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Abstract The digital reactor protection system (RPS) is

one of the most important digital instrumentation and

control (I&C) systems utilized in nuclear power plants

(NPPs). It ensures a safe reactor trip when the safety-re-

lated parameters violate the operational limits and condi-

tions of the reactor. Achieving high reliability and

availability of digital RPS is essential to maintaining a high

degree of reactor safety and cost savings. The main

objective of this study is to develop a general methodology

for improving the reliability of the RPS in NPP, based on a

Bayesian Belief Network (BBN) model. The structure of

BBN models is based on the incorporation of failure

probability and downtime of the RPS I&C components.

Various architectures with dual-state nodes for the I&C

components were developed for reliability-sensitive anal-

ysis and availability optimization of the RPS and to

demonstrate the effect of I&C components on the failure of

the entire system. A reliability framework clarified as a

reliability block diagram transformed into a BBN repre-

sentation was constructed for each architecture to identify

which one will fit the required reliability. The results

showed that the highest availability obtained using the

proposed method was 0.9999998. There are 120 experi-

ments using two common component importance measures

that are applied to define the impact of I&C modules,

which revealed that some modules are more risky than

others and have a larger effect on the failure of the digital

RPS.

Keywords Nuclear power plants � Reactor protection
system � Bayesian belief network

1 Introduction

Nuclear engineering has implemented computer soft-

ware into all facets of this field. There are a wide variety of

fields associated with nuclear engineering with computers,

and associated software is used in design and analysis

[1–5]. NPPs are the world’s energy resources, with nuclear

energy now providing about 10% of the world’s electricity

from about 440 power reactors. The most critical issues in

the design and operation of NPPs are safety systems. NPP

safety systems are employed for safe operation and shut-

down of the reactor in emergency cases to mitigate the

consequences of events or accidents [6]. The digital RPS is

a complicated NPP control system that comprises a col-

lection of nuclear safety components designed to initiate a

reactor trip if safe operating limits are exceeded, initiate the

actuation of engineered safety features, and stop the

emission of radioactive materials. The trip action of the

digital RPS results in the full insertion of all control rods,

safely shutting down the reactor and returning the NPP to a

stable controlled state [7]. Automatic shutdown signals

include source range high neutron flux, ionization chan-

nels, overtemperature, overpower, pressurizer low pres-

sure, pressurizer high water level, reactor coolant pump

undervoltage, turbine trip, low reactor coolant flow, etc [8].

To assure safe reactor operations, the RPS is designed

according to redundancy criteria such as a ‘‘1-out-of-2,’’
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‘‘2-out-of-3,’’ or ‘‘2-out-of-4’’ (2oo4) configuration,

including sensors, reactor trip logic circuits, actuators, and

complex connections between these devices [9]. Figure 1

shows a generic block diagram of the digital 2oo4 RPS

architecture. The 2oo4 RPS system consists of four chan-

nels, each with the same architecture. All channels are

electrically and physically separated from the other chan-

nels, so the failure of each channel is independent. The

output trip signal generated by RPS follows the following

voting logic rules. The 2oo4 architecture provides reliable

operation in the case of a single-channel failure. If two or

more channels fail and failures are detected, the reactor is

tripped by the digital RPS. The single channel of the RPS

consists of the following components and modules, sensors

and transmitters (TR), pressure/level transmitter (PT),

analog input (AI), digital input (DI), bistable processor

(BP), coincidence processor (CP), digital output (DO),

shunt circuit (ST), undervoltage circuit (UV), and circuit

breaker (CB). Reliability analysis of safety systems in the

NPP is one of the most important requirements to ensure

that safety systems will be in a state to perform the required

functions under given conditions over a time interval.

Many techniques have been utilized to analyze the relia-

bility of a system such as Monte Carlo simulation [10],

fault tree analysis [11], Markov chain model [12], dynamic

flow graph [13], reliability block diagram [14], and Baye-

sian belief networks (BBNs) [15]. BBNs have several

different names, such as Bayesian networks (BNs), belief

networks, and causal probabilistic networks. BNs are uti-

lized to predict software faults through software reliability

analysis at the RPS of RSG-GAS based on the software

development life cycle (SDLC). The model structure con-

sists of eight nodes. The results show that a software defect

follows a statistical binomial distribution. The progression

of a software defect concentration range of the posterior

distribution compared with the prior distribution is also

specified [16].

The software failure probabilities in NPP digital I&C

systems were quantified using BBN to model the causal

relationships among the SDLC, the number of residual

defects within the software, and the software failure

probability. The SDLCs were categorized into five phases:

requirements, design, implementation, testing, and instal-

lation/checkout. A BBN sub-model was then developed for

each phase to estimate the number of remaining software

defects [17]. A model using BBN with a distribution-based

node probability table (D-NPT) was developed to assess

the number of software faults within the I&C system in the

NPP considering the SDLC. A pilot study of software

reliability statistical analysis was performed by collecting

several experts’ opinions. Sensitivity studies were per-

formed by removing the considerably different NPT

appreciations to examine the impact of different specialist

views on BBN parameter uncertainties [18].

The BBN model was applied to evaluate the software

reliability of the digital protection software by estimating

the number of faults in a software program, considering its

SDLC. The proposed model can estimate the failure

probability for both developing and deploying safety-re-

lated NPP software. The BBN model structure and

parameters are specified based on the information intro-

duced to NPP safety systems, and evidence was gathered

from three stages of expert elicitation [19]. A BN model

was developed to diagnose waste-water treatment systems

based on modified sequencing batch reactors (MSBRs).

The knowledge deduced from the literature and obtained

from experts was used to establish the network and then

parameterized using independent data from a pilot test. A

1-year pilot study was performed to verify the diagnostic

analysis. The suggested model is reasonable, and the

diagnosis results are accurate [20]. The present study aims

to improve the reliability of RPS in NPP using the BBN

tool to model the digital RPS hardware architecture. BBN

can be an added value compared to other methods because

of its popularity as a tool for reliability analysis and

modeling of many problems and complex systems. Using

BBNs provides more capability and flexibility, with mini-

mum effort and perfect results. BBNs are a marriage

between probability theory and graph theory, so they are

more appropriate techniques for handling dependencies

between components, complexity, causality, and uncer-

tainties in failure data and modeling [21]. They yield exact

results because their analysis is based on conditional

probabilities. BBNs are also closely related to influence

diagrams, which can be used to make optimal decisions.

The construction of the BBN model is easier than the

development of a fault tree. Although the development of a

fault tree requires effort, it provides good insight into

failure details, especially in a complex system in terms of

cut sets. However, with BBN, we are more interested in the

reliability features of the system and the importance of

components in terms of risk contribution, not in the detailsFig. 1 Digital RPS generic block diagram
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of the failure mechanisms of the system. Therefore, in this

study, BNN is used instead of the fault tree to model the

system architecture because BBN yields results without

truncation and less effort is required for sensitivity

analysis.

The biggest arguments against a Monte Carlo simulation

are probably the computational requirements involved.

Calculations can take longer than analytical models, and

solutions are not exact but depend on the number of

repeated runs used to produce the output statistics. Thus, all

outputs are estimated. Despite the extensive use of Markov

models, they cannot be derived rigorously from determin-

istic, dynamical models. Studies based on Markov models

rarely provide the range of time for which the Markov

model is suitable for modeling dynamical systems. Markov

models are generally inappropriate over sufficiently short

time intervals. Dynamic programming for finding the best

path through a model with different states and edges is high

in terms of both memory and computational time. Various

arrangements of the digital RPS I&C components and

modules were constructed in this study. The reliability

block diagrams (RBDs) and BBN models were developed

for each architecture to show the effect of the I&C com-

ponents on the entire RPS failure.

In this article, a parameter called a failure probability

increasing factor is proposed for the creation of the con-

ditional probability table (CPT). This factor increases due

to failures. It may be described as the ratio of the avail-

ability of a specified node affected by its parent node

failure and not by its own failure. In addition, a combina-

tion of failure rate and downtime of the I&C components

was suggested to be included in the reliability analysis and

development of the RPS. All the different permutations in a

fault tree can be simplified using the proposed method, as

will be shown later in the CPT, which allows iterative

methods to be applied to analyze highly complicated

architectures. The calculated unavailability using the pro-

posed method is compared to the other five methods and

gives a minimum value equal to 1.43E-07. The signifi-

cance of the I&C components was determined using BBN,

which confirms its impact on the risk of the entire system.

In Sect. 2, the BBN model is described, Bayes’ theorem is

explained, and the conditional probability distribution

(CPD) is explored. In Sect. 3, a detailed description of the

main steps for the calculation of the availability in the RPS

I&C is detailed; a brief summary of the software tool used

in this study is described; various architectures of the I&C

components for digital RPS, its related RBDs, and BNN

structures are presented; and the BBN probabilities

assessment analysis of the RPS I&C modules is illustrated.

In Sect. 4, experimental results on different architectures

are presented and discussed. In the last section, concluding

remarks and recommendations are presented.

2 Bayesian belief network model

BBN techniques have been used to predict failures in

fields such as artificial intelligence, medical diagnosis,

information technology, and machine failure since the

1990s. BBN model is shown in Fig. 2 as a probabilistic

graphical structure that uses Bayesian probability, which

allows a tractable graph-based representation for inference,

under uncertainty, about a given problem. The BN depicts

the dependency relationships (represented by arcs) between

a group of nodes (random variables) and their CPD,

through a directed acyclic graph (DAG). The initial step in

solving the problem is defining the topology of a Bayesian

network DAG and providing the dependency relationship

among the nodes [22–24]. The next step is defining the

CPD for each node, and finally, the joint probability must

be considered to model the posterior probability distribu-

tion after observing new evidence. Bayes’ theory is the

main component of BNs and Bayesian inference and is

utilized to infer the probabilities of unknown events. It

updates probabilities according to recent information.

Bayes’ formula was developed as a formal statistical

inference and decision-making method. Thomas Bayes was

an eighteenth-century British mathematician who devel-

oped a mathematical formula for calculating conditional

probability, which is the likelihood of an outcome occur-

ring based on a previous outcome. Bayes’ theorem pro-

vides a method to revise existing predictions or theories

(update probabilities) given new or additional evidence.

This mathematical formula is well known as either the

Bayes’ theorem, Bayes’ rule, or Bayes’ law. It relies on

incorporating prior probability distributions to generate

posterior probabilities. Prior probability, in Bayesian sta-

tistical inference, is the probability of an event before new

data are collected. The posterior probability is the revised

probability of an event occurring after considering new

information. The posterior probability is calculateby

updating the prior probability using Bayes’ theorem. The

formula for Bayes’ theorem is given by Eq. (1):

Fig. 2 Bayesian belief network model
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P AjBð Þ ¼ P BjAð Þ � P Að Þ=P Bð Þ: ð1Þ

P(A|B) is a posterior probability, the probability of event

A occurring given that B is true. P(B|A) is the likelihood,

the probability of event B occurring given that A is true.

P(A) and P(B) are known as prior probability and the

marginal likelihood, respectively [25–27]. The relationship

between the marginal probability and posterior probability

is described by Bayesian analysis using Bayes’ theorem. If

an edge is from node A to node B, then A is B’s parent

variable. CPD can be defined as CPT when all the nodes

are discrete-valued. For each combination of parent’s val-

ues, the probability that the child has one each of its dif-

ferent values is listed in the CPT. Bayesian networks can

be constructed either manually with knowledge of the

entire problem or automatically using software given a

large dataset.

3 Model development of I&C for the RPS
as a Bayesian belief network

Figure 3 shows the main steps of the proposed

methodology for evaluating the availability of the entire

RPS. First, the main I&C modules are identified in the

digital RPS channels. Second, we construct the RBD and

BBN graph based on the I&C modules’ architecture

information data. Each module in the I&C system is rep-

resented by a basic node of the BN graph. Then, the dif-

ferent nodes are connected by arcs to identify the

dependencies and independencies between the nodes. Next,

a prior probability table for root nodes and CPD for other

nodes were set up to establish the relationship between the

child and parent nodes of the BBN model. Finally, we

estimate the availability of the digital RPS based on prior

given inputs and evidence.

3.1 Microsoft Bayesian network (MSBNx)

Microsoft Bayesian network (MSBNx) is a Microsoft

component-based windows software application for mod-

eling and obtaining inference with Bayesian networks. It

creates, manipulates, evaluates, and infers BN. It can per-

form multistate failure and time-dependent analysis with

continuous, integer, or discrete intervals. Once a model has

been created, it can be used to diagnose and troubleshoot.

AMSBNx appreciates the causes-to-effects model by

implementing it inversely from effects to causes. Each

model is represented as a graphical structure diagram. The

random variables are represented by ellipses, called nodes,

and the conditional dependencies are represented by

directed arcs between nodes. The basic functions within

aMSBNx are constructing and modifying model diagrams,

working with model diagrams, evaluating models by

updating probabilities based on the relationships and the

evidence, and assessing probability by maintaining prior

probabilities. In this study, BN models were implemented

and evaluated using the MSBNx tool [28].

Fig. 3 Main steps for the proposed methodology
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3.2 Proposed modeling of different RPS

architectures using BBN based on RBD

Figures 4, 5, 6, 7, 8, 9, 10, 11 and 12 represent the RBDs

and BBN models for the different arrangements of the

digital RPS I&C components. The failure is propagated

from the transmitter and sensor to the final trip failure. The

signals generated by the sensors are converted to a pulse or

digital volt and are then compared with set points in BP.

The BP sends a signal to the CP after assessment. CP

receives signals from the BPs of other channels and con-

firms the voting logic before initiating the reactor trip. The

CB trips the reactor with 2oo4 voting logic. For the

attainment of objectives, the RPS I&C system architecture

was transformed to RBD for modeling ease in BBN. The

four RPS channels are identified by symbols A, B, C, and

D. Various arrangements of the digital RPS I&C compo-

nents and modules are constructed by changing the

redundancy of TR, PT, BP, CP, DO, BP&CP,

BP&CP&DO, and CB to observe and evaluate the impact

of these units on the overall RPS failure. The RBDs of

different RPS I&C architectures have been developed and

mapped to BBN models to demonstrate the effect of I&C

components on the failure of the entire system. The details

of the architectures are discussed below.

The configuration of Fig. 4 has no interchannel redun-

dancy and consists of single TR, PT, AI, DI, BP, CP, DO,

ST, UV, and CB modules. In the configuration of Fig. 5,

two sensor and transmitter (TR_B1, TR_B2) modules were

added to the architecture. The redundant pair of PT units

(PT_D1, PT_D2) is added in Fig. 6. In Fig. 7, redundancy

was added to the bistable processors (BP_A1, BP_A2) to

demonstrate the effect of the BP component on the entire

system failure. Two CP processors (CP_A1, CP_A2)

joined the architecture shown in Fig. 8. A redundant pair of

DO modules (DO_C1, DO_C2) was inserted in the archi-

tecture of Fig. 9. Dual redundancy in BP and CP compo-

nents was inserted in the architecture of Fig. 10. The

configuration of Fig. 11 had redundancy in the BP, CP, and

DO modules. Finally, redundancy was added to the CB

modules (CB_A1, CB_A2), as shown in Fig. 12.

3.3 BBN probability estimation

The failure rate or failure probability of I&C compo-

nents is represented by k. Table 1 shows the prior proba-

bility of a root node. Failure and success states are

represented by 0 and 1, respectively. The conditional

probabilities for other nodes (not root nodes) have to be

evaluated with the knowledge of the state of its parent

nodes. The digital RPS has various kinds of failures. When

calculating the availability of RPS, we must take into

consideration the causes of these failures, such as

independent failure of components or failures caused by

the failure of another component. The failure probability

increasing factor for the creation of the CPT is proposed.

This factor increases due to failures. It may be described as

the ratio of availability of a specified node affected by its

parent node failure, not by its own failure. For node ‘‘a,’’

given that ‘‘b’’ is one of its parent nodes, the failure

increasing factor is given by Eq. (2):

Rxjy ¼ 1� DTajb=T � DTa ð2Þ

where T is the test interval, DTa is the downtime of node

‘‘a’’ caused by its failure, and DTa|b is the downtime of

node ‘‘a’’ caused by the failure of its parent node ‘‘b’’.

Table 2 shows the conditional probabilities for nodes with

four-input ‘‘2oo4’’ voting logic of the digital RPS I&C

modules. There are 16 combinations due to four inputs, 11

combinations classified as failure state, and five combina-

tions classified as success state. For the failure state, the

probability of failure is equal to kRa|b, whereas the proba-

bility of success is equal to (1 - k)Ra|b. For the success

state, the probability of failure is equal to failure rate k,
whereas the probability of success is equal to 1 - k. The
generic main information of the RPS I&C components is

represented in Table 3 [29, 30].

4 Results and discussion

Figure 13 shows the availability and unavailability

comparisons between the different architectures of the

digital RPS I&C components depicted in Sect. 3, based on

the generic data for the RPS I&C components in Table 3,

and the CPT for a node with four-input 2oo4 logic of the

digital RPS I&C modules in Table 2. By substituting from

generic data into CPT, we obtain the inputs to the BBN. By

using the MSBNx tool for implementing the different RPS

I&C component architectures, the availability and

unavailability are obtained. The first architecture with no

redundancy in I&C modules is counted as the main

architecture with an availability of 0.999944. Architectures

no. 2 with redundancy added in TR component, no. 3 with

redundancy added in PT, no. 6 with redundancy added in

DO, and no. 10 with redundancy added in the UV module

have the same availability as the main configuration with

no redundancy. Therefore, redundancy in TR, PT, DO, and

UV components does not increase or decrease the avail-

ability of RPS I&C modules. The availability of the digital

RPS decreased to 0.999785 in architecture no. 4 with

redundancy added in the BP component and to 0.999719 in

architecture no. 9 with redundancy added in CB. However,

the availability increased in architecture no. 5 with

redundancy added to CP; in architecture no. 7 with

redundancy added to BP and CP components; and in
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architecture no. 8 with redundancy added in BP, CP, and

DO components to 0.999966, 0.999967, and 0.9999998,

respectively. The results demonstrate that architecture no. 8

with redundancy added to BP, CP, and DO components is

Fig. 4 (a) RBD with no redundancy and (b) BN model with no redundancy

123

101 Page 6 of 19 H. Torkey et al.



Fig. 5 (a) RBD with TR redundancy and (b) BN model with TR redundancy
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Fig. 6 (a) RBD with PT redundancy and (b) BN model with PT redundancy
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Fig. 7 (a) RBD with BP redundancy and (b) BN model with BP redundancy
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Fig. 8 (a) RBD with CP redundancy and (b) BN model with CP redundancy
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Fig. 9 (a) RBD with DO redundancy and (b) BN model with DO redundancy
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Fig. 10 (a) RBD with redundancy in BP and CP and (b) BN model with redundancy in BP and CP
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Fig. 11 (a) RBD with redundancy in BP, CP, and DO and (b) BN model with redundancy in BP, CP, and DO
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Fig. 12 (a) RBD with redundancy in CB and (b) BN model with redundancy in CB
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the optimal architecture for the design of RPS I&C mod-

ules, because it has the highest availability of 0.9999998

compared to the other architectures. Figure 14 shows the

unavailability of the digital RPS using the present

methodology compared to other methods based on mini-

mum unavailability requirements [8]. The unavailability of

the proposed method gives a minimum value equal to

1.43E-07 compared to values of 8.08E-07, 1.52E-03,

1.00E-03, 7.85E-01, and 1.13E-05 calculated using

other methodologies.

The results prove the superiority of the present study.

The comparison of the supposed model’s result to the other

different methods’ results is based on the requirement of

minimum unavailability of the RPS, as stated in the

NUREG/ CR-5500 [8]. Component importance measures

are defined as a means to measure the impact and contri-

bution of a component on the total system risk. Popular

importance measures include Birnbaum, Fussell–Vesely

(FV), risk reduction worth (RRW), and risk achievement

worth (RAW). The RRW is defined as the decrease in risk

when a component is functioning or perfectly reliable,

whereas RAW is defined as the relative increase in risk

when a component is in a failure state [31]. The RRW is

the ratio of the unreliability of the entire system to the

system unreliability if component i is reliable, as shown in

Eq. 3. The RAW is the ratio of the system unreliability if

component i fails to the actual system unreliability, as

shown in Eq. (4):

IRRW itð Þ ¼ 1� h p tð Þð Þ=1� h 1i; p tð Þð Þ: ð3Þ

IRAW itð Þ ¼ 1� h 0i; p tð Þð Þ=1� h p tð Þð Þ ð4Þ

The actual system unreliability is 1� h p tð Þð Þ. The sys-

tem unreliability when component i is reliable is

1� h 1i; p tð Þð Þ, where the failure rate of the corresponding

component i is set to 0 in the BN model. The system

unreliability when component i fails is 1� h 0i; p tð Þð Þ,
where the failure rate of the corresponding component i is

set to 1 in the BN model. Table 4 presents the values of the

RRW and RAW importance measures for each component.

The components of the RPS can be classified into high,

medium, and low sensitivity to risk components based on

US Nuclear Regulatory Commission Regulation (NUREG)

standards for risk importance measures. Components with

Table 1 Prior probability

table of a root node
Root

node

0 1

k 1 - k

Table 2 CPT for a node with 2oo4 logic

Parent node inputs Module state Child node

Failure Success

0000, 0001, 0010, 0011, 0100, 0101, 0110, 1000, 1001, 1010, 1100 0 kRa|b (1 - k)Ra|b

0111, 1011, 1101, 1110, 1111 1 k 1 - k

Table 3 Generic I&C components for RPS basic information

Component ID Component name Unit Failure mode Failure rate (k) Distribution Factor Value

1 Sensors and transmitters (TR) h Sensor fails 1.7 9 10–6 Log normal

2 Pressure/level transmitter (PT) h Fails to provide 4.4 9 10–6 Log normal R2|1 0.8254

3 Analog input (AI) h Fails to generate trip output 2.0 9 10–6 Log normal R3|2 0.8593

4 Digital input (DI) h Fails to generate trip output 8.96 9 10–7 Log normal R4|2 0.8146

5 Bistable processor (BP) d Fails to operate 5.0 9 10–4 Log normal R5|3 0.8601

R5|4 0.8607

6 Coincidence processor (CP) d Processor logic modules fail 1.6 9 10–4 Log normal R6|5 0.8532

7 Digital output (DO) h Fails to generate trip output 8.2 9 10–7 Log normal R7|6 0.8324

8 Shunt circuit (ST) d Fails to energize 1.2 9 10–4 Log normal R8|7 0.8526

9 Undervoltage circuitry (UV) d Fails to energize 1.7 9 10–3 Log normal R9|7 0.8117

10 Circuit breaker (CB) d Fails to open/close 4.5 9 10–5 Log normal R10|8 0.843

R10|9 0.847
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RRW greater than 1.005 or RAW greater than 2.0 are

classified as high-risk impacts [8].

The values demonstrate that, for architecture 1, the TR,

PT, and CB components are more sensitive to risk, whereas

BP and CP components are less sensitive based on their

RRW value. The CB component is more sensitive to risk,

whereas the TR, PT, BP, CP, and DO components are less

sensitive, while the ST and UV are slightly sensitive based

on their RAW value. For architecture 4, the TR and PT

components are more sensitive to risk, whereas the BP and

CB components are less sensitive based on their RRW

value. The CB component is more sensitive to risk,

whereas the TR, PT, BP, CP, and DO components are less

sensitive, while UV is slightly sensitive according to RAW

value. For architectures 5 and 7, the TR, PT, and CB

components are more sensitive to risk, whereas BP is less

sensitive based on their RRW value. The CB component is

more sensitive to risk, whereas UV is less sensitive,

whereas CP, DO, and ST modules are slightly sensitive

according to their RAW value. For architecture 8, CB is

more sensitive to risk, whereas TR, PT, BP, CP, and DO

Fig. 13 Availability and unavailability of RPS for different architectures

Fig. 14 RPS unavailability comparison for various methods
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are less sensitive based on their RRW value. The CB

component is more sensitive to risk, whereas CP, DO, ST,

and UV are less sensitive based on RAW value. For

architecture 9, the CP component is more sensitive to risk,

whereas the BP, DO, and CB components are less sensitive

based on their RRW value. The CB component is more

sensitive to risk, whereas the TR, PT, BP, CP, and DO

components are less sensitive, while UV is slightly sensi-

tive based on their RAW value. Based on previous com-

parisons, one can conclude that there are some components

that are equal in importance. Components TR, PT, BP, CP,

and CB are identified as more sensitive to risk according to

their RRW values. Components TR, PT, BP, CP, DO, UV,

and CB are more sensitive components owing to their

RAW values. While RRW and RAW importance measures

focus on components TR, PT, BP, CP, and CB as highly

sensitive to risk, these components should be taken into

consideration during the design of RPS to improve relia-

bility and decrease risk and cost.

5 Conclusions and recommendations

The prohibition of accident mitigation consequences,

the fulfillment of suitable operating conditions, and

improving reliability in the protection of the nuclear site

are the main tasks for the safety and effectiveness of NPPs.

This research set about applying the BBN model to

improve reliability inference and assessment of the digital

RPS I&C systems for NPPs. BBNs are a popular method

for modeling uncertain and complex systems. They provide

a robust and mathematically consecutive structure for the

reliability analysis of various systems. Different scenarios

of RBDs and their related BN models of the digital RPS

I&C component arrangements were established. The fail-

ure data and downtime of the I&C components were uti-

lized in the reliability study. Many experiments were

carried out using BBN to measure and quantify the

unavailability of digital RPS I&C for different architec-

tures. The architecture with redundancy added to BP, CP,

and DO components is the optimal architecture for the

design of RPS I&C modules because it has the highest

availability of 0.9999998 compared to other architectures.

The availability of the digital RPS applied in the present

study is compared with other related methods. The results

confirm the feasibility, capability, and notability of the

present methodology using BBN for evaluating and

improving the reliability of digital RPS I&C modules.

The significance of the I&C component was determined

using component importance measures RRW and RAW,

which confirm its impact on the risk of the entire system.

The components TR, PT, BP, CP, and CB are classified as

highly sensitive to risk by both measures and must be

considered by the operator during the design stage to

achieve the desired availability and safety. In addition,

recommendations for high reliability of the RPS needs,

reduction in the test interval to every week or every day,

replacing critical components with higher reliability com-

ponents, increasing the channel and component redun-

dancy, and reducing common components or sources will

reduce common cause failures. Further work on continuous

BN reliability modeling is essential to construct more

realistic models and generate more accurate and approxi-

mate inferences. In addition, neural networks and support

vector machine algorithms can be useful for BN topology

and parameter learning.

Table 4 RRW and RAW importance measures values for various architectures

Component name RRW RAW

Arch Arch

1 4 5 7 8 9 1 4 5 7 8 9

TR 1.24 2.07 1.45 1.43 1.01 1.001 5.02 5.06 1.02 1.02 1.03 8.03

PT 2.21 3.06 2.47 2.46 1.02 1.003 5.02 5.06 1.02 1.02 1.03 8.03

AI 1.00 1.0001 1.00 1.00 1.00 1.00 1.00 1.79 1.00 1.00 1.00 1.002

DI 1.00 1.0001 1.00 1.00 1.00 1.00 1.00 1.27 1.00 1.00 1.00 1.0007

BP 1.05 1.02 1.01 1.01 1.03 1.01 5.02 5.06 1.02 1.002 1.004 8.03

CP 1.02 1.007 1.006 1.007 1.10 2.42 7.5 6.41 2.84 2.83 5.22 10.61

DO 1.006 1.001 1.002 1.002 1.023 1.17 7.5 6.41 2.84 2.84 5.22 10.61

ST 1.00 1.00 1.002 1.002 1.003 1.0006 2.02 1.69 3.90 3.85 6.25 1.9

UV 1.00 1.00 1.002 1.002 1.003 1.0006 3.33 2.57 7.62 7.62 13.19 3.06

CB 1.25 1.08 1.56 1.58 4.37 1.32 30.96 21.17 86.02 86.03 157.5 38.33

123

Bayesian belief-based model for reliability improvement of the digital reactor protection… Page 17 of 19 101



References

1. X. Qin, M. Li, H. Liao et al., Neutronics analysis of commercial

pressurized water reactor loaded with FCM fuel. Nucl. Tech.

43(8), 080007 (2020). https://doi.org/10.11889/j.0253-3219.2020.
hjs.43.080007. (in Chinese)

2. L. He, L. Hou, L. Tong et al., Applicability analysis of aerosol

reentrainment model based on revent experiment. Nucl. Tech.

43(7), 070603 (2020). https://doi.org/10.11889/j.0253-3219.2020.
hjs.43.070603. (in Chinese)

3. W. Cui, B. Cao, Y. Chen, Uncertainty analysis of Gaussian plume

model based on Bayesian MCMC method. Nucl. Tech. 43(4),
040009 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.

040009. (in Chinese)
4. G. Li, L. Tong, Thermal fragmentation study on interaction of

melton Pb-Sn alloy and coolant. Nucl. Tech. 43(3), 030603

(2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.

030603. (in Chinese)
5. Q. Liu, J. Han, C. Zhao et al., The independent verification cal-

culation of leader factor of reactor surveillance capsule. Nucl.

Tech. 42(9), 090601 (2019). https://doi.org/10.11889/j.0253-

3219.2019.hjs.42.090601. (in Chinese)
6. U.S. Nuclear Regulatory Commission, Reactor Concepts Manual

(2001). https://www.nrc.gov/docs/ML0230/ML023020519.pdf.

Accessed 2 May 2020

7. U.S. Nuclear Regulatory Commission, Westinghouse Technology

Systems Manual Reactor Protection System—Reactor Trip Sig-

nals. https://www.nrc.gov/docs/ML1122/ML11223A30.pdf.

Accessed 4 June 2020

8. S.A. Eide, S.T. Beck, M.B. Calley et al., Reliability Study:

Westinghouse Reactor Protection System 1984–1995.U.S.

Nuclear Regulatory Commission Regulation NUREG/CR-5500

(1998). https://nrcoe.inl.gov/resultsdb/publicdocs/SystemStudies/

nureg-cr-5500-vol-2.pdf. Accessed 10 July 2020

9. Japan Nuclear Energy Safety Organization (JNES), The report of

improvement of reliability model of digital reactor protection

system. Japan Nuclear Energy Safety Organization (JNES/

SAE10-013), Tokyo, Japan (2010)

10. D. Li, Z.Hao, S. Zhou et al., Application of Monte Carlo Methods

in Reactor Protection System Reliability Research. in Paper
Presented at the 26th International Conference on Nuclear
Engineering (ICONE), 5 pages (2018). https://doi.org/10.1115/

ICONE26-81300

11. Z. Shiliang, D. Wen, L. Yuyan, Fault tree based reliability

analysis for digital reactor power control system of nuclear power

plant. J. Nucl. Sci. Eng. 33(4), 419–428 (2013)

12. Y.Bulba, Y. Ponochovny, V. Sklyar et al., Classification and

Research of the Reactor Protection Instrumentation and Control

System Functional Safety Markov Models in a Normal Operation

Mode. in Paper presented at the 12th International Conference
on ICT in Education, Research, and Industrial Applications
(ICTERI), Kyiv, Ukraine (2016)

13. W. Hao, T. Cong, Z. Shiliang et al., Reliability analysis of the

automatic control system of reactor power in nuclear power plant

based on DFM. in Paper Presented at the 24th International
Conference on Nuclear Engineering (ICONE), United States
(2016)

14. M.C. Kim, Reliability block diagram with general gates and its

application to system reliability analysis. Ann. Nucl. Energy

38(11), 2456–2461 (2011). https://doi.org/10.1016/j.anucene.

2011.07.013

15. M. Horny, Bayesian Networks. Boston university school of

public health, Department of health policy and management:

Technical Report No. 5 (2014). https://pdfs.semanticscholar.org/

8899/44b6ab98d799a5ff5132e019d1ef5306aa5e.pdf. Accessed

12 July 2020

16. S. Santoso, S. Bakhri, J. Situmorang, A Bayesian network

approach to estimating software reliability of RSG-GAS reactor

protection system. Atom Indonesia 45(1), 43–49 (2019). https://

doi.org/10.17146/aij.2019.775

17. T.L. Chu, A. Varuttamaseni, M. Yue et al., Developing a Baye-

sian Belief Network Model for Quantifying the Probability of

Software Failure of a Protection System. U.S. Nuclear Regulatory

Commission NUREG/CR-7233 (2018)

18. S.J. Lee, S.H. Lee, T.L. Chu et al., Bayesian belief network

model quantification using distribution-based node probability

and experienced data updates for software reliability assessment.

IEEE (2018). https://doi.org/10.1109/ACCESS.2018.2878376

19. H.G. Kang, S.H. Lee, S.J. Lee et al., Development of a Bayesian

Belief Network Model for the Software Reliability Assessment of

Nuclear Digital I&C Safety Systems. in Paper Presented at the
10th International Topical Meeting on Nuclear Plant Instru-
mentation, Control, and Human-Machine Interface Technologies
(NPIC&HMIT), San Francisco, CA (2017).

20. D. Li, H.D. Wang, X. Liang, Bayesian network based approach

for diagnosis of modified sequencing batch reactor. J. Shanghai

Jiaotong Univ. (Sci.) 24(4), 17–429 (2019). https://doi.org/10.

1007/s12204-019-2047-9

21. K. Murphy, A Brief Introduction to Graphical Models and

Bayesian Networks (1998). https://www.cs.berkeley.edu/*mur

phyk/Bayes/bayes.html. Accessed 22 Jan 2020

22. B. Mihaljevi, C. Bielza, P. Larranaga, Learning Bayesian network

classifiers with completed partially directed acyclic graphs. in

Paper presented at 9th International Conference on Probabilistic
Graphical Models, Machine Learning Research (PMLR),
Madrid, pp. 272–283 (2018)

23. D. Heckerman, in Innovations in Bayesian Networks, ed. by D.E.

Holmes, L.C. Jain (Springer, Berlin, 2008), pp. 33–82

24. F.V. Jensen, Bayesian Networks and Decision Graphs (Springer,
New York, 2002)

25. C. Premebida, D.R. Faria, U. Nunes, Dynamic Bayesian network

for semantic place classification in mobile robotics. Auton.

Robots 41(5), 1161–1172 (2017). https://doi.org/10.1007/s10514-

016-9600-2

26. J. Grover, Strategic Economic Decision-Making: Using Bayesian
Belief Networks to Solve Complex Problems, 1st edn. (Springer,
New York, 2013)

27. A. Hayes, Bayes’ Theorem Definition (2019). https://www.

investopedia.com/terms/b/bayes-theorem.asp. Accessed 12 June

2020

28. E. Horvitz, D. Hovel, C. Kadie, MSBNx: A Component-Centric

Toolkit for Modeling and Inference with Bayesian Networks,

Technical Report MSR-TR-2001–67, Microsoft Research (2001).

https://research.microsoft.com/adapt/MSBNx/. Accessed 8 July

2020

29. International Atomic Energy Agency (IAEA), Generic compo-

nent reliability data for research reactor PSA. IAEA TECDOC-

0930 (1997). https://www-pub.iaea.org/MTCD/Publications/

PDF/te_0930_scr.pdf. Accessed 25 May 2020

30. International Atomic Energy Agency (IAEA), Component Reli-

ability Data for use In Probabilistic Safety Assessment. IAEA–

TECDOC–478 (1988). https://inis.iaea.org/collection/NCLCol

lectionStore/_Public/20/019/20019171.pdf. Accessed 22 Feb

2020

31. A.G. Cobo, Importance Measures, IAEA, Workshop on PSA

Applications (1996). https://inis.iaea.org/collection/NCLCollec

tionStore/_Public/28/059/28059559.pdf. Accessed 8 June 2020

32. G. Chen, Z. Yang, J. Sun, Applying Bayesian networks in nuclear

power plant safety analysis. Procedia Eng. 7, 81–87 (2010).

https://doi.org/10.1016/j.proeng.2010.11.012

123

101 Page 18 of 19 H. Torkey et al.

https://doi.org/10.11889/j.0253-3219.2020.hjs.43.080007
https://doi.org/10.11889/j.0253-3219.2020.hjs.43.080007
https://doi.org/10.11889/j.0253-3219.2020.hjs.43.070603
https://doi.org/10.11889/j.0253-3219.2020.hjs.43.070603
https://doi.org/10.11889/j.0253-3219.2020.hjs.43.040009
https://doi.org/10.11889/j.0253-3219.2020.hjs.43.040009
https://doi.org/10.11889/j.0253-3219.2020.hjs.43.030603
https://doi.org/10.11889/j.0253-3219.2020.hjs.43.030603
https://doi.org/10.11889/j.0253-3219.2019.hjs.42.090601
https://doi.org/10.11889/j.0253-3219.2019.hjs.42.090601
https://www.nrc.gov/docs/ML0230/ML023020519.pdf
https://www.nrc.gov/docs/ML1122/ML11223A30.pdf
https://nrcoe.inl.gov/resultsdb/publicdocs/SystemStudies/nureg-cr-5500-vol-2.pdf
https://nrcoe.inl.gov/resultsdb/publicdocs/SystemStudies/nureg-cr-5500-vol-2.pdf
https://doi.org/10.1115/ICONE26-81300
https://doi.org/10.1115/ICONE26-81300
https://doi.org/10.1016/j.anucene.2011.07.013
https://doi.org/10.1016/j.anucene.2011.07.013
https://pdfs.semanticscholar.org/8899/44b6ab98d799a5ff5132e019d1ef5306aa5e.pdf
https://pdfs.semanticscholar.org/8899/44b6ab98d799a5ff5132e019d1ef5306aa5e.pdf
https://doi.org/10.17146/aij.2019.775
https://doi.org/10.17146/aij.2019.775
https://doi.org/10.1109/ACCESS.2018.2878376
https://doi.org/10.1007/s12204-019-2047-9
https://doi.org/10.1007/s12204-019-2047-9
http://www.cs.berkeley.edu/~murphyk/Bayes/bayes.html
http://www.cs.berkeley.edu/~murphyk/Bayes/bayes.html
https://doi.org/10.1007/s10514-016-9600-2
https://doi.org/10.1007/s10514-016-9600-2
https://www.investopedia.com/terms/b/bayes-theorem.asp
https://www.investopedia.com/terms/b/bayes-theorem.asp
http://research.microsoft.com/adapt/MSBNx/
https://www-pub.iaea.org/MTCD/Publications/PDF/te_0930_scr.pdf
https://www-pub.iaea.org/MTCD/Publications/PDF/te_0930_scr.pdf
https://inis.iaea.org/collection/NCLCollectionStore/_Public/20/019/20019171.pdf
https://inis.iaea.org/collection/NCLCollectionStore/_Public/20/019/20019171.pdf
https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/059/28059559.pdf
https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/059/28059559.pdf
https://doi.org/10.1016/j.proeng.2010.11.012


33. J. Zhao, Y.N. He, P.F. Gu et al., Reliability of digital reactor

protection system based on extenics. Springer Plus (2016).

https://doi.org/10.1186/s40064-016-3618-y

34. Z. Ma, H. Yoshikawa, M. Yang, Reliability model of the digital

reactor protection system considering the repair time and com-

mon cause failure. J. Nucl. Sci. Technol. 54(5), 539–551 (2017).

https://doi.org/10.1080/00223131.2017.1291375

123

Bayesian belief-based model for reliability improvement of the digital reactor protection… Page 19 of 19 101

https://doi.org/10.1186/s40064-016-3618-y
https://doi.org/10.1080/00223131.2017.1291375

	Bayesian belief-based model for reliability improvement of the digital reactor protection system
	Abstract
	Introduction
	Bayesian belief network model
	Model development of I&C for the RPS as a Bayesian belief network
	Microsoft Bayesian network (MSBNx)
	Proposed modeling of different RPS architectures using BBN based on RBD
	BBN probability estimation

	Results and discussion
	Conclusions and recommendations
	References




