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Abstract Scheduled maintenance and condition-based

online monitoring are among the focal points of recent

research to enhance nuclear plant safety. One of the most

effective ways to monitor plant conditions is by imple-

menting a full-scope, plant-wide fault diagnostic system.

However, most of the proposed diagnostic techniques are

perceived as unreliable by operators because they lack an

explanation module, their implementation is complex, and

their decision/inference path is unclear. Graphical formal-

ism has been considered for fault diagnosis because of its

clear decision and inference modules, and its ability to

display the complex causal relationships between plant

variables and reveal the propagation path used for fault

localization in complex systems. However, in a graph-

based approach, decision-making is slow because of rule

explosion. In this paper, we present an enhanced signed

directed graph that utilizes qualitative trend evaluation and

a granular computing algorithm to improve the decision

speed and increase the resolution of the graphical method.

We integrate the attribute reduction capability of granular

computing with the causal/fault propagation reasoning

capability of the signed directed graph and comprehensive

rules in a decision table to diagnose faults in a nuclear

power plant. Qualitative trend analysis is used to solve the

problems of fault diagnostic threshold selection and signed

directed graph node state determination. The similarity

reasoning and detection ability of the granular computing

algorithm ensure a compact decision table and improve the

decision result. The performance of the proposed enhanced

system was evaluated on selected faults of the Chinese

Fuqing 2 nuclear reactor. The proposed method offers

improved diagnostic speed and efficient data processing. In

addition, the result shows a considerable reduction in false

positives, indicating that the method provides a reliable

diagnostic system to support further intervention by

operators.

Keywords Nuclear power plants � Fault diagnosis � Signed
directed graph � Decision table � Granular computing

1 Introduction

As a result of the recent increase in energy demand and

degradation of the natural environment by fossil fuel use,

nuclear energy has attracted increasing attention as one of

the most important sources of clean energy. However, the

nuclear power plant (NPP) is a complex system. Its

equipment and structures are complex and expensive, and
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the potential for radiological hazard is always present.

Leakage of radioactive material from a nuclear plant could

have disastrous consequences for both humans and the

environment. Human error in plant operation has been

found to be a major factor in nuclear plant accident prop-

agation. For instance, Japan’s Fukushima NPP accident of

2011 was partly a result of the slow response of the

operators because they could not properly predict the fault

propagation path and locate the source of the fault on time

[1]. Consequently, the issue of safety has a significant

effect on rapid and efficient development of the nuclear

power industry. In order to ensure safe and stable operation

of NPPs, it is necessary to monitor the condition of NPP

systems. When anomalies are discovered, fault diagnosis

should be conducted as soon as possible to assist the

operators in understanding the event and taking effective

and timely measures to avoid serious consequences.

An effective fault diagnostic system can detect the cause

of a problem quickly and accurately when exceptions occur

in NPPs, giving the operator sufficient time to take the

appropriate safety measures to ensure the safety of the

NPP. Beyond the diagnostic speed, an effective diagnostic

system should provide a clear and transparent decision

visualization so as to increase the trustworthiness and

reliability of the system. Many fault diagnosis method-

ologies have been proposed in the literature, ranging from

the model-based approach [2, 3] to data-driven methods

[4–6] and process-history-based methods [7]. However,

precise physics models are hard to establish; further, data-

driven models rely strongly on the quality of training data,

and obtaining real system data that represent most fault

events is difficult. Unlike conventional quantitative-based

or data-driven approaches, the signed direct graph (SDG)

model uses a comprehensive graphical formalism for fault

diagnosis, does not require a precise mathematical

description or complete operational data, and can be

developed from partial information of the state equations or

the operator’s experience [3]. In addition, the SDG reveals

the latent dangers and propagation rules in a simple and

effective way, an essential requirement for fault diagnosis

in NPPs. The SDG has been applied to diagnose faults in

nuclear plant components [8, 9] and in a multi-energy

thermo-fluid system [10]; further, the homomorphism and

computational complexity problems of the SDG have been

investigated [11]. An SDG model was also integrated into a

fuzzy inference and multivariate system to analyze the root

cause of faults in the Tennessee Eastman process [12].

However, the traditional SDG method of fault diagnosis

requires a comprehensive search and inference system,

especially when the search object is a complex SDG

model. This makes the computation very large, resulting in

poor real-time performance.

Moreover, in most complex engineering applications, a

single diagnostic technique cannot effectively solve the

problem of fault diagnosis. Hence, improving the fault

diagnosis method by building hybrid systems has been the

subject of a number of research works [5–8]. The granular

computing (GrC) algorithm is a classical technique for

evaluating fuzzy set problems on the basis of heuristic

knowledge synthesis and attribute reduction [13]. GrC

capability has been used to analyze the fuzziness of attri-

butes in object sets and subsets [13]. It has also been used

for automatic rule extraction and data processing on large

datasets [14], to solve least-squares problems in quantum

theory [15], and in rough set approximation [16]. Further,

the attribute reduction capability has been compared with

that of other algorithms [17].

Considering the complexity of the nuclear plant system,

it may take a long time for conventional SDG models to

calculate the relationships between many adjacent nodes

and determine the fault type. In this study, we solved the

time delay problem by integrating a decision table into the

SDG fault diagnosis model to rapidly obtain the fault

propagation path and to avoid the repeated search and

inference common to conventional SDG models. In order

to reduce the complexity of the decision table and further

enhance the diagnostic process, the GrC algorithm was

introduced. We utilized the attribute reduction capability of

the GrC-based algorithm to remove redundant attributes,

reduce the size and complexity of the knowledge base, and

improve the efficiency of data processing. Moreover, the

qualitative trend analysis (QTA) and threshold methods are

used for condition monitoring. First, the GrC-SDG model

uses diagnostic rule matching and similarity computing to

find the fault pattern; this method takes less time than the

conventional SDG method. Second, if rule matching fails,

the more reliable SDG model with the threshold and QTA

methods finds the fault pattern and shows the fault propa-

gation path. Hence, the final GrC-SDG model combines the

speed of the GrC algorithm and the intuitiveness of the

SDG method. The integrated method results in an enhanced

fault diagnosis system, which is subsequently applied for

condition monitoring, fault diagnosis, and fault propaga-

tion analysis in a nuclear plant, resulting in significant

improvement over the traditional SDG model.

The paper is organized as follows: Sect. 2 briefly

describes the theory of the GrC-SDG method of condition

monitoring. Sections 3 and 4 present the diagnostic rules

and theory of GrC, respectively. Section 5 focuses on the

implementation of the proposed method. In Sect. 6, we

describe the experiments and results. Section 7 presents

concluding remarks.
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2 Theory of GrC-SDG for condition monitoring

Our SDG model relies on two basic techniques to inte-

grate qualitative process knowledge for condition moni-

toring. The techniques are the threshold method and QTA.

These techniques serve as the backbone of the SDG and

enhance its ability to display the main connectivity in

describing system faults and dependencies. A brief

description of the threshold and QTA methods and their

application is given below.

2.1 Threshold method

The condition monitoring system monitors the real-time

data from relevant nodes of the equipment, analyzes and

verifies the operating status of the equipment, and ensures

the safe and reliable operation of the equipment. The state

of each node in the SDG is determined by setting the upper

and lower limits. When the threshold exceeds the upper

limit, the node state is positive, and it is represented by

? 1. When the threshold is below the lower limit, the node

state is negative and is expressed as - 1, whereas when it

is between the upper and lower limits, the node state is

normal, and it is expressed as 0.

The implementation of this method is clear. However,

considering the transient states of an operating nuclear

plant, the upper and lower limit values rely on expert

judgment based on sound heuristic and empirical justifi-

cation. Justification is necessary because if the selected

range is inaccurate, the system is prone to a high false

alarm rate.

2.2 Qualitative trend analysis method

The QTA method is used to analyze the trend charac-

teristics of the variables from a large set of data so as to

determine the state and development rate of the system.

QTA can be used to monitor the state and obtain the trend

of variables. Trend monitoring is required to fit the data in

time so as to determine the trend of the variables.

The most commonly used method of data fitting is the

least-squares method [4]. Assume that n data are collected

in a certain period of time and are represented by the set

(x1, y1), (x2, y2), …, (xn, yn), where yn represents the value

of the variable collected at time xn. Then, the sample

regression model is expressed as [4]

ŷi ¼ b̂0 þ b̂1xi; ð1Þ

where b̂1 is the deviation in the parameter trend, and b̂0 is
the constant in the parameter trend.

Then, the sampling error is expressed as

ei ¼ yi � ŷi ¼ yi � b̂0 � b̂1xi; ð2Þ

where ei is the error in the sample (xi, yi).

Further, the square loss function is given by

Q ¼
Xn

i¼1

e2i ¼
Xn

i¼1

ðyi � b̂0 � b̂1xiÞ2: ð3Þ

The data are better fitted when Q is calculated hourly; b̂1
reflects the trend of the variable.

Setting the partial derivative of Eq. (3) to 0 gives

oQ

ob̂1
¼ 2

Xn

i¼1

ðyi � b̂0 � b̂1xiÞð�xiÞ ¼ 0: ð4Þ

Then,

b̂1 ¼
n
Pn

i¼1 xiyi �
Pn

i¼1 xi
Pn

i¼1 yi

n
Pn

i¼1 x
2
i �

Pn
i¼1 ðxiÞ

2
: ð5Þ

When b̂1 is above the upper limit of the trend threshold,

the variable has an increasing trend. By contrast, when b̂1
is below the lower limit of the trend threshold, the variation

trend of the variable is considered to have decreased. If it

stays within the limit, the variable is considered to be

stable, and the plant is considered to be in a steady state.

We leveraged the relative strengths of the two moni-

toring methods, the threshold and QTA methods, to

implement state monitoring of an NPP to obtain alarm

signals. The actual implementation is as follows. Each

component is represented by a node, and the confirmation

threshold and sensitivity threshold are used to determine

the current variable state of a particular node. When the

value of the variable is within the sensitivity threshold, the

node is in the steady state. When the value of the variable

exceeds the confirmation threshold, the state of the node is

determined to be abnormal at that time. If the parameter

value is between the sensitivity threshold and the confir-

mation threshold, the node status cannot be determined. In

this case, we use the QTA method to extract the trend

changes for further evaluation.

When the value of the variable remains between the

sensitivity threshold and the confirmation threshold for 4 s,

the data generated in these 4 s are linearly fitted by the

least-squares method to obtain the trend segment. Then, the

fitted trend is compared with the variable trend obtainable

during normal operation. If there is a match, the node is

considered normal. Otherwise, the state of this node is

considered to be abnormal. Figure 1 shows the sensitivity

and confirmation thresholds. The mathematical expression

of the node state estimation function is given as
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wðvjÞ ¼

�1; if xvj\xvjl

�1; if xvjl � xvj\xvjm; b1
^
\0

0; if xvjl � xvj\xvjlm; b1
^

� 0

0; if xvjlm � xvj\xvjhm

0; if xvjhm\xvj � xvjh; b1
^

� 0

þ1; if xvjhm\xvj � xvjh; b1
^

[ 0

þ1; if xvj [ xvjh

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð6Þ

where h is the highest value of the positive confirmation

threshold, l is the lowest value of the negative confirmation

threshold, and m is a mid-range value that signifies the

sensitivity thresholds of the selected xvj value. In this paper,

we discuss single faults, where most of the variable chan-

ges are linear, although those of a small number of vari-

ables are nonlinear; hence, the nonlinear variables do not

affect the positive or negative value of b̂1 calculated by the

least-squares method. The threshold and QTA methods

determine whether the node is abnormal using the positive

or negative value of b̂1, enabling application of the QTA

technique to NPP condition monitoring.

3 Integration of SDG with diagnostic rules

3.1 SDG model

SDG is a signed, directed acyclic graphical formalism

applied to qualitative fault diagnosis.

Its major advantages are its graphical nature and causal

reasoning ability. The main components are networked

causal nodes and signed arcs linking the nodes for easy

analysis. Mathematically, it is defined as follows [18]:

G ¼ V;E;u;wð Þ; ð7Þ

where V ¼ vif g is the node set, which represents the

variables from which the fault root cause is extracted; E ¼
emf g is the branch set, which represents the interaction

between different nodes; and u ekð Þ ek 2 Eð Þ is the sign on

branch ek, where a positive impact is represented by a plus

sign, and a negative impact is represented by a minus sign.

w vj
� �

vj 2 V
� �

defines the sign of node vj, which represents

the status of the node: w:V ! þ; 0;�f g.
The node state value of each conventional SDG model is

determined according to the upper and lower limits of the

respective variable state, as expressed in Eq. (8):

w vj
� �

¼
�1; if xvj\xvjl
0; if xvjl � xvj\xvjh
þ1; if xvj � xvjh

8
<

: ; ð8Þ

where xvj represents the actual value of the variable node,

and xvjl and xvjh are the lower and upper limits of the

corresponding variable, respectively. Only two thresholds

are used to determine the node state in this method. When

the thresholds are too broad, this method cannot detect

abnormal states in time. When the thresholds are too nar-

row, this method may cause a false alarm. To make sure the

node state is correct, we use Eq. (6) with more thresholds

to determine the SDG node state.

If the product of the contiguous node states w við Þ and

w vj
� �

is the same as the branch symbol u eij
� �

between

node i and node j, that is, if the product of these three is?1,

then the path i� eij � j is defined as a consistent path.

3.2 SDG diagnostic rules

For every fault node added to a traditional SDG model,

the computational complexity of the search tends to

increase geometrically, resulting in a combinatorial

explosion [7]. Consequently, we propose an SDG fault

sensitivity threshold -

confirmation threshold +

confirmation threshold -

sensitivity threshold +

Fig. 1 Sensitivity and

confirmation thresholds
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diagnosis method that utilizes diagnostic rules. The diag-

nostic process involves extracting diagnostic rules from

prior successful diagnosis cases, generating decision tables,

and storing the tables in the diagnostic rule base. When the

system is diagnosed in real time, and a residual is generated

in a node, the state of the collected nodes is matched

concurrently with the diagnostic rules in the decision table.

If there is a successful match, the diagnosis result corre-

sponding to the residual is displayed. Otherwise, the SDG

method based on bidirectional reasoning is activated to

diagnose the fault and output the result. In bidirectional

reasoning, a complete search is performed with inverse

correlation with the abnormal node, and all possible fault

sources that induced the abnormality are obtained. Then,

starting from these fault sources, forward reasoning is

performed in turn, and incorrect fault sources are removed.

Finally, the correct fault and propagation paths are

obtained [8]. Subsequently, the new diagnostic rules are

extracted and added to the previous decision table to form a

new decision table and update the diagnostic rule base.

4 Granular computing

4.1 Basic concepts

In current research on intelligent systems, the GrC

method is used to simulate human thinking and solve

complex problems [19]. Its key concept is the distillation of

complex problems into a number of simple granular

problems according to expert knowledge or experience and

solving each of them independently. Then, the correlation

between each pair of granulated, solved problems is

determined to analyze and solve the larger problem. This

method improves the solution of complex problems. The

main theories used to analyze and solve problems at dif-

ferent granularities are rough set theory, word calculation

theory, and quotient space theory [3, 19]. Of the three

theoretical models, empirical evaluation has shown the

superiority of rough set theory [19], which is selected in

our work.

Rough set theory is a tool for dealing with the lower and

upper approximations of imprecise information or indefi-

nite knowledge. Assuming the decision-making condition

is not changed, an attribute reduction algorithm is used to

eliminate redundant attributes or features, and the simplest

decision rules of the problem are obtained. Mathematically,

the decision table S is defined as follows [19]:

S ¼ ðU;A;V; f Þ; ð9Þ

where U is the decision domain, which is expressed as

U ¼ fx1; . . .xk; . . .xlg; A is the decision attribute set, which

is expressed as A ¼ C [ D; C is the condition attribute set;

and D is the decision attribute set. V represents the set of

attribute values, and f represents an information function

that can give the attribute value of each object in the

decision domain. For an arbitrary attribute subset P 2 A,

the decision domain U divided by the knowledge P is

expressed as

U=INDðPÞ ¼ fX1;X2;X3; . . .;Xng; ; ð10Þ

where Xn is a granular with knowledge P, and n is the

cardinality of U=INDðPÞ. If an indistinguishable relation-

ship can be determined by P, then P can be expressed as

INDðPÞ.
A bit vector of length l is used to represents Xn, where l

is the cardinality of U. The ith bit of the vector is 1 if

xi 2 Xn; otherwise, it is 0. For example, U=a ¼
ffx1; x4g; fx2; x3gg can be expressed as

U=a ¼ f1001; 0110g, where l equals 4.

The formula for the knowledge granularity GDðPÞ is

GDðPÞ ¼
Xn

i¼1

Xij j2

Uj j2
¼ 1

l2

Xn

i¼1

Xl

k¼1

aik

 !2

; ð11Þ

where aik represents the kth bit in bit vector Xi, and GDðPÞ
represents the distinguishing ability of the knowledge P on

decision domain U.

The relative granularity of knowledge Q about knowl-

edge P can be defined as follows:

GDðPjQÞ ¼ GDðQÞ � GDðP [ QÞ; ð12Þ

where GDðPjQÞ represents the distinguishing ability of

knowledge P relative to knowledge Q on decision domain

U.

The importance of attribute a of R relative to D is

sigða;R;DÞ ¼ GDðDjRÞ � GDðDjR [ aÞ; ð13Þ

where a belongs to the condition attribute set C.

In essence, Eq. (13) calculates the difference between

the relative granularity before and after attribute a is added

to R. For greater values of sigða;R;DÞ, attribute a is more

important.

4.2 Knowledge reduction

A common deficiency of a decision table is that some of

the node information in the table is redundant. Hence,

attribute reduction is necessary to further improve the

diagnostic speed and reduce the computational space. The

goal of attribute reduction is to ensure that the sensitivity of

the attribute set to the universe is unchanged after reduc-

tion, and every element in the attribute set is also necessary

[20]. Implementing an attribute reduction algorithm based

on GrC would improve the quality of a decision by

removing redundant attributes, resulting in a compact
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decision table, a smaller and less complex knowledge base,

and more efficient data processing. We integrate the attri-

bute reduction capability of the GrC algorithm with a rule-

based SDG model. The integration results in significant

improvement in the diagnostic speed and saves computing

resources.

The specific steps involved in utilizing the relative

granularity attribute reduction algorithm to reduce the

decision table are as follows:

(1) Merge the same rules in the decision table and set the

reduction result RED ¼ u;
(2) Calculate

sigðci;RED;DÞ ¼ GDðDjREDÞ � GDðDjRED [ ciÞ,
ci 2 CnRED;

(3) Select the attribute ci corresponding to the maximum

value as ck. If there are multiple attributes that satisfy

the condition, select the first attribute as ck;

(4) If sigðck;RED;DÞ[ 0, and RED ¼ RED [ ck, go to

step (2) to continue the cycle calculation. Otherwise,

end the cycle and output RED.

The attribute reduction process of the algorithm is

shown in Fig. 2, and a flowchart of the diagnosis process is

shown in Fig. 3. As Fig. 3 shows, this study uses the

similarity determined by the GrC-based algorithm to

ensure the correctness of the decision results. The simi-

larity p between the decision granular G ¼ ðu;mðuÞÞ and

Output reduction results

Begin

End

Y

N

Input decision table

Merge the same rules, order

Calculate ,

Select corresponding to the maximum value of as

Fig. 2 Flowchart of the

reduction algorithm

Successful match?

Condition monitoring 
based on threshold & QTA

Diagnostic results identified!

Y

SDG based on 
bidirectional reasoning

N

Begin

END

Export results and 
propagation chains

Decision table

Diagnostic rule matching

Successful cases

Reduced decision 
table

Reduction

Computing similarity p

p>p0 ?
N

Y

Fig. 3 Flowchart of SDG based on GrC-SDG
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the condition granular G0 ¼ ðu0;mðu0ÞÞ can be expressed

as

p ¼ cardðG0 � GÞ=cardðGÞ ðG 6¼ UÞ; ð14Þ

where card represents the number of element in granular G

or G0, and � represents the and operation between two

binary granular structures.

To calculate the binary granular of each attribute, we

need the time complexity of Oð Uj jÞ. Under the worst

condition, the entire GrC attribute reduction method

requires a time complexity of Uj j � Cj j þ Uj j � ð Cj j �
1Þ þ � � � þ Uj j ¼ ð Cj j þ 1Þ � Cj j � Uj j=2 . Thus, the total

time complexity of the method is Oð Cj j2 Uj jÞ. Moreover, it

is much faster than the heuristic attribute reduction algo-

rithm given in the literature, an instance of which is found

in [20] with a time complexity of Oð Cj j2 Uj j2Þ.

4.3 Fault diagnosis system

The process design of this system is shown in Fig. 4.

The operating variables of the NPP are monitored in real

time. The values of the important operating variables are

displayed in the human–machine interface, and condition

monitoring is carried out by the threshold and QTA

methods. When an alarm signal appears, the instantaneous

signal is immediately matched with the reduced decision

table and verified by similarity reasoning. If there is a

successful match, the fault type and fault propagation path

are output. Otherwise, the SDG model is activated for

bidirectional reasoning; then, the fault type and fault

propagation path are obtained.

5 Demonstration of GrC-SDG model for NPP
fault diagnosis

5.1 Establishment of SDG model

To demonstrate the implementation of the proposed

GrC-SDG model in a form suitable for diagnosing actual

faults in a real plant, we considered the Fuqing NPP, Unit

2, and selected seven typical faults for case study and

analysis. These faults are small break loss-of-coolant

accident (LOCA), steam generator tube rupture (SGTR),

main steam line break (MSLB), inadvertent withdrawal of

control rod (Withdrawal), inadvertent insertion of control

rod (Insertion), and loss-of-feed water (LOFW). For the

MSLB event, two scenarios are considered: an in-con-

tainment break and another break outside the containment.

We simulated this fault using the Personal Computer

Transient Analyzer (PCTRAN) software. PCTRAN is used

to simulate a variety of accident and transient conditions

for NPPs; it displays the status of important variables and

allows simulation of operator actions by interactive control

[21]. Here, the initial conditions in PCTRAN are selected

using operation data from the Fuqing 2 NPP to simulate the

operating condition of Fuqing 2 NPP. The Fuqing 2 NPP is

one of the CPR-1000 pressurized water reactors (PWRs)

selected for the first four units of the Fuqing nuclear plant.

The Chinese-developed CPR-1000 is an improvement on

the Areva-designed PWRs at the Daya Bay Nuclear Power

Plant. This CPR-1000 has design net capacities of 1000

MWe and 2905 MWt and has been commercially operated

by China’s CNNC Fujian Fuqing Nuclear Power Co., Ltd.,

since 2015.

Reduction

Human-machine interface

Nuclear
power
plant

Condition
monitoring

Alarm
triggered

SDG
model

Reduced
decision table

Diagnostic
rule

matching

Bidirectional
reasoning

Decision
table

Similarity
verification

Fault
details

Updated

Fig. 4 Flowchart of the fault

diagnosis system for NPP
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The GrC algorithm with the SDG model is integrated

with C# programming language to form a usable human–

machine interface (as shown in Fig. 7), and the data from

the fault simulations on PCTRAN are utilized as inputs for

the hybrid model. Quantitative analysis is performed

according to the selected fault types, and 32 relevant

variables are selected, as shown in Table 1. The SDG

model of the NPP is presented in Fig. 5; the solid lines

indicate a positive impact between adjacent nodes, where

the nodes change in the same direction. The dashed lines

represent negative impacts, where adjacent nodes change in

opposite directions.

5.2 Decision table reduction

To improve the computation and diagnostic efficiency,

we establish the diagnostic rules and generate decision

tables according to prior fault cases in the Fuqing 2 NPP, in

combination with the SDG model. When the same type of

fault occurs again, the diagnostic results can be obtained

according to the matching degree of the diagnostic rules.

Using the instances of successful fault diagnosis, the 32

node variables related to the SDG model are taken as the

condition attributes to generate the decision table for the

NPP fault diagnosis. This decision table results in a large

number of diagnostic rules. Table 2 displays a section of

the decision table.

In Table 2, there are a large number of redundant

attributes in the decision table, and the number of diag-

nostic rules varies. The attribute explosion affects the rule

matching and diagnostic speed. Hence, we reduce the

attributes while retaining the fault diagnosis reliability

using the attribute reduction capability of the GrC algo-

rithm. The relative granularity attribute reduction algo-

rithm is used for the calculation in the program, and the

final reduced results are shown in Table 3.

Table 3 shows that the number of node variables

required by rule matching has been reduced from 32 to 4,

and the number of rules has been reduced from 80 to 14,

which significantly simplifies the decision tables and

improves the matching speed of the diagnostic rules.

Figure 6 shows the decision table update interface. As

described in Sect. 3.2, when rule matching fails, SDG

bidirectional reasoning is activated. After diagnosis, the

new diagnostic rules are recorded in the manual, and

decision table reduction is executed again to update the

diagnostic rules.

6 Results and discussion

6.1 Steam generator tube rupture (SGTR)

For the simulated rupture in a Fuqing 2 steam generator

tube, a heat transfer tube was simulated in steady-state full-

power operation. We inserted the rupture and observed the

rate of deviations of the variables. At 1 s after fault

insertion, deviations were observed in 8 variables. In the

following 3 s, the number of deviating variables increased

to 17. The propagation path of the fault was refined, and the

display of the condition monitoring and diagnosis system is

shown in Fig. 7. The variables in the human–machine

interface are shown in Table 1. Rule matching is performed

according to Table 3. As shown in Fig. 8, the attribute

values of WLSGC, PRB, CFL1, and SFSGA in this test

result are 0, 0, - 1, and 1, which match the seventh rule of

Table 1 Variable nodes of the SDG model of NPP

ID Node label Node name Units

1 PL1 Pressure of loop 1 Pa

2 PL2 Pressure of loop 2 Pa

3 PL3 Pressure of loop 3 Pa

4 CFL1 Coolant flow of loop 1 kg/s

5 CFL2 Coolant flow of loop 2 kg/s

6 CFL3 Coolant flow of loop 3 kg/s

7 TCL1 Temperature of cold leg 1 �C
8 TCL2 Temperature of cold leg 2 �C
9 TCL3 Temperature of cold leg 3 �C
10 THL1 Temperature of hot leg 1 �C
11 THL2 Temperature of hot leg 2 �C
12 THL3 Temperature of hot leg 3 �C
13 SPSGA Steam pressure of SG A Pa

14 SPSGB Steam pressure of SG B Pa

15 SPSGC Steam pressure of SG C Pa

16 WLSGA Water level of SG A m

17 WLSGB Water level of SG B m

18 WLSGC Water level of SG C m

19 FFSGA Feedwater flow of SG A kg/s

20 FFSGB Feedwater flow of SG B kg/s

21 FFSGC Feedwater flow of SG C kg/s

22 SFSGA Steam flow of SG A kg/s

23 SFSGB Steam flow of SG B kg/s

24 SFSGC Steam flow of SG C kg/s

25 PP Pressurizer pressure Pa

26 PWL Pressurizer water level m

27 PRB Pressure of reactor building MPa

28 TRB Temperature of reactor building �C
29 RRB Radioactivity of reactor building C/kg

30 WLRB Water level of reactor building m

31 NP Nuclear power KW

32 EP Electric power MW
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the decision table after reduction. The initial diagnosis is an

SGTR fault. In order to verify the credibility of the

matching results, the test results are matched with the

SGTR fault in Table 2. The matching rates of the two

diagnostic rules with an SGTR are calculated to be 1 and

0.97, respectively, and the maximum value is greater than

the threshold of 0.8, so the fault type is determined to be

SGTR.

Figure 8 shows the fault (SGTR) propagation path and

the forward reasoning of the SDG model. The fault prop-

agation and analysis are as follows:

(1) SGTR ? Coolant flow of loop 1

(2) SGTR ? Pressure of loop 1 ? Pressurizer pressure

? Pressurizer water level

(3) SGTR ? Pressure of loop 2 ? Pressurizer pressure

? Pressurizer water level

(4) SGTR ? Pressure of loop 3 ? Pressurizer pressure

? Pressurizer water level

(5) SGTR ? Water level of SG A

(6) SGTR ? Steam pressure of SG A ? Steam flow of

SG A

(7) SGTR ? Steam pressure of SG B

(8) SGTR ? Steam pressure of SG C

6.2 Control rod insertion

The inadvertent control rod insertion fault—indicated as

Insertion on the graph in Fig. 5—is simulated after the

simulator has been running in steady-state full-power

operation for 50 s. The result of the test is shown in Fig. 9.

One second after fault insertion, three variables deviated

from the steady state. In 5 s, the number of deviating

variables increased to 13, the fault type was located, and

the propagation path of the fault was obtained.

To further confirm the reliability of the diagnostic sys-

tem, we compare the result of the system with an expert’s

heuristic analysis. The obtained results are in agreement

Table 3 GrC-reduced decision table

ID C D

WLSGC PRB CFL1 SFSGA

1 0 1 - 1 0 11

2 0 1 - 1 1 11

3 1 1 0 1 12

4 1 1 1 1 12

5 1 0 0 1 13

6 1 0 1 1 13

7 0 0 - 1 1 14

8 1 0 - 1 1 14

9 - 1 0 0 - 1 15

10 - 1 0 - 1 - 1 15

11 0 0 0 0 16

12 0 0 0 - 1 16

13 1 0 0 - 1 16

14 1 0 1 - 1 16

Fig. 6 Decision table display and update interface
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with the expert’s heuristic diagnosis of the simulated fault.

When the control rod is accidentally inserted, negative

reactivity is introduced, resulting in a reduction in nuclear

power. The temperatures of the cold legs and hot legs

decrease, the heat transfer capacity of the SG decreases,

and the steam pressure of the SG drops, which results in a

decrease in the steam flow in the SG.

Figure 10 shows the fault propagation path for insertion

and the forward reasoning of the SDG model. The fault

propagation and analysis are as follows:

Insertion ? Nuclear power ? Steam pressure of SG A

? Steam flow of SG A

Insertion ? Nuclear power ? Steam pressure of SG B

? Steam flow of SG B

Insertion ? Nuclear power ? Steam pressure of SG C

? Steam flow of SG C

Insertion? Nuclear power? Temperature of cold leg 1

Insertion? Nuclear power? Temperature of cold leg 2

Insertion ?Nuclear power ? Temperature of cold leg 3

Insertion ? Nuclear power ? Temperature of hot leg 1

Fig. 7 Results of state monitoring and fault diagnosis of SGTR

Fig. 8 Result of SDG path reasoning for SGTR
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Insertion ? Nuclear power ? Temperature of hot leg 2

Insertion ? Nuclear power ? Temperature of hot leg 3

Insertion ? Electric power

7 Conclusion

In this study, we presented a rule-based GrC-SDG

method for nuclear plant fault diagnosis. Plant condition

monitoring is performed using a combination of the

threshold method and QTA. Fault is detected when a

measured variable deviates from a predetermined

Fig. 9 Result of state monitoring and fault diagnosis for control rod insertion

Fig. 10 Result of SDG path reasoning for insertion
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threshold. The fault is localized and isolated using the

causal graph output from the SDG and the decision table.

To simplify the decision table rules and eliminate redun-

dant variables, the attribute reduction capability of GrC is

introduced. The resulting decision table is then integrated

into the SDG fault diagnosis method to improve the diag-

nostic process and improve the diagnostic speed. The main

contribution in this study is summarized as follows:

1. We developed a multifunctional rule-based GrC-SDG

fault diagnosis system using the QTA and threshold

methods and performed functional tests on sample

faults from a simulation of the Chinese Fuqing 2

nuclear reactor.

2. The QTA and threshold condition monitoring algo-

rithm, GrC algorithm, and SDG model were integrated

into a human–machine interface using the C# pro-

gramming language.

3. The diagnostic system was evaluated using the data

obtained from simulated faults. The results showed

that the rule-based GrC-SDG method diagnosed the

faults accurately, and the SDG produced a clear and

concise causal graph devoid of redundant paths.

4. The GrC-SDG method was shown to be intuitive,

highly sensitive, and suitable for condition monitoring

and early fault diagnosis. In addition, the visual and

spatial representation of the diagnostic result enables

faster fault recognition and decision-making by the

operators.

We observed that for incipient faults where the rate of

change of certain variables is small, the monitoring system

displays a steady state. In addition, common plant tran-

sients such as a sudden spike in the measured values of

variables are also not detectable if the spike is brief, and a

false negative is generated. A modality to address these

limitations will be the focus of our future research.
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