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Abstract Ischemic stroke is one of the leading causes of

death worldwide, and effective treatment strategies in the

chronic phase of this disease remain insufficient.

Homeostasis of metals in the brain plays an important role

in maintaining normal brain function. However, the

dynamic spatial distributions of iron, zinc, calcium,

potassium, and copper in a rat brain following ischemic

stroke and the association between structural distribution

and function remain to be elucidated. In this study, we used

a synchrotron radiation-based micro-X-ray fluorescence

technique to image element mapping changes in special rat

brain regions after ischemic stroke, showing the distribu-

tion characteristics of iron, zinc, calcium, potassium, and

copper. We demonstrated, for the first time, the consistent

dynamic spatial distributions of metal elements at a series

of time points (3 h, 4.5 h, 6 h, 12 h, 1 d, 3 d, 5 d, 7 d, 10 d,

14 d, 28 d) after brain ischemia, which revealed that the

homeostasis of iron, zinc, calcium, potassium, and copper

in the brain was disturbed with distinctive change trends,

providing clear insights in understanding the underlying

pathogenesis of stroke from a novel perspective, thus lay-

ing the foundation of further developing new drug targets

for stroke treatment.
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1 Introduction

Metal elements, rich in coordination chemistry and

redox properties, are effectively stored, released, and uti-

lized by cells and tissues to form or enhance the structure

and function of proteins and carry out vital life processes

[1]. In the human body, the central nervous system, which

is the command center for cognitive and motor functions,

has immense biological complexity and contains several

endogenous complexes that are involved in signaling,

biosynthesis, and metabolic processes [2]. Metal elements

play a particularly important role during some specific

neurobiological processes, and their distributions in the

brain are closely linked with diseases [3–5]. Although

some structural features of the brain have been illustrated,

the spatial distributions of its critical elements have not

been entirely elucidated. As the element spatial distribution

is usually uneven in different regional structures [6, 7],

functional imaging to localize critical elements in specific

tissues is important to determine their metabolic and

physiological roles. Therefore, it is of great significance to

investigate the spatial distribution of critical elements in

the brain under physiological and various pathological

conditions.

Traditionally, element analyses of biological samples

have been based on destructive methods leading to the loss
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of information about the element spatial distribution within

the tissue. In particular, even the amount of some elements

in organisms is significantly low for current traditional

methods to investigate due to the lack of relatively high

spatial resolution and sensitivity [8]. Several technologies

based on mass spectrometry have been developed to

visualize the elements of biological samples including laser

ablation inductively coupled plasma mass spectrometry

(LAICPMS), time-of-flight secondary ion mass spectrom-

etry (TOF-SIMS), and nanoscale secondary ion mass

spectrometry (NanoSIMS). However, each of these imag-

ing techniques has several disadvantages in detecting the

element distribution, specifically in metal detection. The

most essential drawback of these methods is the destruction

of samples since the methods need to sputter the surface

material of the sample for composition analysis [9–12].

The spatial resolution of LAICPMS is relatively limited,

prohibiting the realization of elemental analysis at a sub-

cellular level [10]. Due to its rather high matrix effect on

molecular ion formation, it is difficult to quantify the ele-

mental content/distribution using TOF-SIMS, thus making

this technique more suitable for small organic molecules

such as lipids [9]. Regarding NanoSIMS, limited secondary

ion species (up to seven) can be achieved in one scan,

impeding the application in the multielement analysis [11].

Thus, it is highly desirable to develop a novel imaging

technology with high resolution that can visualize the

spatial distribution of elements nondestructively. With the

advent of third-generation synchrotron radiation (SR) light

source, SR-based micro-X-ray fluorescence analysis (SR-

lXRF) is available for nondestructive detection of ele-

ments in the femtogram range at the micrometer or even

nanometer level [8]. Additionally, the elements of biolog-

ical interest can be simultaneously detected in situ and

mapped by SR-lXRF [13]. At present, SR-lXRF tech-

nology is applied in a wide range of scientific fields, such

as geochemistry, astrochemistry, environmental science,

and materials science [14–16].

As is well known, stroke is characterized by high inci-

dence, high mortality, high morbidity, and a high recur-

rence rate due to acute cerebral circulation disorders.

Particularly, ischemic stroke is currently one of the three

major causes of death [17]. Studies have shown that brain

ischemia can cause endogenous angiogenesis, a vital self-

compensatory mechanism [18]. The extent of vascular

proliferation is directly related to the improvement of blood

flow in ischemic brain regions, affecting the recovery of

neuronal physiological function [19]. Promoting angio-

genesis has become one of the important strategies in

stroke treatment and rehabilitation. Finney et al. used SR-

lXRF to image the distribution of metal ions in

microvascular endothelial cells and showed that copper

(Cu), iron (Fe), zinc (Zn), and other elements changed with

cell growth and cell redistribution, and gradually approa-

ched the growth points to be excreted outside the cell [20].

However, the above studies on ions and angiogenesis are

limited to normal cell models. At the level of cells and

animal models, the detailed distribution and concentration

of vital metal ions such as Fe, Zn, and other metals in the

process of angiogenesis after cerebral ischemia have not

been reported up to now. Therefore, accurate qualitative

and quantitative analysis of the ion imbalance in the pro-

cess of cerebral ischemia and its mechanism is needed to

further understand the occurrence and development of

stroke and is expected to provide a new perspective of

stroke therapy.

This study is proposed to establish rat models of middle

cerebral artery occlusion (MCAO) with a series of

ischemic time courses and subsequently to characterize the

spatial distributions of metal elements in focal functional

brain regions by SR micro-beam X-ray fluorescence

imaging technology. These findings will provide new

insights into the distribution of elements under ischemic

conditions, thereby providing a promising tool for the

evaluation of brain ischemic injury repair.

2 Materials and methods

2.1 Sample preparation

The experiment was conducted in the Experimental

Zoology Department of Central South University, Chang-

sha, China, and was in line with Central South University

experimental welfare ethics review standards. Male

Specific Pathogen Free (SPF) Sprague–Dawley rats

weighing 250–280 g were used for establishing models and

provided by Laboratory Animal Center of Central South

University. The intraluminal suture method [2] was used to

establish stroke rat models with the right middle cerebral

artery (MCA) occlusion, that is, the median anterior cer-

vical incision first, and then exposing the right common

carotid artery bifurcation, inserting a standard nylon thread

from the common carotid artery near the bifurcation into

the internal carotid artery with a depth of approximately

18 ± 0.5 mm. According to the description of Longa et al.,

neurobehavioral experiments were performed immediately

after surgery in rats to evaluate the effect of occlusion [21].

Following the principle of random allocation, 48 rats were

randomly assigned to 12 groups, including the sham

operation group and groups with occluded right middle

artery for 3 h, 4.5 h, 6 h, 12 h, 1 d, 3 d, 5 d, 7 d, 10 d, 14 d,

and 28 d, respectively, based on duration of occlusion.

During the feeding period, 1 rat in the 10 d group, 2 rats in

the 14 d group, and 2 rats in the 28 d group died of a stroke.

To ensure that at least 3 rats were involved in each group, a
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total of 2 rats were randomly added into the 14 d and 28 d

groups. In total, 50 rats were used and 45 were included in

our study. After removing the intraluminal suture from the

45 successful models, the models were anesthetized and

subsequently sacrificed by perfusing with 0.9% saline and

ice-cold paraformaldehyde successively. The separated

intact brain was fixed with paraformaldehyde in 0.1 M

phosphate-buffered saline (pH 7.4) overnight and subse-

quently dehydrated in 30% sucrose for 24 h. The most

successful brain samples were collected in each group, with

the principle of complete perfusion, no visible blood

remaining, and a rather stiff surface. The collected sample

was immediately frozen and was subsequently sectioned in

the coronal plane using a cryostat to obtain ten 60-lm-thick

slices (containing the hippocampus). For analysis by SR-

lXRF, the samples were finally dried in air to a fully

dehydrated state and placed on 3-lm-thick Mylar mem-

brane. To reduce errors, the entire sample preparation

process was strictly regulated to avoid contamination with

Fe, Zn, calcium, magnesium, and Cu.

2.2 Synchrotron radiation-based micro-X-ray

fluorescence analysis (SR-lXRF)

SR-lXRF combines fluorescence X-ray analysis and

X-ray microscopy. Fluorescence analysis is based on the

X-ray fluorescence generated by the photoelectric effect of

the interaction between the X-ray and the substance, and

the information of the sample is analyzed. The photoelec-

tric effect is observed when the photon energy of X-rays is

greater than the electron binding energy of the object

atoms. After absorbing the photon energy, the inner elec-

tron of the atom is finally transferred to the high energy

level orbit, and the electron of the outer layer transfers to

the electron hole of the inner layer to generate a fluorescent

signal [2]. Therefore, within a certain range of X-ray

photon energies, the fluorescence signals emitted by dif-

ferent elements are different according to the different

electron binding energy and electron arrangement of each

elemental atom [1, 22]. In this experiment, the scanning

analysis of the distribution of Fe, Zn, calcium, magnesium,

and Cu in the brain tissue by SR-lXRF was performed at

beamline 15U station in Shanghai Synchrotron Radiation

Facility (SSRF, Shanghai, China). The semiquantitative

experiment was performed in air at room temperature with

a photon energy of 10 keV and a monochromator angle of

45 degrees. The spot size of the beam on the sample stage

was 50 9 50 lm2, with a focusing time of 1 s per point, a

step size of 50 lm for raster scanning, and a silicon

detector for collecting fluorescence counting of 90 degrees.

A light microscope was coupled to a computer for sample

viewing. Each pixel was extracted from the energy-dis-

persive spectrum using the GeoPIXE software (CSIRO,

Australia), and the intensity map of the metal was imaged

using Igor Pro software (WaveMetrics, USA) to quickly

and accurately obtain two-dimensional, in situ micro-

amounts of brain tissue element content and distribution. In

experiments, Compton scattering in X-ray spectra was used

as an internal standard to compensate for the differences in

thickness and density between the thin sections of tissue.

2.3 Data analysis

Due to the high heterogeneity of elemental distribution

in the brain-wide scale, the relative signal value of all the

scanning spots (containing all the duplicate samples) was

collected from the control side and the experimental side of

the brain, thus dividing the data into two parts. Statistical

analysis was performed using the Statistical Package for

the Social Sciences version 20.0 (International Business

Machines Corp., Armonk, NY). A nested t test was con-

ducted to compare the difference between the sham group

and different post-MCAO time point groups. P\ 0.05 was

considered to be significantly different. Data are presented

as the mean ± standard deviation (SD).

3 Results

The contents and distribution images of Fe, Zn, Ca, K,

and Cu in rat brain tissues were obtained by SR-lXRF. The
images change gradually during the progression of

ischemia.

3.1 Iron fluorescence mapping

According to the image (Fig. 1), the distribution of Fe

element in the sham group was more even and the average

value was higher in the vicinity of the cortex. However, in

the cerebral ischemia group, the average value of Fe was

higher in the cortex and lesion area. The content of Fe in

the lesion area evidently increased early and subsequently

decreased over time. In the short-duration groups, the mean

value at 3 h increased and slightly decreased at 4.5 h and

6 h, and distribution means at 12 h and 1 d increased in the

local region, specifically in the lesion area. In the long-

duration groups, the content of Fe element in 1 d to 5 d

showed a recovering and decreasing trend and in 7 d–14 d

continued to decrease to a smaller volume of lesion

hemisphere. In the long-duration experimental groups, the

fluctuation of Fe in the continuously perfused left brain

tissue region was not evident when compared to the lesion

side, i.e., side with interrupted blood supply.
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3.2 Zinc fluorescence mapping

According to the image (Fig. 2), Zn distribution in the

sham group was average compared to the other groups, and

the mean was lower, while Zn in the cerebral ischemia

group was not evenly distributed. In the short-duration

groups, the distribution of Zn was more balanced, and the

mean elemental content was higher than that in the sham

group. In the long-duration groups, the means of Zn in the

lesion area fluctuated over time. The results showed that

the Zn content in the 1d group increased, after which the

Zn content in the 5 d group increased and exceeded that in

the 3 d group. Subsequently, in the 7 d group, the Zn

content decreased, and the Zn content in the 14 d and 28 d

groups decreased successively. The Zn content in 28 d

group was significantly low, specifically in the center of the

lesion. In contrast, the fluctuation of the Zn content on the

normal side was small.

3.3 Calcium fluorescence mapping

According to the image (Fig. 3), the distribution of Ca in

the sham group was more balanced, and its distribution in

the cerebral ischemia group was unbalanced. The distri-

bution of Ca was mainly on the lesion side. In the long-

duration groups, the content continued to increase, and the

highest content was observed in the 28 d samples. In the

short-duration groups, the means and distribution of Ca did

not have significant change compared with the sham group.

However, the means and distribution of Ca seemed to

increase slightly in the lesion area, which was close to the

1d group. The means of Ca content in the normal side were

all lower than that in the lesion side in the same sample.

3.4 Potassium fluorescence mapping

According to the image (Fig. 4), the distribution of K in

the sham group was more even. In the experimental group

(3 h, 4.5 h, 6 h, 12 h), the average values of K decreased

slightly, and the distribution did not have significant

changes compared with the sham group. Over time, the

means of K increased significantly on the lesion side in the

1d group and decreased again in the 3 d group. The content

of cortex K in the 5 d, 7 d, 10 d, 14 d, and 28 d groups

showed a slight increase when compared with the ahead

groups, with distribution seen on the lesion areas, while the

content in the lesion core area (striatum) was still relatively

low. However, compared with the other elements, the

increasing degree of means in every group was not sig-

nificantly high.

Fig. 1 (Color online) Image of iron (Fe) distribution in the brain

tissues at different post-middle cerebral artery occlusion (MCAO)

time points by synchrotron radiation-based micro-X-ray fluorescence

analysis. a Fe distribution in brain tissue of sham-operated rat. b–l Fe
distribution in rat brain tissue at post-MCAO 3 h, 4.5 h, 6 h, 12 h, 1

d, 3 d, 5 d, 7 d, 10 d, 14 d, and 28 d, respectively. The sagittal plane of

a rat brain demonstrated the position from which the slice was

obtained. The ischemic lesion was on the right hemisphere marked

with ‘‘R’’
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Fig. 2 (Color online) Image of zinc (Zn) distribution in the brain

tissues at different post-middle cerebral artery occlusion (MCAO)

time points by synchrotron radiation-based micro-X-ray fluorescence

analysis. a Zn distribution in brain tissue of sham-operated rat. b–l Zn
distribution in rat brain tissue at post-MCAO 3 h, 4.5 h, 6 h, 12 h, 1

d, 3 d, 5 d, 7 d, 10 d, 14 d, and 28 d, respectively. The sagittal plane of

a rat brain demonstrated the position from which the slice was

obtained. The ischemic lesion was on the right hemisphere marked

with ‘‘R’’

Fig. 3 (Color online) Image of calcium (Ca) distribution in the brain

tissues at different post-middle cerebral artery occlusion (MCAO)

time points by synchrotron radiation-based micro-X-ray fluorescence

analysis. a Ca distribution in brain tissue of sham-operated rat. b–l Ca

distribution in rat brain tissue at post-MCAO 3 h, 4.5 h, 6 h, 12 h, 1d,

3 d, 5 d, 7 d, 10 d, 14 d, and 28 d, respectively. The sagittal plane of a

rat brain demonstrated the position from which the slice was obtained.

The ischemic lesion was on the right hemisphere marked with ‘‘R’’
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Fig. 4 (Color online) Image of potassium (K) distribution in the

brain tissues at different post-middle cerebral artery occlusion

(MCAO) time points by synchrotron radiation-based micro-X-ray

fluorescence analysis. a K distribution in brain tissue of sham-

operated rat. b–l K distribution in rat brain tissue at post-MCAO 3 h,

4.5 h, 6 h, 12 h, 1d, 3 d, 5 d, 7 d, 10 d, 14 d, and 28 d, respectively.

The sagittal plane of a rat brain demonstrated the position from which

the slice was obtained. The ischemic lesion was on the right

hemisphere marked with ‘‘R’’

Fig. 5 (Color online) Image of cupper (Cu) distribution in the brain

tissues at different post-middle cerebral artery occlusion (MCAO)

time points by synchrotron radiation-based micro-X-ray fluorescence

analysis. a Cu distribution in brain tissue of sham-operated rat. b–l Cu
distribution in rat brain tissue at post-MCAO 3 h, 4.5 h, 6 h, 12 h, 1

d, 3 d, 5 d, 7 d, 10 d, 14 d, and 28 d, respectively. The sagittal plane of

a rat brain demonstrated the position from which the slice was

obtained. The ischemic lesion was on the right hemisphere marked

with ‘‘R’’
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3.5 Copper fluorescence mapping

According to the image (Fig. 5), in the sham group, the

mean of Cu was higher around the median sagittal line. In

the short-duration group (3 h, 4.5 h, 6 h, 12 h, and 1 d), the

expression of Cu increased extensively in the brain tissue

of the experimental groups. From the 3rd day, the overall

Cu content decreased, and the lesion side was lower than

the control side.

3.6 Quantitative analysis

To quantitatively evaluate the difference between the

sham group and the several post-MCAO time point groups,

we collected the relative signal value of the elements from

all the scanning spots due to the high heterogeneity of the

data in the brain-wide scale. The collected data were sub-

sequently divided into two parts, the control side and the

experimental side, to take into account the different con-

ditions endured by the two brain hemispheres. The data

were presented using a histogram (Fig. 6). The statistical

evaluation showed a high SD value in almost all the groups

and confirmed the heterogeneity of element distribution in

the brain. In the whole-brain scale, the content of Fe, Ca,

and Cu was relatively stable after MCAO operation,

although the local change was significant (Figs. 1, 3, 5). It

also indicated that K and Zn changed more significantly

than other elements during the progression of MCAO. The

content of K changed significantly in almost all the time

points after MCAO, and Zn mainly changed after 3 d.

4 Discussion

The research on the spatial distribution and concentra-

tion of metals in the brain only focused on a short period

since the onset of ischemic stroke. Takahashi et al. studied

the changes in brain elements after MCA occlusion for 3 h

and 24 h and found that the changes had no significant

difference [23]. Our experiment added more intervals

(from 3 h to 28 d). Element distribution mapping of vari-

ous metal elements at specific sites was obtained by SR-

lXRF, indicating the dynamic enrichment process during

focal ischemic stroke, providing a basis to explore the

variation of metal element contents and functions during

the stroke process, for further research on new drug targets.

With different occlusion time of the MCA, the patho-

physiological changes in brain tissue are different and

change over time. Therefore, the contents and distributions

of metal elements at different time points and changes in

pathophysiology in each step of the process are tightly

associated. At present, the mechanism underlying the

imbalance in metal element homeostasis after ischemia

remains to be elucidated.

4.1 Iron

Fe, one of the essential elements in the body, is a

prosthetic group of neurotransmitters and important myelin

protein synthase. Fe ion is also a catalyst that significantly

increases the concentration of reactive oxygen species

(ROS). Studies have shown that after Fe aggregation, a

Fig. 6 (Color online) Quantification of the relative signal value of

various elements at different post-middle cerebral artery occlusion

(MCAO) time points. a–e The quantification of iron, zinc, calcium,

potassium, and copper on the control side and experimental side of

the brain at different time points after MCAO. ‘‘C’’ and ‘‘E’’ represent

the control side and experimental side, respectively. Nested t test was
employed to test the difference between the post-MCAO groups and

the sham group on the whole-brain scale. *P\ 0.05, **P\ 0.01,

***P\ 0.001 versus the sham group at each time point
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large number of hydroxyl radical generated by Fenton

reaction can promote the peroxidation of membrane lipid

and the production of ROS, leading to cytotoxic damage.

Studies have found that neurons have Fe ion metabolism

disorders in Alzheimer’s disease (AD) [24]. The activation

of nuclear factor kappa-light-chain-enhancer of activated B

cells leads to increasing divalent metal transporter 1

expression, increasing Fe influx, and aggravating neuronal

damage after cerebral ischemia [25]. Moreover, with

cerebral hemorrhage, hemoglobin degrades to heme Fe,

thereby promoting the production of ROS [26]. Further-

more, intravenous injection of Zn (2?) into Wistar rats can

reduce the Fe accumulation after cerebral ischemia, which

can cause neuronal damage, and the Fe chelator deferox-

amine can reduce the severity of myocardial infarction

induced by Fe aggregation after cardiac ischemia–reper-

fusion [27]. Studies have shown that there are two main

sources of Fe in the lesion area: (1) hypoxia–ischemia that

damages the blood–brain barrier and the free Fe ions that

directly leak into the brain instead of through the

involvement of transferrin, and (2) ischemia leads brain

cells to reduce the regulation of Fe storage protein,

resulting in increased concentration of free Fe ions in the

brain tissue. In hypoxic conditions, the free ferric ions are

reduced to ferrous ions, and the ferrous ions undergo

Haber–Weiss reaction to generate hydroxyl radicals,

resulting in oxidative stress and subsequent cell apoptosis

and tissue infarction [23, 28, 29]. Moreover, some studies

have shown that the protection of the blood–brain barrier

after ischemic stroke and the use of some lipid-soluble Fe

chelators can reduce the infarct range and ROS production

[30].

Fe content of lesions in elemental distribution map

increased first and subsequently decreased, which suggests

that ischemic brain tissue oxidative stress response

increased first, and compensatory repair was subsequently

observed. Recent studies have found that prophylactic

knocking out of the Tau gene that mediates Fe export has

protective benefits on brain tissues after MCAO [31].

Combined with our results, they jointly imply that early

clinical intervention to increased local Fe content is of

great importance.

4.2 Zinc

Various studies have shown that during cerebral ische-

mia, Zn has the dual role of neurotoxicity and neuropro-

tection. Selective death of hippocampi 1 neurons during

cerebral ischemia is caused by the release of Zn-containing

vesicles at the terminal axon of excitatory neurons to

fragile postsynaptic neurons [32]. Zn can affect adenosine

triphosphate consumption and the oxidized form of coen-

zyme NAD? to disrupt the different phases of cellular

respiration. Moreover, the use of Zn chelators reduces

neuronal death [33, 34]. Successive studies have shown

that in the early stages of ischemia, vulnerable neurons

upregulate the expression of Zn transporter protein-1 (a

local plasma membrane transport protein that promotes Zn

efflux). However, contrary to chelation-based therapeutic

interventions, various studies have demonstrated the neu-

roprotective benefits following various Zn compounds

[35]; hence, Zn should have neurotoxic and neuroprotec-

tive dynamic balance in a postischemic setting. It is

hypothesized that this may be related to the fluctuation of

Zn content distribution in postischemic lesions (the specific

changes are shown in the experimental results).

4.3 Calcium

The mechanism of Ca ion cytotoxicity is still contro-

versial. There are mainly intracellular ‘‘calcium overload’’

hypothesis and ‘‘source-specific’’ hypothesis, both of which

are related to the entry of calcium ions from the extracel-

lular and endoplasmic reticulum, mitochondria, into the

neurons’ cytoplasm after cerebral ischemia. As a neuro-

transmitter, glutamate develops excitotoxicity in ischemic

environment. It can overstimulate receptors such as N-

methyl-D-aspartic acid receptor (NMDA) and allow a large

influx of Ca ions [36, 37]. Studies have shown that the use

of NMDA receptor blocker BQ-869 can reduce intracel-

lular Ca concentration and reduce the infarct range of the

tissue [38]. Membrane disintegration of the endoplasmic

reticulum and mitochondria or dysfunction of membrane

ion channels releases Ca into the cytoplasm [36]. Increased

intracellular free Ca has become an important cause of cell

death. With the extension of time, in the elemental distri-

bution map, the lesion areas have high Ca content,

specifically in the 28 d group. It has been hypothesized that

this distribution may be related to the formation of calci-

fication, which may be related to ischemic necrosis and

increased alkaline phosphatase of the local tissue.

4.4 Potassium

Some studies have shown that during the edema phase

of the ischemia, the blood–brain barrier is destroyed, Na

ions flow in, and K ions flow out in large quantities [39].

The change of Na and K ions inside and outside the neu-

rons contributed to pure cytotoxic edema in the ischemic

hemisphere [40, 41]. This may be related to the early

reduction of the K content in the lesion areas of the element

distribution map. This is consistent with Sentaro et al.’s

findings. The blockade of K-related ion channels plays an

important role in controlling neuronal hyperactivity after

ischemia [42]. Ischemic stroke accounts for a higher risk of

epileptogenesis [43], which may also be highly connected
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with K and cortical spreading depolarization. Compared to

the control groups without post-stroke epilepsy, the post-

stroke epilepsy group showed a significant reduction in

Kv4.2, a type AK channel subunit [44]. Additionally,

cortical spreading depolarization and epilepsy often occur

simultaneously after ischemic stroke. The interplay

between cortical spreading depolarization and epilepsy is

also complicated. The contradiction of which one initiates

the other electrophysiological phenomena still existed [45].

It has the potential to alter the threshold of epileptogenesis

by manipulating the occurrence of cortical spreading

depolarization, which may reduce the epilepsy-associated

sequelae [46]. Furthermore, serum potassium levels sig-

nificantly affect the prognosis of ischemic stroke patients

[47]. In the elemental distribution map, the content of the

lesion core is lower, while the cortex and around the lesion

core shows an increasing trend, which could be, respec-

tively, explained by the flow out theory and compensatory

theory.

4.5 Copper

Cu is a strong oxidant, and its effects include phos-

pholipid synthesis, hemoglobin formation, and electron

transport. Cu is a trace element necessary for several key

processes in the brain [48]. Although studies of chronic

neurodegenerative diseases such as AD have shown that Cu

homeostasis of the brain has been disturbed, little is known

about Cu homeostasis of brain tissue in acute ischemic

stroke. Recent studies indicate that Cu transmission plays

an important role in the regulation of immune response in

the brain. CuII (atsm), a type of Cu bis (thiosemicarbazone)

complex, reduces the damage of the postischemic immune

response to the brain tissue by influencing the immuno-

genic effects of several cells and activity of microglia

[49, 50], which has a great potential for the treatment of

ischemic stroke. In the elemental distribution map, the

changing trend of Cu in lesions after cerebral ischemia is

similar to that of Fe; thus, the oxidative stress reaction

caused by Fe element may be correlated with the immune

response of Cu, increasing and decreasing synchronously.

By SR-lXRF, this experimental result showed that after

an ischemic stroke, the in situ steady state of Fe, Zn, Ca, K,

and Cu in brain tissue is imbalanced. Combined with

previous research results, the changes in these elements

aim to provide a new idea and target for the study of

ischemic stroke intervention. For the early increase in Fe

content, clinical intervention should be performed as soon

as possible, or intervention of patients with stroke prog-

nosis should be performed in advance, to avoid a series of

oxidative damages of Fe after stroke. The content of Cu

relatively presented a similar trend of fluctuation compared

to Fe, that is, the initial increase and the following decrease

in the content of the two elements. The specific association

between Cu and Fe homeostasis in the human body is

complicated; hence, dyshomeostasis of the two elements is

observed. It has been reported that Fe concentration

decreases after feeding a Cu-deficient diet in a rat model

[51]. Interestingly, a similar changing trend of Cu and Fe

has been observed in our results. However, it has also been

reported that the lack of ceruloplasmin, a type of Cu-

binding protein, causes Fe to accumulate in the pancreas,

retina, and brain [52]. This indicated that in different

pathological processes, the metabolism of Cu and Fe can

vary greatly, even in the opposite manner. The exact

association between the two elements in the brain remains

elucidated, specifically after ischemic stroke. Thus, the

research about which role Cu plays to Fe during ischemic

stroke is significantly valuable. If there is certainly an

antagonistic effect of Cu, this can provide a new target for

the clinical treatment of stroke. The experiment also found

that the content of potassium, consistent with the results of

other studies, decreased early, after which it has slightly

increased. Potassium is an important ion involved in the

resting potential and action potential of the neuron. The

specific mechanism of later increased change needs to be

further explored.

The statistical analysis also provided interesting infor-

mation about the progression of MCAO. It confirmed that

the distribution of different elements was imbalanced

because of a rather high SD value in almost every group.

Additionally, the nested t test was conducted to compare

the difference of element content between the sham group

and the different post-MCAO time point groups. The

results showed that the content of potassium significantly

changed in almost all the time point groups, specifically in

the early phase of MCAO (3 h, 4.5 h, 12 h), indicating its

essential role in initiating the pathology of ischemic stroke.

Moreover, the content of Zn also changed significantly at

the time points of 3 d, 7 d, 10 d, and 28 d, suggesting its

important role in the later period of ischemic stroke.

Regarding the shortage of our statistical analysis, the nes-

ted t test can only test the difference between the sham

group and the experimental groups on a brain-wide scale

and caused the neglect of the local information. For

example, there are several ‘‘heat zones’’ and ‘‘cold zones’’

presented in Figs. 1, 2, 3, 4 and 5, indicating the local

enrichment or depletion of these elements. Our results

showed that the content of Fe and Ca did not change sig-

nificantly in the whole-brain scale after the MCAO. Thus,

the local enrichment of Fe and Ca may be related to the

functional or pathological change of the corresponding

encephalic region. Additionally, the hot spots in K and Zn

images may be caused by both the functional change and

the change of inflow or outflow of the elements in the

brain. Due to the limited sample size in our present study,
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further study that determines the exact association between

these heat and cold zones and the functional change of

specific encephalic regions should be conducted. We

believed that this local information was also important to

decipher the progression of ischemic stroke.

4.6 Future perspective of SR-lXRF

SR produces rather strong X-rays, which are several

orders of magnitude higher in intensity than laboratory

X-ray sources. It can focus on the micron or even

nanometer scales and can be used to observe cellular or

intracellular micro-element distribution [53, 54]. Consid-

ering its nondestructive feature to the biological tissue, the

SR-lXRF method used in the analysis of metal elements in

biological tissues is considered as one of the most reliable

methods for quantitative and in situ analysis of trace ele-

ments in biological systems, providing strong technical

support for some diseases, specifically of the nervous

system [55]. However, several problems are still to be

addressed to optimize the efficiency of the scanning using

SR-lXRF, for instance, accelerating the acquisition pro-

cess to increase data acquisition efficiency and developing

smaller beam sizes to enhance resolution without reducing

the visual field [56]. Additionally, the radiation damage

also existed during the scanning, which should be avoided

by choosing proper scanning parameters. Previous studies

have mentioned significantly possible utilization that may

accelerate the finding of targets. For example, Epaule et al.

used SR-lXRF technology to detect and map the distri-

bution of a nanoparticle-packaged drug and confirmed that

SR-lXRF is sufficiently sensitive to achieve the results

[57], which may also be used to detect the distribution of

brain-targeted medicine. Another example is that Wang

et al. combined the immunogold labeling and SR-lXRF to

detect the distribution of certain proteins including APP

and Ab42 in the brain [3], which indicates that SR-lXRF
has the potential to combine with other technologies to

increase the types of detection targets. These results sug-

gest that SR-lXRF has the potential to assist in cere-

brovascular disease, including ischemic stroke, directly or

indirectly. Similar to ischemic stroke in this study, the

disruption of homeostasis after the onset of the disease is

closely related to the successive pathophysiological pro-

cesses in brain tissue, such as oxidative stress. When

conducting in-depth studies in the future, we will use SR-

based three-dimensional (3D) micro-fluorescence imaging

combined with 3D micro-tomography of angioarchitecture

methods to further explore the mechanism and correlation

of metal element changes with the plasticity of microvas-

cular networks following cerebral ischemia, thus providing

new targets for effective intervention of stroke [58–60].

5 Conclusion

In general, our study displays the distribution mapping

of Fe, Zn, Ca, K, and Cu in the progression of focal brain

ischemia, respectively, and primitively. SR-lXRF tech-

nology with nondestructive, high spatial resolution, and

high sensitivity of multi-elemental analysis provides a

powerful tool for the imaging of trace elements in bio-

logical tissues. Dynamic changes in metal elements in the

brain during the development of ischemic stroke will be of

great significance to explore the mechanisms and treat-

ments of ischemic stroke.
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