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Abstract The drift-flux model has a practical importance

in two-phase flow analysis. In this study, a finite volume

solution is developed for a transient four-equation drift-flux

model through the staggered mesh, leading to the devel-

opment of a fully implicit discretization method. The main

advantage of the fully implicit method is its unconditional

stability. Newton’s scheme is a popular method of choice

for the solution of a nonlinear system of equations arising

from fully implicit discretization of field equations. How-

ever, the lack of convergence robustness and the con-

struction of Jacobian matrix have created several

difficulties for the researchers. In this paper, a fully implicit

model is developed based on the SIMPLE algorithm for

two-phase flow simulations. The drawbacks of Newton’s

method are avoided in the developed model. Different

limiter functions are considered, and the stabilized method

is developed under steady and transient conditions. The

results obtained by the numerical modeling are in good

agreement with the experimental data. As expected, the

results prove that the developed model is not restricted by

any stability limit.

Keywords Fully implicit � Two-phase flow � Drift-flux
model � Pressure-based algorithm

1 Introduction

The two-phase modeling of fluid flow in a vertical

channel has a great importance in nuclear reactor opera-

tional and accident analysis, especially in boiling water

reactors. From 1970 onwards, large number of codes,

including RELAP [1] and TRACE [2], have been devel-

oped for thermo-hydraulic analysis of nuclear reactors.

These codes are developed based on the semi-implicit

methods. The first order accuracy in time and the stability

restriction on time step are two main drawbacks of the

semi-implicit approaches [3]. Some nearly implicit meth-

ods are developed based on the two-step approach. In the

first step, mass and energy equations are evaluated, and

then, in the second step, momentum equations are solved

using a fully implicit approach [4]. In this method, the

implicitness of the solution is evaluated and the time step

limitation corresponding to the interphase exchange pro-

cesses is ignored [4]. However, the time step is still limited

to a value of 10–20 times greater than the material Courant

limit [1].

With the development of computers, taking advantage

of more advanced numerical methods has become possible

[5]. The recent efforts for implementation of fully implicit

methods have demonstrated the success and robustness of

this type of procedure. Some advantages of the fully

implicit approaches in two-phase flow problems, especially

during the transients, are as below:
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1. An accident or transient can range from very fast to

very slow; therefore, development of a numerical

model with no restrictions on the time step can be

beneficial. The fully implicit approach is a method of

choice for this purpose.

2. The temporal accuracy of the fully implicit methods is

2nd order [6].

3. Because of the existence of interphase transport

phenomena (such as mass, momentum, and energy

transported in the interface) in two-phase flow condi-

tions, the system of governing equations is highly

nonlinear and are also coupled with each other. Hence,

a fully implicit numerical method is useful because it

solves all discretized equations simultaneously.

Using the fully implicit methods for discretization of

governing equations, a system of nonlinear equations is

obtained. Developing a numerical solution for a nonlinear

system of equations has always been a challenge. Research

carried out in this regard has relied on the methods such as

Newton’s method for linearization of a nonlinear system of

equations. Several efforts have been made to apply New-

ton’s method for simulation of two-phase flows [7–10].

However, the implementation of Newton’s method can

present difficulties, some of which are as follows:

1. The problem with convergence is frequently encoun-

tered in the Newton’s method [5]. To overcome this

problem, a good initial guess and implementation of an

appropriate globalization technique are required. This

procedure increases the complexity of the problem,

especially in the two-phase flow problems where

finding a good initial guess requires some primary

simulations.

2. The construction of the Jacobian matrix has been

identified as a problem in the implementation of

Newton’s method. The Jacobian matrix can be

obtained by numerical estimation of the derivatives

or analytical derivation of the equations. The numer-

ical estimation of the derivatives is extremely time-

consuming and requires high memory usage to store

the Jacobian matrix. The analytical derivation of the

field equations is also cumbersome, especially in the

two-phase problems with complex constitutive equa-

tions [3].

3. Even with the availability of the Jacobian matrix,

solving the linear equations obtained is challenging

since the Jacobian matrix arising from the physical

model field equations is a sparse matrix [11].

Recently, the Jacobian-free Newton–Krylov (JFNK)

method has been developed to avoid the problems related

to the construction of the Jacobian matrix. Few attempts

have been made to use the JFNK methods for the solution

of two-phase flow problems [3, 6, 12, 13]. However, the

implementation of this method has several difficulties,

including the strong dependence of the success of the

JFNK method on the development of an efficient precon-

ditioner. The preconditioning technique depends on the

intended application and is expensive and difficult to build

in some cases [5]. Furthermore, the JFNK method applies a

matrix–vector product that can introduce some errors to the

results.

The aim of the present study is to develop a high-order

fully implicit model for simulation of two-phase flow

problem in a vertical channel. For that purpose, a fully

implicit numerical method, which avoids the problems

associated with Newton’s method, is developed based on

the iterative nature of the SIMPLE method. Therefore, the

two-phase flow simulation without the stability limit

requirements was carried out. Several TVD schemes,

namely the Van Leer, Van Albada, SUPERBEE, UMIST,

and Quick schemes, in addition to the central differencing,

upwind differencing, linear upwind differentiating, and

Quick schemes were implemented on staggered grids. The

SIMPLE algorithm is reliable and robust for solving the

single-phase flow problems. However, because of the

strong coupling between the momentum and the continuity

equations and the effect of the interphase mass transfer,

convergence problem arises in the two-phase flow [14].

One solution to this difficulty is to write the interfacial

terms in the equations, in an explicit manner, to obtain a

pseudo-solution that resolves the interphase coupling [15].

In this study, some special techniques are used to overcome

this difficulty.

There are two choices for two-phase flow modeling

including the drift-flux model (DFM) and the two-fluid

model. The DFM, originally developed by Zuber and

Findlay [16], is an appropriate model for simulation of two-

phase systems. This model is widely used in nuclear

research; for example, the RETRAN code uses the DFM

[17]. Talebi et al. [18] studied the transient two-phase flow

in a vertical channel using the DFM, while the TAPINS

code solved the DFM field equations using the Gauss–

Seidel method [19]. Furthermore, the DFM is used for the

analysis of subchannels in light water reactors. For exam-

ple, Khan and Yi [20] used the DFM for the development

of the boiling water reactor subchannel analysis code.

Since the results of advanced computer code are used in the

licensing process [19], the exact solution of the applied

model is very important. Therefore, in the present work,

high-order finite volume methods developed by the

implementation of the high-order limiter functions are

stabilized using the special techniques, and finally, these

developed methods are evaluated.

The DFM field equations and the corresponding con-

stitutive equations are described in Sect. 2. The numerical
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model developed in this study is presented in Sect. 2 and

the results are discussed in Sect. 3. Finally, the conclusion

is presented in Sect. 4.

2 Experimental analysis

2.1 One-dimensional drift-flux model

2.1.1 Governing equations

The DFM considers the mixture as a whole instead of

two separate phases. One-dimensional transient four-

equation DFM, developed by Hibiki and Ishii [21], consists

of two continuity equations, namely the mixture momen-

tum equation and the mixture energy equation, presented

below [3, 18, 19].

The mixture continuity equation can be written as:

oqm
ot

þ o

oz
qmvmð Þ ¼ 0; ð1Þ

The continuity equation for dispersed phase is

oagqg
ot

þ o

oz
agqgvm
� �

þ o

oz

agql
qmqg

Vdj

 !

¼ C; ð2Þ

where qm, qg, and ql are mixture, vapor, and liquid-phase

densities. The drift velocity (Vdj) and the evaporation rate

(C) are obtained by appropriate constitutive equations.

The mixture momentum equation can be written as

oqmvm
ot

þ o

oz
qmv

2
m

� �
þ o

oz

ag
1� ag
� � ql

qmqg
Vdj

2

 !

¼ � oP

oz
� qmgz �

fm

2D
qmvm vmj j; ð3Þ

where D, gz, and fm denote the channel hydraulic diameter,

gravity vector, and friction factor, respectively.

The mixture enthalpy-energy equation can be stated as

follows:

oqmhm
ot

þ o

oz
qmhmvmð Þ ¼ q00Wnh

A
� o

oz

agqlqg
qm

DhglVdj

� �

þ oP

ot
þ vm þ

ag ql � qg
� �

qm
Vdj

 !
oP

oz
; ð4Þ

where q00W is the wall heat flux, nh is the heated perimeter,

and A is the channel area. In Eqs. (1)–(4), pressure (P),

mixture velocity (qm), mixture enthalpy (hm), and void

fraction (ag) are the primary variables calculated by solving

the discretized equations.

2.1.2 Constitutive equations

By surface averaging, the information about the vari-

ables perpendicular to the direction of the flow in a channel

is essentially lost. Therefore, in DFM, it is necessary to

employ appropriate constitutive equations to predict the

state variables, drift velocity, two-phase friction, and

evaporation rate.

To calculate the required state variables such as

enthalpy and density of the liquid phase and vapor, the

relations reported by the International Association for the

Properties of Water and Steam (IAPWS) were imple-

mented [22]. There are two options for the calculation of

the phase temperatures (Tg and Tl): in the first option, the

phase temperatures are considered to be equal, while in the

second option, saturation is considered in the gas phase.

However, Hirt et al. [23] found no noticeable difference

between these two. Hence, in the present study, gas phase

was considered to be at saturation temperature. To predict

the frictional pressure drop in the two-phase flows, the

model developed by Sun and Mishima [24] is considered

the best option based on extensive validation conducted by

applying the empirical data. In relation to the prediction of

the evaporation rate, calculation of the wall evaporation

rate and the mass transfer rate are required. The Lahey

model is used [25] to determine the wall evaporation rate

and the model proposed by Andersen et al. [26] is used to

calculate the interfacial mass transfer rate. These relation-

ships are the function of the flow regimes; therefore, the

flow regime transition criteria provided by Andersen et al.

[26] are used. The Chexal–Lellouche correlation [27] is

applied to obtain drift velocity. Finally, an appropriate

model is necessary to calculate the quality. The equilibrium

quality is calculated from

xeq ¼
hm � hsl
hsg � hsl

; ð5Þ

where hsg; h
s
l are the vapor and liquid saturation enthalpy.

The quality xg is calculated as a function of the equilibrium

quality xeq according to the Levy [28] suggestion

xg ¼ xeq þ xeq ZOSVð Þexp xeq

xeq ZOSVð Þ � 1

� �
: ð6Þ

The onset of significant void (OSV) takes place where a

significant increase in the void fraction occurs (ZOSV). The

following equation is proposed by Delhaye et al. [29] to

calculate ZOSV:

ZOSV ¼ ZONB þ hl Tl ZOSVð Þ½ � � hl Tl ZONBð Þ½ �
� � GD

4q00W
: ð7Þ

The onset of nucleate boiling (ONB) is defined as the

point where first bubbles appear on the wall nucleation
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sites (ZONB). This is calculated by using the following

relation proposed by Delhaye et al. [29]:

ZONB ¼ GCplD

4

T s � Tl;in þ DT s

q00W
� 1

hl0

� 	
; ð8Þ

where hl0 is calculated from the Dittus–Boelter correlation

and DT s is estimated by the Frost and Dzakowic [30]

correlation, which can be stated as follows:

DT s ¼ 8QrTs

klhlgqg

 !0:5

Prl: ð9Þ

2.2 Numerical method

2.2.1 Discretization of the governing equation

The division of the physical space into several control

volumes is the first step in the finite volume method. For

this purpose, some nodes are considered in the flow domain

and the control volume boundaries are located between the

adjacent nodes [31]. Thus, each node is surrounded by a

control volume. Then, discretization is performed on the

basis of the staggered grid method to analyze the ‘checker-

board’ pressure field. The staggered grid is shown in Fig. 1.

In this nodalization, the pressure, enthalpy, and void frac-

tion are obtained on the nodes inside the control volume

and the velocity is calculated in the interfacial nodes. By

integrating Eqs. (1)–(4) on the control volumes and by

using the fully implicit Euler method for a time, a set of

nonlinear equations are obtained. For the description of the

axial nodes and time step, ‘‘i’’ and ‘‘n’’ are used as the

subscript and the superscript in the discretized equations.

The mixture continuity equation can be written as:

qnþ1
mi � qnmi

Dt
Dz� qmvmð Þnþ1

i�1
2
þ qmvmð Þnþ1

iþ1
2
¼ 0: ð10Þ

The continuity equation for the dispersed phase can be

stated as

agqg
� �nþ1

i
� agqg
� �n

i

Dt
Dz� qgagvm

� �nþ1

i�1
2

þ qgagvm
� �nþ1

iþ1
2

þ
agqgql
qm

Vdj

� 	nþ1

iþ1
2

�
agqgql
qm

Vdj

� 	nþ1

i�1
2

�Cnþ1
i Dz ¼ 0:

ð11Þ

The mixture momentum equation can be expressed as

qmvmð Þnþ1
iþ1

2
� qmvmð Þniþ1

2

Dt
Dz� qmvmvm½ �nþ1

i þ qmvmvm½ �nþ1
iþ1

þ Piþ1 � Pi½ �nþ1þ fm

2D
qm vmð Þ2Dz

� �nþ1

iþ1
2

þqnþ1
m

iþ1
2

gzDz

þ ag
1� ag
� �

qgql
qm

Vdj
2

 !nþ1

iþ1

� ag
1� ag
� �

qgql
qm

Vdj
2

 !nþ1

i

¼ 0:

ð12Þ

Finally, the mixture enthalpy-energy equation can be

written as follows:

qmhmð Þnþ1
i � qmhmð Þni
Dt

Dz� qmhmvmð Þnþ1
i�1

2
þ qmhmvmð Þnþ1

iþ1
2

�
agqgql
qm

DhlgVdj

� �nþ1

i�1
2

þ
agqgql
qm

DhlgVdj

� �nþ1

iþ1
2

� vnþ1
mi Piþ1

2
� Pi�1

2


 �nþ1

�
ag ql � qg
� �

qm
Vdj

 !nþ1

i

Piþ1
2
� Pi�1

2


 �nþ1

� nh
A

� �
q00nþ1
W Dz� Pnþ1

i � Pn
i

Dt
Dz ¼ 0:

ð13Þ

In Eqs. (5)–(8), pressure, enthalpy, and void fraction

appear in the staggered grid; however, they should be

calculated at the grid points. Moreover, velocity appears in

the grid points, which should be obtained at the staggered

grid. In Versteeg and Malalasekera’s published book [31],

several differencing schemes are discussed in detail. As

explained in that book, the central differencing method

uses the Taylor series with second-order truncation error. It

is also mentioned that the results obtained by a numerical

method will be physically realistic when the numerical

method has three essential properties of conservativeness,

boundedness, and transportiveness. The transportiveness

property is not present in the central differencing approach.

This method also cannot identify the flow direction;

therefore, this is an unstable scheme. To ensure the stability

and transportiveness, the upwind differencing method is

developed by taking into account of the flow direction.

Since the upwind differencing scheme is inherently a type

of backward differencing method, its corresponding trun-

cation error is of the order of one. The higher-order dis-

cretization approaches that consider the flow direction are

required to increase the accuracy and to reduce the

numerical errors, while remaining stable at the same time.
Fig. 1 (Color online) Control volume and staggered grid
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From one point of view, it can be said that the other higher-

order methods are formulated as summation of the upwind

differencing and an additional function w to improve the

order of accuracy. Versteeg and Malalasekera [31]

explained that this function and the nature of the method

were determined by the ratio of the upwind-side gradient to

the downwind-side gradient, with the ratio being called

‘‘r.’’ To achieve second-order accuracy, it is required that

the developed function crosses the point (1,1) in the r–w
diagram [31]. The central differencing, Quick scheme,

linear upwind differencing scheme, and all TVD schemes

possess this requirement and therefore, they all are second-

order accurate. Because they are based on the upwind

differencing, they possess the conservativeness, bounded-

ness, and transportiveness requirement and consider the

flow direction, thereby ensuring stability. Using the limiter

functions (w), the relation between the parameters on the

staggered grids is obtained. The relations for different

parameters are stated below.

Pressure:

rP
iþ1

2
¼ Pi � Pi�1

Piþ1 � Pi

Piþ1
2
¼ Pi þ

1

2
w rP

iþ1
2


 �
Piþ1 � Pið Þ:

ð14Þ

Enthalpy:

rhm
iþ1

2

¼ hmi � hmi�1

hmiþ1 � hmi

hm
iþ1

2

¼ hmi þ
1

2
w rhm

iþ1
2


 �
hmiþ1 � hmið Þ:

ð15Þ

Void fraction:

r
ag
iþ1

2

¼ agi � agi�1

agiþ1 � agi

ag
iþ1

2

¼ agi þ
1

2
w r

ag
iþ1

2


 �
agiþ1 � agi
� �

:

ð16Þ

Mass flux (G):

rGm

i ¼
Gm

i�1
2

� Gm
i�3

2

Gm
iþ1

2

� Gm
i�1

2

Gmi ¼ Gm
i�1

2

þ 1

2
w rGm

i

� �
Gm

iþ1
2

� Gm
i�1

2


 �
:

ð17Þ

w is a flux limiter function. The widely used form of this

function is presented in Table 1 [31].

2.2.2 Present model based on the SIMPLE Algorithm

Four primary variables, namely, pressure, mixture

velocity (or mass flux), enthalpy, and void fraction should

be determined using the field equations. Other parameters

are evaluated using the constitutive equations. The SIM-

PLE scheme is an iterative method; therefore, each itera-

tion commences with a series of guess values for primary

variables. In the first iteration of the first time step, the

guess parameters are considered to be equal to the initial

and boundary conditions; while in the case of other time

steps, the guess parameters in the first iteration are equal to

the value of primary variables obtained in the previous time

step. For other iterations in each time step, the guess

parameters are same as the parameters obtained in the

previous iteration. The mixture velocity equation and the

mass conservation equation will be used to ensure the

coupling between the velocity and the pressure. However,

both enthalpy and void fraction should be corrected itera-

tively by the corresponding equations. By replacing n ? 1

with k ? 1 for the new iteration and k for the previous one

as described below, a system of linear equations for four

primary variables at k ? 1 is obtained.

Mixture continuity equation

qmvmð Þkþ1
iþ1

2
� qmvmð Þkþ1

i�1
2
¼ qnmi � qkþ1

mi

Dt
Dz: ð18Þ

Continuity equation for the dispersed phase

qkþ1
gi

Dz
Dt

� �
þ qgvm
� �kþ1

iþ1
2

� 

akþ1
gi � qgvm

� �kþ1

i�1
2

n o
akþ1
gi�1

¼ Ck
iDz�

agqgql
qm

Vdj

� 	k

iþ1
2

þ
agqgql
qm

Vdj

� 	k

i�1
2

þ agqg
� �n

i

Dz
Dt

þ 1

2
w r

ag
i�1

2


 �
agi � agi�1

� �� 
k

qgvm
� �kþ1

i�1
2

� 1

2
w r

ag
iþ1

2


 �
agiþ1 � agi
� �� 
k

qgvm
� �kþ1

iþ1
2

:

ð19Þ

Table 1 Most frequently used limiter functions

FVM scheme Limiter function

Central differencing 1

Upwind differencing 0

Linear upwind differentiating r

Quick 3þr
4

TVD Van Leer rþ rj j
1þr

TVD Van Albada rþr2

1þr2

TVD Min-Mod max 0;min r; 1ð Þð Þ
TVD SUPERBEE max 0;min 2r; 1ð Þ;min r; 2ð Þð Þ
TVD UMIST max 0;min 2r; 1þ3r

4
; 3þr

4
; 2

� �� �

TVD Quick max 0;min 2r; 3þr
4
; 2

� �� �
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Mixture momentum equation

qkm
iþ1

2

Dz
Dt

þ qm
iþ1

2

vmiþ1

� 	k !

vkþ1
m

iþ1
2

� qm
i�1

2

vmi

� 	k
vkþ1
m

i�1
2

¼ � Piþ1 � Pi½ �k� fm

2D
qm vmð Þ2Dz

� �k

iþ1
2

�qkm
iþ1

2

gzDz

� ag
1� ag
� �

qgql
qm

Vdj
2

 !k

iþ1

þ ag
1� ag
� �

qgql
qm

Vdj
2

 !k

i

� 1

2
w rGm

iþ1

� �
Gm

iþ3
2

� Gm
iþ1

2


 �� 	k
vkmiþ1

þ 1

2
w rGm

i

� �
Gm

iþ1
2

� Gm
i�1

2


 �� 	k
vkmi þ qmvmð Þniþ1

2

Dz
Dt

:

ð20Þ

Mixture enthalpy-energy equation

qkmi

Dz
Dt

þ qmvmð Þkþ1
iþ1

2

� 

hkþ1
mi � qmvmf gkþ1

i�1
2
hkþ1
mi�1

¼ nh
A

� �
q00kWDzþ Pkþ1

i � Pni
� �Dz

Dt
þ

agqgql
qm

DhlgVdj

� �k

i�1
2

�
agqgql
qm

DhlgVdj

� �k

iþ1
2

þ vkþ1
mi Piþ1

2
� Pi�1

2


 �kþ1

þ
ag ql � qg
� �

qm
Vdj

 !k

i

Piþ1
2
� Pi�1

2


 �kþ1

þ Pkþ1
i � Pn

i

Dt
Dzþ qmhmð Þni

Dz
Dt

þ 1

2
w rhm

i�1
2


 �
hmi � hmi�1ð Þ

� 
k

qkm
i�1

2

vkþ1
m

i�1
2

� 


� 1

2
w rhm

iþ1
2


 �
hmiþ1 � hmið Þ

� 
k

qkm
iþ1

2

vkþ1
m

iþ1
2

� 


ð21Þ

The velocity and pressure fields are closely interlinked,

and thus, must be solved simultaneously. The SIMPLE

algorithm is an iterative approach in which pressure and

velocity are coupled indirectly. The procedure starts with

guessed values of the pressures and velocity fields. The

implicit iterative form of the momentum equation for the

velocity at the staggered grid is in the following form:

qkm
iþ1

2

Dz
Dt

þ qm
iþ1

2

vmiþ1

� 	k !

v�kþ1
m

iþ1
2

� qm
i�1

2

vmi

� 	k
v�kþ1
m

i�1
2

¼ � P�
iþ1 � P�

i

� �k� fm

2D
qm vmð Þ2Dz

� �k

iþ1
2

�qkm
iþ1

2

gzDz

� ag
1� ag
� �

qgql
qm

Vdj
2

 !k

iþ1

þ ag
1� ag
� �

qgql
qm

Vdj
2

 !k

i

� 1

2
w rGm

iþ1

� �
Gm

iþ3
2

� Gm
iþ1

2


 �� 	k
vkmiþ1

þ 1

2
w rGm

i

� �
Gm

iþ1
2

� Gm
i�1

2


 �� 	k
vkmi þ qmvmð Þniþ1

2

Dz
Dt

ð22Þ

where v�m and P� are the guessed velocities and pressure,

which should be corrected based on the following correc-

tion equations:

vm ¼ v�m þ dvm; ð23Þ

P ¼ P� þ dP; ð24Þ

where dvm and dP are the correction terms for the velocity

and the pressure, respectively. In the SIMPLE approach,

the correct velocity field is linked to the correct pressure

field to give the correcting equation for the velocity. The

detailed discussion of the method is provided by Versteeg

and Malalasekera [31]. Based on that method, the velocity

correction is obtained as follows:

vm
iþ1

2

¼ v�m
iþ1

2

� 1

qkm
iþ1

2

Dz
Dt þ qm

iþ1
2

vmiþ1

� 	k ! dPiþ1 � dPið Þ:

ð25Þ

Except for the momentum equation, the velocity field

must satisfy the continuity equation as well. The continuity

equation is discretized on the scalar control volume shown

in Fig. 1. Introducing the equation for the corrected

velocities into the discretized continuity equation, the fol-

lowing algebraic equation for the pressure correction is

obtained:

AP
i;idPi þ AP

i;iþ1dPiþ1 þ AP
i;i�1dPi�1 ¼ SPi ; ð26Þ

where
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AdP
i;iþ1 ¼ �

qkm
iþ1

2

qkm
iþ1

2

Dz
Dt þ qm

iþ1
2

viþ1

� 	k !

AdP
i;i�1 ¼ �

qkm
i�1

2

qkm
i�1

2

Dz
Dt þ qm

i�1
2

vmi

� 	k !

AdP
i;i ¼ �AdP

i;iþ1 � AdP
i;i�1

f dP P; vm; ag; hm
� �

¼ qnmi � qkmi

Dt
Dz:

ð27Þ

2.2.3 Special techniques

The SIMPLE method is an iterative method solving the

mixture continuity equation and the mixture momentum

equation by using the guess and correct procedure. In this

approach, the other equations are solved one by one. By

paying attention to the importance of void fraction and its

dominant influence on the results, the dispersed continuity

equation is solved in the present study first by employing

the pressure and velocity values obtained by the guess and

correct procedure and estimated enthalpy, which is

obtained in the previous iteration. All these parameters

have some errors that influence the calculated void fraction

in this stage. Since pressure and velocity are corrected

during the converged procedure, the error of guess enthalpy

creates a visible error in the void fraction. Then, the

obtained void fraction with its error will be introduced into

the mixture enthalpy equation to determine the enthalpy.

The error of guess enthalpy causes a visible error in the

void fraction, which, in turn, amplifies the error of obtained

enthalpy in consecutive iterations. This phenomenon cau-

ses the oscillatory divergence of the model, with oscilla-

tions appearing around the desired value. To diminish the

oscillations in the present model, two special techniques

are required.

1. At first, the dependence of enthalpy and the void

fraction is reduced by applying the following equation

for liquid enthalpy

hl ¼
hm � xghg

1� xg
; ð28Þ

where hl and hg are the liquid and vapor phase

enthalpy, respectively, and x is the quality. The use of

Eq. (28) is crucial for stable convergence of the

algorithm.

2. Then, based on the oscillatory divergence of the model

around an averaged value, void fraction is considered

to be the average of the obtained void fraction in the

present and the previous iterations.

The stable solution will also allow the use of the high-

order limiter function for improved accuracy. The proce-

dure of implementation of the SIMPLE algorithm is shown

in Fig. 2.

3 Results and discussions

There are three general methods for the validation of a

numerical model: (1) Compare the results with the exper-

imental data; (2) Compare the results with the results of

validated robust software model; (3) Compare the results

with the analytical solution. Since the analytical solution of

the complex two-phase flow problems is cumbersome and

often impossible to derive, the first two methods are widely

Fig. 2 SIMPLE algorithm with special technique
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used. Bartolomei et al. [32, 33] have conducted many

experimental works, with the derived results used for val-

idation of two-phase numerical models in many research

studies. The several cases used in this study are illustrated

in Table 2. Their measurements are reported only for the

steady state. Since the transient behavior of the results is of

great importance for the evaluation of implemented fully

implicit method in this study, the RELAP code is used for

the transient study. The RELAP code [34] is one of the

strong and popular software for thermo-hydraulic analysis

of nuclear reactors and is widely used in various design

stages of light water reactors. Extensive research in con-

junction with the validation of the software has been

reported in the literature. The research studies confirm its

capabilities in the simulation of boiling water flows

[34, 35]. For modeling of the two-phase flows, RELAP5/

MOD2 employs a full non-equilibrium, six-equation, two-

fluid model. For the intended calculations, the software

uses the semi-implicit method. The model component for

modeling by RELAP5 is presented in Fig. 3. In this study,

eight finite volume cells are applied for all the cases.

3.1 Effectiveness of special techniques

Throughout this section, the following relative iteration

tolerance for the pressure velocity correction loop is used:

dPk k2
Pk k2

� 10�7;
dGmk k2
Gmk k2

� 10�4: ð29Þ

For the outer loop, the relative iteration tolerance for the

void fraction and enthalpy is considered:

dhmk k2
hmk k2

� 10�7;
dag
�� ��

2

ag
�� ��

2

� 10�2: ð30Þ

Furthermore, the SIMPLE scheme is terminated if no

convergence is achieved after 200 iterations. Based on the

literature, these criteria are appropriate for two-phase flow

simulations [9, 36, 37].

Figure 4 represents the convergence behavior of the

solution with and without the aforementioned technique

(Sect. 3.2), for Case 3. Based on the figures, the results

show an oscillatory convergence around the final results.

By implementation of the special techniques, the results are

flattened, and final results can be achieved with less

number of iterations.

As Table 3 demonstrates, the rate of convergence is

different for different flux limiter functions. Without the

implementation of the special technique, the TVD Min-

Mod, linear upwind differentiating, and TVD SUPERBEE

schemes did not converge even after 200 iterations. By

using the special technique, all the above schemes are

stabilized, and the convergence is achieved with less

number of iteration and lower CPU time. The upwind

differencing scheme is the fastest scheme with the least

number of iterations among all methods, while UMIST is

the fastest among the TVD methods.

3.2 Steady state

To verify the capability of the present model, simulation

of the two-phase flow within a uniformly heated vertical

tube at different conditions with a wide range of pressure

and heat flux were performed. The analysis is carried out

for the parameters presented in Table 2. Based on the

report published by Bartolomei et al. [33], the maximum

absolute errors of the measured void fraction are between

± 0.04. For the comparison study, the mean absolute errors

Table 2 Experimental

conditions for simulation
Case P (MPa) Mass flux (kg/m2 s) Wall heat flux (MW/m2) Tinlet (K) References

1 14.70 2014 1.72 545 [30]

2 10.81 966 1.13 502 [30]

3 6.81 998 0.44 521 [30]

4 4.50 900 0.38 506.14 [29]

5 3.00 900 0.38 481.85 [29]

6 1.50 900 0.38 448.47 [29]

7 7.01 996 1.98 434 [30]

Fig. 3 RELAP nodalization

(TDV time-dependent volume,

SJ single junction, TDJ time-

dependent junction)
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(MAE) of the calculated results (ea) are obtained by the

following equation:

ea ¼
1

N

XN

i¼1

anum;i � aexp;i
�� ��; ; ð31Þ

where anum and aexp are the void fractions calculated by the

numerical method and experimental measurement,

respectively. Bartolomei et al. explained that the scattering

of the experimental data could be due to the inaccuracy of

maintaining operational parameters and their correspond-

ing measurement errors, and Zou et al. added that this

could be a result of the stochastic nature of the two-phase

flow phenomenon [3, 33]. Because of the scattering of the

experimental data, disparate values for MAE are obtained.

However, Table 4 demonstrates that the maximum aver-

aged error of the results in comparison with the measured

data does not exceed the inherent absolute error of the

experimental data. In the simulations with eight axial

Fig. 4 Convergence behavior of the void fraction for case 3 (ES-T ESpecial technique)
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nodes, upwind differencing represents the minimum aver-

aged MAE (i.e., 0.024) between all methods and the

UMIST between the TVD schemes.

The order of the numerical schemes together with the

constitutive equations (especially the interface heat and

mass transfer correlations) determines the accuracy of the

results. All the flux limiter functions labeled with TVD,

represent a second-order accurate TVD discretization

schemes. Therefore, for the rest of this study, TVD UMIST

and upwind differencing are selected based on the CPU

time and the MAE. To evaluate the accuracy of the

numerical schemes, it is required to obtain the analytical

solution results, which are cumbersome in the complicated

two-phase problems. Because it is expected that the

numerical results converge to the analytical results by

increasing the number of nodes, an analysis is performed

for increasing number of the nodes in Case 3. The void

fraction obtained for 160 nodes is considered as the ref-

erence value. Then, a relative error corresponding to each

number node is calculated as the relative difference

between obtained the void fraction and the reference void

fraction. As seen in Fig. 5, the TVD UMIST scheme is less

dependent on the number of nodes. Furthermore, it is vis-

ible that the upwind differencing simulation results

approach the TVD UMIST results with the increase in the

number of nodes. In all number of nodes, the UMIST as a

TVD scheme results in a less relative error, which proves

its higher degree of accuracy.

Table 3 Number of iterations

and CPU(s) (case 3)
FVM scheme Number of iterations (#) CPU (s)

SIMPLE (ES-T) SIMPLE SIMPLE (ES-T) SIMPLE

Central differencing 58 61 1.30 1.86

Upwind differencing 14 35 0.29 1.34

Linear upwind differentiating 28 [ 200 0.61 –

Quick 23 50 0.50 1.79

TVD Van Leer 21 74 0.42 2.53

TVD Van Albada 21 119 0.41 4.43

TVD Min-Mod 25 [ 200 0.54 –

TVD SUPERBEE 31 [ 200 0.64 –

TVD UMIST 19 64 0.39 2.42

TVD Quick 23 [ 200 0.51 –

Table 4 Mean absolute error
FVM scheme MAE

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Average

Central differencing 0.015 0.054 0.016 0.019 0.031 0.064 0.033

Upwind differencing 0.010 0.028 0.015 0.012 0.018 0.061 0.024

Linear upwind differentiating 0.010 0.048 0.011 0.016 0.027 0.064 0.029

Quick 0.015 0.052 0.014 0.018 0.029 0.065 0.032

TVD Van Leer 0.013 0.049 0.012 0.017 0.028 0.065 0.031

TVD Van Albada 0.013 0.049 0.012 0.017 0.028 0.065 0.031

TVD Min-Mod 0.013 0.047 0.025 0.016 0.027 0.064 0.032

TVD SUPERBEE 0.015 0.053 0.013 0.019 0.030 0.065 0.033

TVD UMIST 0.013 0.049 0.012 0.016 0.027 0.065 0.030

TVD Quick 0.015 0.051 0.013 0.018 0.027 0.065 0.032

RELAP 0.025 0.030 0.027 0.024 0.026 0.077 0.035

Fig. 5 Void fraction relative error for case 3
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Based on Fig. 6, for different values of inlet subcooling,

the estimated axial void fraction distribution along the pipe

and the results obtained by the RELAP5 code are in rea-

sonable agreement with the measured data. The estimated

initial point of vapor generation predicted by the present

model is found acceptable for different inlet subcooling,

compared to the RELAP5 code and the experimental data.

The small deviations are essentially due to the applied

models of heat transfer.

Case 7 is provided to evaluate the stability of model in a

wide range of flow regimes. The flow regime maps pre-

sented by Andersen et al. [26], as shown below, are used.

a� 0:3 bubbly flow

0:3\a� atran � 0:1 churn flow

atran � 0:1\a� atran transition regio

atran\a� 1:0 dispersed annular flow

8
>><

>>:
; ð32Þ

atran ¼ 1þ
4qg
ql

� �
1

C0

� �
�
4qg
ql

; ð33Þ

C0 ¼ CBðCB � 1Þ
ffiffiffiffiffi
qg
ql

r
; ð34Þ

CB ¼ 1:393� 0:015 logðReÞ: ð35Þ

Figure 7 demonstrates the stability of the present model

in a wide range of flow regimes. It should be mentioned

that based on the present study, all discretization methods

are stable except the central differencing scheme, which

shows oscillatory instability when a transition between

flow regimes occurs.

3.3 Transient

The accurate prediction of the transient behavior of void

fraction through a two-phase system is very important for

safety analysis. To analyze the accuracy of the results

during a typical transient, it was assumed that the heat flux

increases to 440 kW/m2 for case 3 and 380 kW/m2 for

cases 4 and 5 in the duration of 1000 s. In another test case,

it was assumed that the mass flux decreases from 2500 to

Fig. 6 Comparison of the

present results with the

experimental data and RELAP5

code
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998 kg/m2 s for case 3 and from 2500 to 900 kg/m2 s for

cases 4 and 5 in the duration of 1000 s. Among the four

primary variables in the two-phase flow analysis, the void

fraction is the most important parameter with dominant

effect on other parameters and consequences of the two-

phase transient. The value of the void fraction determines

important feedbacks in nuclear reactors and is of great

importance in the prediction of critical heat flux in the

pressurized water reactors and critical power ratio in

boiling water reactors. Figure 8 shows the void fraction

variation at the pipe outlet during the heat flux and the

mass flux transient in a vertical boiling channel. As seen in

the figure, the results obtained by present model are in a

good agreement with the RELAP5 results for the transient

simulations in boiling channel, with both following the

same trend. By increasing the heat flux, the liquid tem-

perature increases, and first bubbles grow on the nucleation

sites of the heated wall at an elevation corresponding to the

onset of the nucleate boiling. The present model and the

RELAP5 code predict very similar values for the onset of

boiling. A consistent trend is observed in the case of

decreasing mass flux, where reducing mass flux leads to the

increase in temperature and commencement of nucleation

boiling. The number of bubbles increases until the bubbly

flow is developed in the flow path where randomly dis-

tributed small bubbles travel at different velocities. It can

be seen from Fig. 8 that when the transient continues, the

void fraction increases beyond the value of 0.3, after which

the churn flow is expected. The churn flow is developed

when the number of bubble increases, the bubbles coalesce,

and similar sized stable bubbles are formed.

Since the present model solves the drift-flux equations

by a fully implicit method, it is expected that the time step

is not restricted by the Courant–Friedrich–Levy limit. To

investigate this, it is assumed that in case 3, the power

increases to 440 kW/m2 from 400 kW/m2 in 10 s. The exit

void fraction versus the time step is shown in Fig. 9 to

compare the two methods—the present model as a fully

implicit method, and the semi-implicit method imple-

mented in the RELAP code. The Courant–Friedrich–Levy

limit is also presented in Fig. 9. Based on the two graphs,

the following results can be achieved:

• By changing the time step, it can be seen that the

uncertainty of the void fraction obtained by the present

model (fully implicit method) is in the order of 1.0e-5,

while this amount for the semi-implicit method used in

the RELAP code is in the order of 1.0e-3. It means the

results are less dependent on the chosen time step in the

present model.

• In the present model, the time step is not restricted by

the Courant–Friedrich–Levy limit, while the time step

in the semi-implicit method used in the RELAP code is

limited to maintain the stability. The benefits of a fully

implicit method in comparison with the semi-implicit

method are that the time step can be selected large

enough according to the type of the transient.

• The obtained trend for the void fraction at the last node

and the last time step in the present model is a definite

trend, making it is possible to easily fit a second-degree

function on it, while the trend is not uniform in the case

of the semi-implicit method implemented in the

RELAP5 code.

To evaluate the stability of the present model when a

small time step is required, a typical fast power transient is

hypothesized to occur in case 7. The power variation is

shown in Fig. 10a. A small time step equal to 0.06 s is

considered for this simulation. The obtained void fraction

is shown in Fig. 10b. An expected peak on the calculated

void fraction as a result of the peak in the power is pre-

dicted well by the present model. This peak appears in the

transient regime, which is obtained based on a weighted

summation of the void fraction calculated by the consti-

tutive equations corresponding to the annular flow and

churn flow. It can be concluded that the present model is

able to simulate the transients covering a wide range of

flow regimes using a small time step.

4 Conclusion

This paper presents a new robust and accurate model for

simulation of a two-phase flow in a vertical channel using

the SIMPLE algorithm. A number of TVD schemes,

namely the Van Leer, Van Albada, SUPERBEE, UMIST,

and Quick schemes, in addition to the central differencing,

upwind differencing, Linear upwind differentiating, and

Quick schemes were implemented on staggered grids. The

DFM field equations were discretized by a fully implicit

method and a system of nonlinear equations was obtained.

Using the SIMPLE algorithm, nonlinear equations were

Fig. 7 Results for different flow regime (Case 7)
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linearized and solved. As the construction of the Jacobian

matrix is not required for linearization in the present

model, the associated difficulties are not raised here. Fur-

thermore, the convergence of the results, contrary to what

is expected in the case of Newton’s method, does not

depends on the good initial guess. According to the results,

the advantage of the present model over the semi-implicit

method is that the time step is not restricted by the CFL

limit. Therefore, considerably large time step can be

selected according to the transient time scale. The obtained

results are in good agreement with the experimental data

for a wide range of conditions. Among the different finite

volume methods, the upwind differencing is the most

robust and fast method with minimum MAE. The TVD

Fig. 8 Comparison of void

fraction versus time with the

RELAP5 code

Fig. 9 Exit void fraction versus

time step, a Present model,

b RELAP
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schemes are more accurate, and among them, the UMIST

method can be considered as the optimal scheme based on

the convergence rate, CPU time, and MAE.
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