareto front [16, 17]. When the dimensionality of the 
objective space increases to four or more, all solutions in 
a population become non-dominated solutions in previous 
generations [18]. This degrades the performance of these 
algorithms, possibly even to the point of a random search. 
Because an increase in the number of objectives exponen-
tially increases the number of non-dominated solutions in 
the population, the effectiveness of the crowding distance 
method [19] of NSGA-II and other selection mechanisms 
to ensure population diversity is reduced, causing the algo-
rithms to converge prematurely and fall into local optima 
[20].

Many-objective evolutionary algorithms (MaOEAs) have 
received considerable attention in recent years [21]. Vari-
ous methods have been proposed to effectively enhance the 
performance of evolutionary algorithms in handling MaOPs. 
These approaches can be roughly classified into five types 
[22]: Pareto-dominance modification, indicator, decomposi-
tion, grid, and diversity-emphasis. Using these approaches, 
several MaOEAs can effectively solve MaOPs.

In the accelerator field, the Shanghai soft X-ray free-elec-
tron laser (SXFEL) has applied NSGA-III [23], an MaOEA, 
to optimize the overcompression mode in the linac for pro-
ducing large-bandwidth XFEL pulses [24]. Using decompo-
sition, NSGA-III determines a well-distributed hyperplane 
and associates all solutions with the reference points in this 
hyperplane to enhance the selection pressure and maintain 
diversity for solving MaOPs. The SXFEL experiment dem-
onstrates that NSGA-III significantly outperforms NSGA-
II in the case of more than three objectives. However, the 
performance of NSGA-III varies for different test problems 
and is even worse than NSGA-II for some problems [25]. To 
further study the performance of MaOEAs in the accelerator 
field, additional algorithms must be developed and experi-
ments must be conducted.

The MOGA is not independent of the distribution of the 
initial population [13] and requires a good distribution of 
the initial population to converge to the true global optima 
[26]. A stable periodic solution for a lattice is called a stable 
solution, and a stable solution that satisfies these constraints 
is called a feasible solution. A DLSR uses many magnets, 
and finding a stable or feasible solution using a vast num-
ber of magnet combinations is difficult. In this study, the 
number of variables for the 2 GeV ring was 28, and each 
variable was changed once, producing 228 magnet combina-
tions. On average, 100 thousand randomly generated solu-
tions produce only 10–15 stable solutions, of which only an 
extraordinarily small number are feasible. Assuming that the 
proportion of feasible solutions in the population in the early 
optimization stage is very small, these solutions and their 

feasible offspring will dominate all the remaining infeasible 
solutions. Eventually, all solutions in the population will be 
generated from these solutions, thus reducing the diversity 
of the population and leading algorithms to converge to the 
local optima.

In this study, many-objective optimization of DLSR lat-
tices is performed for the first time, and the performances 
of four different algorithms are compared in terms of many-
objective optimization. Two DLSR lattices and strategies for 
their optimization are described in Sect. 2. The effects of the 
initial solutions obtained using three different methods on 
evolutionary algorithms are discussed in Sect. 3. The many-
objective optimization results with four different algorithms 
for the 2 GeV ring are presented and analyzed in Sect. 4. 
Section 5 presents the results of the many-objective optimi-
zation of the 6 GeV ring. The conclusions are summarized 
in Sect. 6.

2 � Method

2.1 � Designed lattices

To evaluate the performance of different algorithms on 
the MaOPs of DLSR lattices, two lattices were designed 
with energies of 2 and 6 GeV. The magnetic arrangement 
of one cell of the 2 GeV ring lattice is shown in Fig. 1 

Fig. 1   (Color online) Magnet layout of one cell each of 2 and 6 GeV 
ring lattices. The vertical coordinate indicates the dipole field. For 
visualization convenience, the heights of the focusing quadrupole, 
defocusing quadrupole, and sextupoles are set to different fixed val-
ues, where red and purple indicate focusing and blue and green indi-
cate defocusing
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(top). The lattice was designed with a circumference of 
approximately 300 m and an H7BA focusing structure 
[27], which has 12 cells and provides 12 identical straight 
sections with a length longer than 5.3 m. In addition to the 
H7BA structure, the focusing cell comprehensively uses 
reverse bends (RBs) [28] and longitudinal gradient bends 
(LGBs) [29] with transverse focusing to reduce beam emit-
tance as much as possible. The focusing structure uses the 
Extremely Brilliant Source (ESRF-EBS) scheme [27], in 
which the space between two pairs of dipoles, the first and 
second and the sixth and seventh, is expanded to correct 
the natural beam chromaticity with weakened sextupoles 
because of the dispersion bump. The main magnets of each 
cell include seven combined transverse and longitudinal 
gradient dipoles, ten quadrupoles, four RBs, and six quad-
rupoles. As shown in Fig. 1 (bottom), a focusing quadru-
pole other than that of the 2 GeV ring is positioned next 
to the purple sextupole of the 6 GeV ring because storage 
rings with higher energy require a stronger focusing force. 
The lattice of the 6 GeV ring, which has 48 cells, has an 
approximate circumference of 1350 m.

The 2 and 6 GeV rings had 28 and 29 variables, respec-
tively. For the 2 GeV ring, the maximum strength of the 
dipoles was 1.2 T; the maximum gradient of the independ-
ent quadrupoles was 60 T/m; and the maximum gradient 
of the combined magnets was 40 T/m. The corresponding 
maximum limits for the 6 GeV ring were 1.5 T, 80 and 60 
T/m, respectively. As shown in Table 1, K1 is the gradient 
of the independent quadrupole and is combined in RBs; 
K2 is the gradient combined in dipoles; RBA is the angle 
of the RBs; LA is the longitudinal gradient distribution 
coefficient of each dipole, where the first dipole has the 
same distribution coefficient as the second; assuming that 
the angles of the four different dipoles in a cell are A, B, 
C, and D, MB is the angular distribution coefficient, which 
for A, B, C, and D is denoted by a, b, c, and d, respectively, 
where the ratios a:b:c:d = A:B:C:D; LB are the length of 
each dipole; and LD is the deviation of distances between 
different dipoles, while these distances are set to fixed val-
ues at the beginning.

2.2 � Algorithms

The benchmark algorithm used in this study was NSGA-II, 
and the other three MaOEAs were the grid-based evolution-
ary algorithm (GrEA) [30], NSGA-III, and MOEA/D [31]. 
The flowcharts of these algorithms are shown in Fig. 2, and 
they are described below.

NSGA-II is a non-dominated sorting algorithm based 
on crowding distance, and its basic framework is described 
below. First, for a given initial population Q with a fixed size 
N, the offspring population S with the same size is generated 
by selection, crossover, and mutation. Then, N non-domi-
nated solutions are selected from the merged populations 
of Q and S according to non-dominated sorting [23] and 
crowding distance as the new population Q. These steps are 
repeated until the algorithm converges or reaches the maxi-
mum number of iterations.

The GrEA is a grid-based algorithm used for MaOPs. Its 
basic algorithm framework is similar to that of NSGA-II. It 
introduces a grid mechanism to enhance the convergence 
and diversity of the algorithm. The non-dominated sorting 
method in NSGA-II is replaced by grid dominance and grid 
difference, which effectively strengthen the convergence 
pressure to determine the Pareto front. Additionally, the fit-
ness assignment process is revised through three grid-based 
criteria: grid ranking (GR), grid crowded distance (GCD), 
and grid coordinate point distance (GCPD).

NSGA-III is an improved version of NSGA-II, which 
solves MaOPs by modifying the crowding distance opera-
tor. All steps in NSGA-III other than the step involving the 
crowding distance operator are the same as those in NSGA-
II. Instead of the crowding distance operator, NSGA-III uses 
the following steps: First, many well-distributed reference 
points are generated using Das and Dennis’s systematic 
approach [32] to maintain diversity. Each population mem-
ber is then associated with its nearest reference line after 
standardization. Finally, non-dominated solutions close to 
the reference line are given a higher priority.

MOEA/D uses uniformly distributed weight vectors to 
decompose a multi/many-objective problem into a series of 
single-objective sub-problems and optimizes them simul-
taneously. Each subproblem is optimized and updated with 
information regarding its corresponding neighborhood, 
which is determined by the distance between the individual 
weight vectors. Several aggregation methods, such as the 
weighted sum (WS) [33], Tchebycheff [33], and penalty-
based boundary intersection (PBI) [34], are used to aggre-
gate the individual objective values in MOEA/D.

Three metrics, SumMin, MinSum, and Range, were used 
to evaluate the performance of the MaOEA [35]. Assume 
MaOPs, where the optimal value of each objective is the 
minimum value, SumMin is the sum of the minimum values 
of each objective in the population, which characterizes the 

Table 1   Variables of the two DLSR lattices and their ranges

Variables Number Values

2 GeV 6 GeV 2 GeV 6 GeV

K1 (T/m) 7 8  < 60  < 80
K2 (T/m) 4  < 40  < 60
RBA (rad) 2  < 0.045/0.090  < 0.004/0.008
LA 3  < 10
MB 4 –
LB (m) 4 [0.5, 1.5] [0.6, 1.8]
LD (m) 4 –
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convergence to the Pareto front edge, and MinSum is the 
minimum value of the sum of the individual objectives in 
the population, which characterizes the convergence to the 
Pareto front center. Smaller values indicate better conver-
gence. Range is the sum of the range of objective values for 
each objective in the population, which characterizes the 
diversity of the population. The larger the value, the better 
the diversity. For clarity, the values of the three metrics were 
divided by the number of objectives.

The inverted generational distance (IGD) [36] and hyper-
volume (HV) [37] are widely used as metrics to compare 
the performance of various MaOEAs. However, the calcula-
tion of the IGD requires knowledge of the true Pareto front; 
therefore, it was not used in this study. HV measures the 
combined performance of convergence and diversity, with 
a larger HV indicating better performance.

In this study, the HV was the main metric for evaluating 
the performance of the different algorithms, and the other 
three metrics were used as supplements.

2.3 � Strategy

To obtain high performance and good stability, the natural 
emittance, dynamic aperture, the local momentum aperture 
(LMA), and the brilliance at the central bending magnet 
and center of the straight section were selected as the opti-
mization objectives in all many-objective optimizations. 
Although emittance and brilliance are not independent 

objectives, they can be used simultaneously as optimization 
objectives. This is because brilliance is not only related to 
the emittance but is also closely related to the beam optics 
at the source point. A lattice with a larger emittance may 
have higher brilliance if the former has a smaller � function 
at the source point. Moreover, several light sources have 
been implemented or proposed to replace the central bending 
magnet with a superbend to obtain higher-energy photons, 
such as DIAMOND [38], ALS-U [39], SLS-II [40], Sirius 
[41], and WHPS [42]. Therefore, using the brilliance at the 
central bending magnet as an objective is reasonable. In the 
following experiments, all calculations and simulations were 
performed using accelerator toolbox (AT) [43], which is a 
collection of tools to model storage rings and beam transport 
lines.

The two important characteristics of a storage ring 
are brilliance and coherence, and a very effective way to 
improve them is to reduce its natural emittance. Therefore, 
the natural emittance �x was used as an optimization objec-
tive. A lattice with an extremely small emittance is likely 
to be impractical because the dynamic aperture and LMA 
may be too small for beam injection and beam lifetime. 
The area of the dynamic aperture without energy deviation 
was used as the optimization objective and is denoted as 
DA. A sufficient LMA is typically required to obtain the 
desired beam life. The LMA determined by the transverse 
beam dynamics tends to be small at locations with large 
dispersion invariants, such as the arc of the H7BA cell. In 

Fig. 2   Flowcharts of the four algorithms. NSGA-II, GrEA, and NSGA-III have a similar framework and are shown in a single flowchart (left). 
MOEA/D is shown on the right
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fact, the LMA is usually limited by transverse dynamics 
only in the arc and by the RF bucket height elsewhere. It 
tends to be the largest at the center of the straight section 
and the smallest at the position with maximum dispersion. 
The LMA at these two positions was obtained by track-
ing 1000 turns. The average of the LMA at the above two 
positions was used as the LMA optimization objective and 
is denoted as δ [26]. The light drawn from the bending 
magnet can have a higher energy, and its brilliance [44] is

where NFlux is the peak photon flux of the beam; ω is the 
oscillation frequency; �x,y represents the bunch size in the 
horizontal or vertical direction; �Y ′ is the effective vertical 
divergence; �y′ is the vertical beam divergence; and �r′ is 
the vertical opening angle of synchrotron radiation. In this 
study, the brilliance of the center dipole BriB was used as 
an objective, and it was measured when the frequency ω was 
equal to the characteristic frequency �c , the beam current 
was 200 mA, and the coupling ratio, defined as the ratio of 
the vertical emittance to the horizontal emittance, was 10%. 
An insertion device is installed at the center of the straight 
section to generate synchrotron radiation. Its brilliance [44] 
is given by

where n represents the nth harmonic of the central light 
cone; �Tx,y and �Tx′,y′ are the root mean square deviations of 
the transverse position and angle in horizontal or vertical 
direction; �x′ is horizontal beam divergence; �n is undula-
tor period; and LID is undulator length. Brilliance BriU was 
generated by an undulator with a length of 200 cm, period 
of 25 mm, and K value of 1.5 at the center of the straight 
section when the beam current was 200 mA and the cou-
pling ratio was 10%. By changing the sign of the variable, 
all objectives were between the minimum value and optimal 
value during the optimization process. The objectives are 
denoted as �x , −DA, −δ , −BriB , and −BriU in the text.

Bending magnets inevitably produce dispersion that 
separates the off-energy orbit from the ideal trajectory. The 
high-frequency accelerating cavity and insertion devices 
were mounted in a straight section, and energy deviations 
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were introduced. To minimize the coupling of energy vari-
ations to the transverse oscillations, the dispersion of the 
straight section for the beam lines was matched to zero 
when the many-objective optimization was performed. 
Before calculating the dynamic aperture and LMA, the 
horizontal and vertical chromaticity was corrected to +1 
if the momentum compaction factor was greater than 0; 
otherwise, it was corrected to –1. In addition to the limita-
tion of the variable due to the power supply, the following 
constraints were imposed:

(1)	 The values of the natural emittance and tune should be 
real numbers to ensure that the solution is stable.

(2)	 The maximum � in the horizontal and vertical direc-
tions should not be more than 30 m.

In the experiments described below, a simulated binary 
crossover and polynomial mutation were used in the genetic 
operator, and their settings were the same for each algorithm. 
For each optimization, the initial population size was 1000. 
In the various algorithms, the specific parameters were set 
as follows: The number of grids for GrEA was nine; the 
number of reference points in NSGA-III was the same as the 
population size; the aggregation function used for MOEA/D 
was the Tchebycheff function; and the neighborhood size 
was set to 1/10 of the population size, that is, 100.

3 � Optimization results with different initial 
populations

The results of the initial many-objective optimization of the 
2 GeV ring showed that most of the solutions in the first 100 
generations of each algorithm were infeasible and that the 
minimum value of the natural emittance of the final optimi-
zation result was greater than 250 pm rad, which was much 
larger than the expected value. Almost no feasible or stable 
solutions existed for the initial population. Because this opti-
mization involved 28 variables, the probability of randomly 
generating a stable solution within the range of the variables 
was almost zero, which led to a search for stable and feasible 
solutions in the early stages of optimization. After one or 
several feasible solutions were found, only those that domi-
nated the other solutions were used to determine the search 
direction. This caused the solutions to become trapped in 
local optima.

In this section, three approaches were used to generate 
the initial population. In the first approach, the initial feasi-
ble solution was generated by the transport line design, as 
follows: One cell of the storage ring was used as the trans-
port line, and the initial beam optical function was input at 
the initial point. As the initial point was the center of the 
straight section and the center of the straight section was the 



	 H.-X. Yin et al.

1 3

147  Page 6 of 16

symmetry point, �x and �y were chosen to be suitable small 
values, and �x , �x′ , �y′ , and �′

x
 were set to zero for the initial 

beam optical function. As the transport line did not consider 
a periodic solution, the question of whether a solution was 
stable did not arise. Then, each variable was changed one 
by one until the subsequent beam’s optical distribution met 
the following criteria: the beam optics inside the dipoles 
meet the low-emittance requirement; the distribution of the 
dispersion bump is suitable; and the output beam optical 
function is equal to or close to the initial beam optical func-
tion. After the first feasible solution was obtained, sufficient 
solutions were seeded into the initial population.

In the second approach, a certain number of feasible solu-
tions were found, and the initial population was generated by 
seeding them. Many solutions were randomly generated in 
the range of variables, and all solutions satisfying the con-
straints in Sect. 2 were feasible. However, only 63 feasible 
solutions were found in the 200 million randomly generated 
solutions, which took a total of 23 h 45 min with 200 Xeon 
2.4 GHz CPUs in the Supercomputing Center of Wuhan 
University cluster. The initial population was then seeded 
with these feasible solutions to save time and computing 
power. In the third approach, sufficiently stable solutions 
were searched for and selected directly as the initial popu-
lation. Twenty million solutions were randomly generated 
within the appropriate ranges of the variables, and all stable 
solutions among them were found. A total of 2365 stable 
solutions were found in 2.4 h with the same CPUs described 
above, of which 1000 were randomly selected as the initial 
population.

To investigate the effect of the initial population on the 
algorithms, natural emittance and dispersion were used as 
optimization objectives. NSGA-II was used to optimize 
them, and the maximum number of iterations was 300. As 
shown in Fig. 3, the results of the third approach at the 100th 
generation were much worse than those of the other two, 
and its solutions on the Pareto front were rare. The initial 
solutions generated by the third approach were randomly 

generated stable solutions, most of which did not satisfy the 
given constraints and led to a search for feasible solutions 
in early optimization and poor population diversity. For dif-
ferent generations, the first approach always had the best 
Pareto front, and the second approach was the second best. 
The first approach had the best performance because its ini-
tial solution was seeded with a solution with low-emittance 
characteristics and zero dispersion; however, it did not nec-
essarily perform equally well in optimizations with more 
than three objectives.

The first and second approaches produced different initial 
populations, which were then subjected to many-objective 
optimization using NSGA-II with a maximum of 250 itera-
tions. The algorithm converged in the last iteration. The data 
in Table 2 show the results after normalizing each objective 
value between zero and one. This normalization was also 
performed for all subsequent results. As shown in Table 2, 
SumMin in the second approach was 0, which indicates 
that the second approach yielded smaller values for each 
objective as well as for its MinSum. The Range and HV of 
the second approach, on the other hand, were larger. Fig-
ure 4 shows that the second approach had a smaller lower 
bound and broader distribution, which is consistent with the 
metric results above. We also studied the effect of different 
approaches on other algorithms and found that it was simi-
lar to the effect on the NSGA-II. These results show that 
the performance of the second approach in many-objective 
optimization is better than that of the first approach.

Although the first approach had the best performance in 
two-objective optimization, it did not perform as well as the 

Fig. 3   (Color online) The Pareto front for two objectives, natural emittance and horizontal dispersion at the center of the straight section 
obtained with NSGA-II, for different generations and initial populations generated by three approaches

Table 2   Diversity and convergence metrics for the last generation 
corresponding to different approaches

SumMin MinSum Range HV

Approach 1 0.2594 0.5386 0.7406 0.0494
Approach 2 0 0.4036 0.8627 0.1322
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second approach in many-objective optimization. The initial 
population generated by the first approach was seeded with 
only one feasible solution, such that the variable space of 
the population was around this initial solution and smaller 
than that of the second approach. The second approach 
produced a larger variable space for the initial population, 
which yielded better results in many-objective optimization. 
When the number of variables is large, leading to a large 
variable space, none of the randomly generated stable solu-
tions are likely to be feasible, or only a few of them are. 
This can cause a reduction in population diversity and trap 
the algorithm in local optima. To find global optimal solu-
tions, sufficient time must be spent finding additional initial 
feasible solutions for significant variable space problems. 
Therefore, the second approach was used to generate the 
initial population for the subsequent experiments. Recently, 
machine learning techniques have been used as substitutes 
for simulations to evaluate solutions in optimization algo-
rithms [45, 46]. If machine learning is used, then the com-
putational resource consumption required for the second 
approach is likely to be significantly reduced. Furthermore, 
incorporating machine learning into the iterative process of 
evolutionary algorithms can lead to significant reductions in 
the required computational resources and potentially yield 
better results.

4 � Optimization results for the 2 GeV ring

4.1 � Results

In this section, the results of the many-objective opti-
mizations of the 2 GeV ring lattice using four different 

evolutionary algorithms are described. The maximum 
number of iterations was set to 250 because all algorithms 
converge at the 250th iteration. Table 3 shows that the algo-
rithms, in descending order of HV, were GrEA, NSGA-III, 
NSGA-II, and MOEA/D. Thus, GrEA showed the best com-
bined performance in terms of convergence and diversity. 
Furthermore, the ascending order of SumMin and MinSum 
and the descending order of Range were the same as above, 
as shown in Table 3. As shown in Fig. 5, GrEA had the 
smallest lower bound for all objectives and was the most 
widely distributed; NSGA-III was second; MOEA/D had a 
very high lower bound, and the solutions were distributed 
in a narrow region. This indicates that the GrEA exhibited 
the best performance, followed by NSGA-III, NSGA-II, and 
MOEA/D.

Figure 6 illustrates the projection of the Pareto fronts 
obtained by the four algorithms in the last generation. Over-
all, the performance of NSGA-III was close to but slightly 
worse than that of GrEA. When the emittance was less than 
100 pm rad, the dynamic apertures of all the solutions were 
so small that the particles could not survive in the long term. 
When the emittance was in the preferred interval of 100–150 
pm rad, where the solutions are more relevant for practical 

Fig. 4   (Color online) Parallel coordinate plots of all solutions cor-
responding to two approaches for the last generation. The horizontal 
coordinates represent the individual objectives, the vertical coordi-

nates represent the magnitudes of the normalized objective values, 
and each line represents a solution

Table 3   Diversity and convergence metrics of four algorithms for the 
last generation

SumMin MinSum Range HV

NSGA-II 0.0803 0.4360 0.9149 0.0836
GrEA 0.0046 0.4191 0.9648 0.1239
NSGA-III 0.0291 0.4307 0.9410 0.0909
MOEA/D 0.3585 0.5389 0.5007 0.0516
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requirements, the maximum dynamic aperture, LMA, and 
BriB were obtained using GrEA. The BriU obtained using 
GrEA was close to that obtained using NSGA-III and larger 
than the corresponding values from the other two algo-
rithms. When the emittance was between 250 and 350 pm 
rad, the dynamic aperture obtained using NSGA-II was sig-
nificantly smaller than that obtained using GrEA and NSGA-
III; however, the BriU was high. This suggests that NSGA-II 
did not maintain diversity in this emittance interval, result-
ing in a very small β-function at the center of the straight 
section for solutions with a small dynamic aperture and 
high BriU. A large dynamic aperture and high BriU in this 
emittance interval could be obtained when GrEA was used, 
which indicates that GrEA could better maintain diversity. 
The solutions of MOEA/D were clustered in a small region, 
which indicates their poor ability to maintain diversity, caus-
ing the algorithm output to fall into local optima. The results 

in the objective space show that GrEA performed the best, 
NSGA-III was slightly inferior, and MOEA/D performed the 
worst, which is consistent with the metrics used to evaluate 
the performance of the algorithms.

Because an increase in the number of objectives causes 
the number of non-dominated solutions to increase expo-
nentially, all solutions in the population from approxi-
mately the 30th generation were non-dominated solu-
tions. Choosing the best or preferred solution from among 
many solutions is a very difficult task. In this study, feature 
extraction was used to determine the preferred solution. 
Natural emittance, the smaller of the positive or negative 
maximum horizontal dynamic aperture, maximum verti-
cal dynamic aperture, minimum LMA in the entire ring, 
as well as at the center of the straight section, and bril-
liance at the center of the straight section, as well as at the 
central bending magnet, were extracted as features and 

Fig. 5   (Color online) Parallel coordinate plots of all solutions for four algorithms in the last generation
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sorted in ascending order of natural emittance. Through 
feature extraction, the information about each solution 
can be observed directly, such that the desired solutions 
can be easily selected. With a sufficient dynamic aperture 
and LMA, solutions with smaller emittance and higher 
brilliance are preferred. Two competing solutions were 
selected based on the feature extraction of the last genera-
tion of the GrEA. The beam optics of these two lattices are 
shown in Fig. 7, whose natural emittances are 116.70 and 
124.00 pm∙rad, respectively. Figure 8 shows that the hori-
zontal dynamic aperture of the first lattice without energy 
deviation reached 7.5 mm and the vertical aperture reached 
3.7 mm, whereas the corresponding values for the second 
lattice were 7.8 and 6.8 mm, respectively. The dynamic 
apertures of both lattices with a ±2% energy deviation 
in the horizontal and vertical directions are greater than 
2 mm. As shown in Fig. 9, the LMAs of both lattices at 
the center of the straight section were sufficiently large, 

and the minimum LMAs of both lattices are both larger 
than 2%.

4.2 � Discussion

Because diversity represents the size of the exploration 
space, the greater the diversity, the larger the exploration 
space, and the higher the probability of finding better solu-
tions, which leads to better convergence. MOEA/D divides 
the population into T neighborhoods, and solutions only 
crossover and update the neighborhoods to which they 
belong. If one solution performs better in a problem that 
has another solution, the other solution is replaced by this 
one. Because optimization of the 2 GeV ring is a problem 
with stricter constraints, only a small number of solutions 
in the initial population are feasible. This means that these 
feasible solutions replace all infeasible solutions in the early 
evolutionary stage, which leads to a significant decrease in 

Fig. 6   (Color online) Projection of the Pareto fronts obtained by four algorithms at the last generation. Black crosses represent two selected lat-
tices
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Fig. 7   (Color online) Beam optics of two selected 2 GeV ring lattices, the first with a natural emittance of 116.70 pm rad and circumference of 
283.71 m, and the other with a natural emittance of 124.00 pm rad and circumference of 284.87 m

Fig. 8   (Color online) Dynamic apertures of two selected 2 GeV ring lattices with different energy deviations at the center of the straight section

Fig. 9   (Color online) Local momentum apertures within one cell of the two selected 2 GeV ring lattices
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the number of solutions that are unique to the population. 
As shown in Fig. 10, the number of unique solutions in the 
population of MOEA/D was small in the early evolutionary 
stage. After approximately 50 generations, the number of 
unique solutions fluctuated between 400 and 600, whereas 
the unique solutions of the other three algorithms were close 
to 1000 for all generations. Therefore, the small number of 
unique solutions in MOEA/D leads to a significant decrease 
in diversity, which severely degrades its performance.

NSGA-III uses the achievement scalar function (ASF) 
[47] to calculate the extreme points corresponding to each 
objective axis and then forms a hyperplane through these 
points, as shown on the left in Fig. 11. All the solutions 
were normalized by dividing the intercepts that refer to the 
distances from the origin to the points where this hyperplane 

intersects with each objective axes. After normalization, 
the reference points uniformly distributed on the hyper-
plane intersecting each objective axis with an intercept of 
1 were connected to the origin to form a series of reference 
lines. The process of generating reference lines in a two-
dimensional objective space is shown on the right side of 
Fig. 11. NSGA-III balances diversity and convergence based 
on the relationship between solutions and reference lines. 
Therefore, the ability to find a suitable hyperplane directly 
determines the performance of NSGA-III.

As the optimization objectives for the DLSR lattices 
increase, the shape of the objective space becomes more 
complex. Consequently, the ASF encounters the problems 
of a negative intercept and an inability to determine a hyper-
plane, as mentioned by Deb et al. [48]. In this study, we 
used the maximum of the non-dominated front (MNDF)
[48] instead of the ASF to determine the hyperplane. The 
MNDF was used to determine the hyperplane by consid-
ering the maximum value of each objective of the Pareto 
front as the intercept corresponding to each objective axis. 
Although MNDF was used as a substitute for ASF to deter-
mine the hyperplane, NSGA-III did not perform as well as 
GrEA, probably because the hyperplane found by MNDF did 
not allow NSGA-III to operate at full capacity. Identifying 
a hyperplane in a complex objective space that allows the 
mechanism of NSGA-III to function perfectly is difficult and 
requires further research.

The GrEA divides the hyperspace into a specified number 
of grids. Solutions closest to the ideal point whose grid coor-
dinate if (0,0) or closest to the endpoint of the grid closest to 

Fig. 10   Number of unique solutions in population with different gen-
erations of MOEA/D

Fig. 11   Schematic of the calculation of the intercepts formed by the 
hyperplane passing through the extreme points in a three-dimensional 
objective space (left), where zi, max represents the extreme point cor-
responding to the i-th objective axis and Ii represents the intersection 

of the hyperplane formed by the extreme points with the i-th objec-
tive axis. Uniformly distributed reference points are used to form ref-
erence lines through the origin in a two-dimensional objective space 
(right) for a uniform division of objective space
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the ideal point are given higher priority to enhance the selec-
tion pressure. To increase diversity, solutions that have fewer 
solutions in its own grid or nearby grid are given higher 
priority. For example, as shown in Fig. 12, the objective 
space is divided into five segments in each dimension, with 
the ideal point located in the lower left corner of the square. 
All five solutions are non-dominated. For A and B, the grid 
coordinates are (0, 4) and (1, 4), and the distances of the grid 
from the ideal point (GR) are 4 and 5 (i.e., 0 + 4 = 4, 1 + 4 = 
5). Because the GR of A is smaller than that of B, A is given 
a higher priority. Solutions B and C are in the same grid, and 
both have a GR of 5; however, B is given a higher priority 
because it is closer to the endpoint. To increase diversity, 
E is given a higher priority than A because more solutions 
exist in the grid near A.

Instead of finding a suitable hyperplane in a complex 
objective space, using uniformly distributed grids to achieve 
a good balance between convergence and diversity is highly 
effective and robust. However, this leads to a distribution of 
converged solutions of the GrEA near the vertices of the dif-
ferent grids near the ideal point. Specifically, the distribution 
of solutions in hyperspace is a series of independent blocks 
rather than a uniform surface. As shown in Figs. 6 and 13, 
the Pareto front consisted of many inhomogeneous blocks. 
The GrEA exhibited good parallelism and can be easily used 
for massive parallel computations. The computation time 
of the GrEA was almost negligible compared to that of the 
complex physical simulations. The parameter that had the 
greatest impact on the GrEA was the number of divisions in 
each dimension, which is recommended to be set to nine for 

an unknown problem or a slightly higher (or lower) value 
when a good approximation of the Pareto front for the prob-
lem is too difficult to achieve [30].

5 � Optimization results for the 6 GeV ring

Section 4 demonstrates that the GrEA exhibits outstand-
ing performance. This section uses the GrEA to perform a 
many-objective optimization of the 6 GeV ring. The second 
approach generated an initial population with a size of 1000, 
and the maximum number of iterations was 250. As shown 
in Fig. 13, the Pareto front started to change slightly and 
converged at the 200th generation. After convergence, the 
solutions were uniformly distributed in individual blocks, 
which agrees with the principle of GrEA.

As shown in Fig. 14, two representative lattices were 
chosen that had similar emittance, but the first lattice had a 
smaller value of the �y function at the center of the straight 
section as well as at the central dipole, which gave it a higher 
brilliance at these two locations but with a smaller dynamic 
aperture. As shown in Fig. 15, the horizontal dynamic aper-
ture of the first lattice reached 2.1 mm, while its vertical 
aperture reached 2.1 mm, and the horizontal aperture of the 
second lattice reached 4.5 mm, while its vertical aperture 
reached 4.4 mm. The dynamic apertures of both lattices with 
a ± 2% energy deviation in the horizontal and vertical direc-
tions are greater than 1 mm. Figure 16 shows that both lat-
tices had good LMAs, and the minimum LMAs in one cell 
were larger than 2%.

6 � Conclusion

Two ESRF-EBS-type lattices with different energies were 
designed for the experiments. The distribution of the initial 
population affected algorithm performance. For MaOPs with 
strict constraints and no preferences, increasing the number 
of randomly generated feasible solutions can enhance the 
diversity of the population and potentially improve the algo-
rithm’s performance. Three different MaOEAs and NSGA-
II, a widely used MOEA, were used to perform multi-objec-
tive optimization of the 2 GeV ring. GrEA performed the 
best because of its ability to efficiently and robustly solve 
MaOPs. Owing to the complex shape of the objective space, 
the ASF used by NSGA-III to find a hyperplane failed in this 
optimization. After using MNDF as a substitute for ASF, 
NSGA-III performed better than NSGA-II but slightly worse 
than GrEA. MOEA/D could not handle the constraints well, 
showing an inability to maintain diversity and falling into 
local optima. Moreover, its performance was even worse 
than that of NSGA-II. Representative lattices with good 
attributes were selected from the GrEA results via feature 

Fig. 12   Illustration of solutions in a two-dimensional objective space 
divided into a specified number of grids
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Fig. 13   (Color online) Projection of Pareto front for different generations. Black crosses represent the two selected lattices

Fig. 14   (Color online) Beam optics of the selected 6 GeV ring lattices, the first with a natural emittance of 23.08 pm∙rad and circumference of 
1336.25 m and the other with a natural emittance of 25.03 pm rad and circumference of 1327.21 m
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extraction. GrEA was used to perform the many-objective 
optimization of the 6 GeV ring, and its application was dem-
onstrated on two lattices with different beam optics at the 
center of the straight section and the central dipole.

This study uses MaOEAs for the first time to perform 
many-objective optimization of DLSR lattices and illus-
trates that the GrEA is robust and performs well. Solutions 
with promising properties to satisfy all the objectives can be 
obtained for lattices with different energies. Therefore, this 
optimization strategy can be easily applied to other DLSRs 
prepared for construction or to other aspects of accelerators 
with more than three objectives.
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