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Abstract The discrimination of neutrons from gamma rays

in a mixed radiation field is crucial in neutron detection

tasks. Several approaches have been proposed to enhance

the performance and accuracy of neutron-gamma discrim-

ination. However, their performances are often associated

with certain factors, such as experimental requirements and

resulting mixed signals. The main purpose of this study is

to achieve fast and accurate neutron-gamma discrimination

without a priori information on the signal to be analyzed, as

well as the experimental setup. Here, a novel method is

proposed based on two concepts. The first method exploits

the power of nonnegative tensor factorization (NTF) as a

blind source separation method to extract the original

components from the mixture signals recorded at the output

of the stilbene scintillator detector. The second one is based

on the principles of support vector machine (SVM) to

identify and discriminate these components. In addition to

these two main methods, we adopted the Mexican-hat

function as a continuous wavelet transform to characterize

the components extracted using the NTF model. The

resulting scalograms are processed as colored images,

which are segmented into two distinct classes using the

Otsu thresholding method to extract the features of interest

of the neutrons and gamma-ray components from the

background noise. We subsequently used principal com-

ponent analysis to select the most significant of these fea-

tures wich are used in the training and testing datasets for

SVM. Bias-variance analysis is used to optimize the SVM

model by finding the optimal level of model complexity

with the highest possible generalization performance. In

this framework, the obtained results have verified a suit-

able bias–variance trade-off value. We achieved an oper-

ational SVM prediction model for neutron-gamma

classification with a high true-positive rate. The accuracy

and performance of the SVM based on the NTF was

evaluated and validated by comparing it to the charge

comparison method via figure of merit. The results indicate

that the proposed approach has a superior discrimination

quality (figure of merit of 2.20).

Keywords Blind source separation � Nonnegative tensor

factorization (NTF) � Support vector machines (SVM) �
Continuous wavelets transform (CWT) � Otsu thresholding

method

1 Introduction

Although organic scintillator detectors have been com-

monly used for neutron measurement systems owing to

their high efficiency, they are too sensitive to gamma rays.

Several methods have been proposed to reduce the effect of

gamma rays on the neutron detection results. Pulse shape
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discrimination (PSD) [1] is a popular method used for

neutron-gamma discrimination. Several digital and analog

PSD approaches have been proposed to perform this task,

such as the rise time [2], charge comparison (CCM) [3, 4],

zero-crossing [5, 6], pulse gradient analysis (PGA) [7], and

wavelet transform [8]. However, these methods are limited

in discriminating small difference pulses, as well as mul-

tiple pulses.

With progress in data acquisition systems, new possi-

bilities in digital pulse processing have opened up for

organic scintillator detectors [9]. Currently, machine

learning has proven to be a powerful tool in the analysis of

radiation data. Its algorithms use simple and direct methods

to learn information from a dataset without a predeter-

mined model [10]. According to a priori knowledge in the

modeling procedure, machine learning methods can be

divided into two classes: supervised machine learning

using a priori knowledge and unsupervised machine

learning without prior knowledge.

In most neutron spectroscopy applications, PSD is used

to separate neutrons from gamma rays based on the time

and energy features of the digitized pulses. However, their

effectiveness is associated with a number of elements (i.e.,

prior information) that can be divided into two categories.

First, the experimental setup, which includes the type of

scintillator detector used, experimental needs, and data

acquisition system. Second, the processing phase, which

represents the signal-to-noise ratio (SNR), and the differ-

ence between the pulses, as well as pile-up. The main

challenge in these studies involves the means to realizing

fast and accurate neutron-gamma discrimination without

any a priori information on the signal to be analyzed (i.e.,

processing phase), as well as the experimental setup.

To overcome the ineffectiveness of PSD’s performance,

other methods that combine PSD with machine learn-

ing algorithms, namely, support vector machines (SVMs),

have been proposed [11–15]. Nevertheless, the SVM

application does not follow certain paramount criteria such

as data balance, cross-validation process, and bias-variance

analysis, which provide more accuracy and credibility for

neutron-gamma discrimination.

In this study, a novel method was proposed on the basis

of machine learning to obtain fast and accurate neutron-

gamma discrimination without any a priori information on

the signal to be analyzed, as well as the experimental setup.

First, we adopted the nonnegative tensor factorization

(NTF) model as a blind source separation (BSS) technique

to extract the original components from the mixture

recorded at the output of a stilbene scintillator detector

(45 mm 9 45 mm). Second, an SVM was used to identify

and discriminate these components. However, before that,

Mexican-hat-function-based continuous wavelet transform

(CWT) was utilized as a spectral analysis to characterize

these extracted components within the time–frequency

domain. The resulting scalograms are viewed as images,

which are segmented into two distinct classes using the

Otsu thresholding method to extract the features of interest

of neutrons and gamma-ray components from the back-

ground. We subsequently used principal component anal-

ysis (PCA) to select the most significant of these features to

form the training and testing datasets for SVM classifica-

tion purposes. We employed bias-variance analysis to

optimize the SVM model by finding the optimal level of

model complexity with the highest possible generalization

performance. The achieved results have proven a suit-

able bias–variance trade-off value in this regard. We

actually achieved an operational SVM prediction model for

neutron-gamma classification with a high true-positive rate.

The performance of our proposed method was evaluated

and validated by comparing it to the CCM via the figure of

merit (FOM). With an FOM value of 2.20, the comparison

verified the superiority of the SVM-based over NTF in

terms of discrimination quality.

An overview of the present paper is presented here.

First, we discuss selected works on this framework in

Sect. 2. Then, we focus on describing the analyzed signals,

principle of the proposed method, and CCM method used

for comparative validation in Sect. 3. Next, we compre-

hensively discuss the results of the proposed method in

Sect. 4 before concluding the paper.

2 Related works

Only a few limited works have adopted PSD and SVM

in addressing the neutron-gamma discrimination challenge,

online or offline [11–14]. The results achieved by these

research works are satisfactory, with each one introducing

a specific approach to improving neutron-gamma discrim-

ination. However, their effectiveness is associated with

various factors, including the PSD requirement of a priori

information on the signal to be analyzed, choice of scin-

tillator detector, and acquisition system. Besides these

factors, SVM application does not respect some key points

such as bias-variance analysis [8–11] and cross-validation

process [10–14]. In this section, we present and discuss a

selection of these and other works.

Sanderson et al. (2012) [11] applied SVM to determine a

PSD classifier. The authors demonstrated that the SVM

method coupled with CCM enhances detection perfor-

mance and provides more precise estimates by considering

the necessity of contaminating the training data needed for

the SVM. However, the SVM solution proposed by the

authors does not meet the basic criteria for its application,

such as the cross-validation procedure, computation of

generalization performance, and bias-variance analysis.
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Yu et al. (2015) [12] proposed the SVM method in

conjunction with the moment analysis method (MAM) to

achieve neutron-gamma discrimination of pulses from an

organic liquid scintillator. They used the CCM method to

discriminate neutrons and gamma-ray pulses, which form

the training and testing datasets for the SVM. Then, MAM

was applied to create the feature vectors for each pulse in

the datasets. The authors demonstrated that the SVM

classifier coupled with MAM has exhibited a great ability

to separate the neutrons and gamma-ray pulses while pro-

viding the classification accuracy for each pulse type.

However, its performance is limited because of the

neglected data balance in the prediction phase, as well as

the evaluation of the SVM model complexity using bias-

variance analysis.

Zhang et al. (2018) [13] presented a method based on

the SVM discriminator for discriminating neutrons from

gamma-ray backgrounds and enhancing the performance of

the time-of-flight neutron detector (EJ-299-33 plastic

scintillator with PSD property). The proposed method has

been implemented in field-programmable gate arrays

(FPGAs) to detect neutrons in mixed radiation fields. The

obtained results show that real-time neutron-gamma dis-

crimination was achieved with a discrimination accuracy of

99.1%, which could be better with bias-variance analysis.

Zhang et al. (2019) [14] presented a direct method to

discriminate nuclear pulse shapes based on PCA and SVM.

The authors determined that the training and testing

accuracies of SVM classifiers are all above 94.7% provided

appropriate kernels are well selected. However, the per-

formance accuracy was less than that obtained by Zhang

et al. (2018) and Yu et al. (2015). Furthermore, the selec-

tion of the Gaussian kernel most adapted to their study was

not based on the grid search and stratified K-fold cross-

validation used to set its hyperparameters.

In our previous work [16], we introduced a novel

method that combines nonnegative matrix factorization

(NMF) with SVM to perform neutron-gamma discrimina-

tion at the output of a stilbene detector. We used the Otsu

thresholding method based on CWT to extract the main

features of neutrons and gamma-ray signals that have been

extracted by the NMF method. These features were then

fed into a nonlinear SVM classifier to perform neutron-

gamma discrimination. To achieve this, a Gaussian kernel

function was selected using grid search and stratified K-

fold cross-validation. The proposed method obtained a

good SVM prediction model with a suitable classification

rate of 99.93%.

Via the analysis of the works mentioned in this section,

we can consider that of Arahmane et al., who presented an

approach that does not require any a priori information on

the signal to be analyzed, as well as on the experimental

setup. In addition, it obeys the true working process of

SVM with an operational prediction model that has pro-

vided a better true neutron-gamma classification rate of

99.93%.

To achieve more efficiency and accuracy of this neu-

tron-gamma discrimination process, we have altered the

first block of our neutron signal processing chain, as

described in [16], which was formed by the second-order

NMF separation method. Therefore, in this study, a non-

negative parallel factor analysis model (PARAFAC),

denoted by the NTF-2 model, is used to achieve a 3D

nonnegative tensor factorization of the signals recorded at

the output of the stilbene detector. The aim of using the

NTF-2 method is based mainly on the fact that it considers

both the space and time correlations between the variables

more precisely [17], which is very important from the

perspective of data processing to optimize the performance

of the SVM model.

3 Materials and methods

In this section, we present the dataset used for the

evaluation of the proposed method, and then the principle

of this method, as well as the CCM method, which is used

later for comparative verification.

3.1 Dataset characteristics

In this study, the datasets are composed of 100 neutrons

and gamma-ray signals of 1000 samples each. Figure 1

illustrates an example of 2 consecutive stilbene scintillator

output signals. The pulses were obtained based on the

following experimental setup: Cf-252 as a mixed neutron-

gamma-emitting source and Na-22 as the gamma only

source measured through a stilbene crystal scintillator with

dimensions of 45 mm 9 45 mm, a RCA7265 photomulti-

plier tube (PMT) [18], and data acquisition system. It

Fig. 1 Example of two consecutive stilbene scintillator output signals
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should be noted that the aim of using Na-22 is to form pure

gamma-ray signal set used in the CWT processing step as a

reference to confirm the characterization task. The PMT

output is connected directly to the ACQIRIS DP210-

U1068A using single-ended impedance matching. The

ACQIRIS DP210-U1068A is the acquisition system used

to digitize the output pulses with 8-bits resolution at a

sampling rate of 1 GSamples/s. It is worth noting that the

digitizer signal quality is measured by the signal-to-quan-

tization noise ratio (SQNR), which accurately estimates the

quality of a b-bit digitizer output [19] as expressed below:

SQNR ¼ 1:76þ 6:02b: ð1Þ

This corresponds to the fact that the SQNR increases by

approximately 6 dB for every bit added to the digitizer

word length [19]. Therefore, the sampling rate chosen in

our case implies that the analyzed signals have low

amplitude. This choice allows us to prove the performance

ability of our proposed method in this constraint.

The collected data were stored in a 64-bit computer with

16 Go of RAM for offline processing according to the

processing method illustrated in Fig. 1.

3.2 Our NTF/SVM method for neutron/gamma

discrimination

3.2.1 Method overview

Figure 2 illustrates the steps of our proposed method.

We focus on the description of the NTF-2 model. Before

that, we provide a brief overview of the other tools used

because they are widely described in the literature.

• The CWT is a technique used to carry out signal

analysis when the signal frequency varies over time

[20, 21]. It is adopted to cut-up the signal using a set of

wavelet functions by shifting (time) and scaling (fre-

quency) to a mother wavelet. In our approach, we

adopted the Mexican-hat function of the CWT [20] as

the mother wavelet because the signal shape is similar

to a Gaussian distribution with a long tail on one side

[16].

• The Otsu thresholding method enables the determina-

tion of an optimal threshold value by minimizing the

within-class variance [22]. The selection of the optimal

threshold is based on the prior calculation of the gray-

level histogram of an image.

• PCA is used in image and signal processing for

dimensionality reduction and feature selection [23].

Its main goal is to determine a few linear combinations

of the principal components, in which their directions

are orthogonal to explain the variance in the data [24].

• SVM was adopted to solve a two-classification problem

by determining optimal separation hyperplanes as

linear or nonlinear classifiers with maximum margin

in a multi-dimensional space [25, 26]. The transforma-

tion of the data from the input space into a high-

dimensional space requires kernels [27]. The general-

ization performance evaluation of the SVM model is

performed via bias-variance analysis. Determining an

optimal bias-variance trade-off helps to achieve good

results on unseen datasets [28], thus avoiding deceptive

results owing to the inability of the classifier to perform

learning generalization (i.e., overfitting phenomenon)

[29].

3.2.2 NTF model

NTF (or nonnegative PARAFAC) is a model with

nonnegative factor matrices. It is a blind source separation

(BSS) method composed of an unsupervised machine

learning class used for feature extraction and dimension-

ality reduction [24]. It should be noted that the BSS method

[30, 31] is adopted in signal processing to recover a source

signal from a mixture of signals recorded by a sensor

without any information about the source signals and/or the

mixing procedure. The outputs of digital systems are

mostly multi-dimensional and discontinuous. They typi-

cally represent one or more variables at a discontinuous set

of positions in time and space, and thus are perfect for NTF

analysis [32].

We can define the standard NTF model as follows

[24, 33, 34]: A given data tensor Y 2 RI�T�K
þ is decom-

posed into a set of matrices A 2 RI�J
þ and X 2 RJ�T

þ as a

Fig. 2 Flowchart of proposed

neutron-gamma discrimination

process
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mixing matrix and matrix representing sources (or hidden

components), respectively, which can be represented in a

slice factorization form [24] as:

Yk ¼ ADkX þ Ek; ðk ¼ 1; 2; . . .;KÞ; ð2Þ

where Yk ¼ Y:;:;k 2 RI�T
þ are the frontal slices of a 3D

tensorY 2 RI�T�K
þ , whereas K;Dk 2 RJ�J

þ ; and Ek ¼

E:;:;k 2 RI�T represent a frontal slice number, diagonal

matrix, and k-th frontal slice of the tensor E, which rep-

resents error or noise depending on the application.

To calculate the nonnegative matrices A;B;Cf g, we

search to minimize (relative to the component matrices) an

appropriate cost function by applying the constrained

optimization approach [24]. We can express the cost

function with nonnegativity constraints as follows [24]:

DF Yk A;B;C½ �½ �ð Þ ¼ Y � A;B;C½ �½ �k k2FþaA Ak k2FþaB Bk k2F
þaC Ck k2F ;

ð3Þ

where aA, aB, aC are parameters of nonnegative

regularization.

The alternating least squares (ALS) method is the most

common approach for solving this optimization problem

[24] and thus solving the NTF problem. In this approach,

we compute the cost function gradient relative to each

individual matrix, assuming that the others are independent

and fixed [24].

3D NTF-1 and/or 3D NTF-2 [24, 35, 36] models are

extensions of the standard NTF (or PARAFAC). In the case

of the NTF-1 model, a given tensor Y 2 RI�T�K
þ is fac-

torized to a set of matrices AD and X1;X2; . . .;XKf g with

nonnegative matrices [24]:

Yk ¼ ADkXk þ Ek; ðk ¼ 1; 2; . . .;KÞ; ð4Þ

where A 2 RI�J
þ ;Dk 2 RJ�J

þ ;Xk 2 RJ�T
þ ; and Ek ¼ E

:;:;k
2

RI�T represent a mixing matrix, diagonal matrix, matrix of

the sources, and k � th frontal slice of the tensor E 2

RI�T�K corresponding to the errors or noise.

For the NTF-2 model (similar to the PARAFAC2 model

[24, 36]), which is considered as a double model to NTF-1,

given by [36]:

Yk ¼ AkDkX þ Ek; ðk ¼ 1; 2; . . .;KÞ; ð5Þ

where Ak 2 RI�J
þ are the mixing matrices, Dk 2 RJ�J

þ is a

diagonal matrix, X 2 RJ�T
þ is a matrix representing hidden

sources, and Ek corresponds to error or noise according to

the application.

To extract original sources from the recorded mixed

signals in this research work, we selected an NTF-2 model

as a more suitable model owing to the form of the column

observation vectors.

3.3 Alternative method for comparative validation:

CCM

CCM [9, 11] is a signal processing technique and a well-

known PSD method used for the recognition of gamma-ray

and neutron pulses within a mixed radiation field. This

method is based on the difference between the expected

time distribution for the neutrons with a long tail, including

that of the gamma rays with a much shorter tail. It consists

of integrating the pulse P(t) over two distinct time periods,

Qtotal ¼
R T slow

T start
P tð Þdt as the total integral and Qtail ¼

R Tslow

T fast
P tð Þdt as a tail integral for the integration of the whole

and the tail pulse, as illustrated in Fig. 3. The ratio of the

tail-to-total integrals is used to distinguish the pulse origin,

mathematically formulated as

Ratio ¼ Qtail

Qtotal

: ð6Þ

3.4 Comparative validation metric

To assess the discrimination ability of the method, we

used the figure of merit (FOM) [8, 9, 13] as a discrimi-

nation quality metric, formulated as:

FOM ¼ SNc
FWHMN þ FWHMc

; ð7Þ

where SNc is the separation between the gamma-ray and

neutron peaks, and FWHMN and FWHMc represent their

full widths at half maximum (FWHM).We used the

Gaussian function to fit the distribution of the neutron and

gamma-ray events. A higher FOM value indicates greater

quality discrimination.

Fig. 3 Example of pulse processing using CCM/PSD method
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4 Results and discussion

In this section, we present the results of the proposed

method mainly based on the SVM and NTF machine

learning methods to perform fast and accurate neutron-

gamma discrimination. The obtained results for each step

of our proposed method are as follows:

4.1 Step1: NTF processing

We consider a set of 10 mixed signals recorded at the

output of a stilbene detector sampled at 1 GSample/sec as

observations (or a set measured sensor signals) [16, 33].

According to the literature and our previous work [33, 37],

the ideal number of signals to be analyzed by a BSS

algorithm, which allows an excellent reconstruction of the

original sources, is five observations. To apply the NTF-2

model, we form 3D tensors of overlapped sources. For that,

the ten mixed signals are structured in six matrices of

5 9 1000 mixtures (5 9 1000) representing observations

for which the five nonnegative sources are collected in one

slice X 2 R5�1000
þ . We use a common random matrix with a

uniform distribution Ak 2 R10�5
þ to mix the sources. Con-

sequently, the 3D tensor of overlapped sources is formed as

Y 2 R10�1000�5
þ .

The NTF-2 model applied to these overlapped sources

provides a solution to our BSS problem. To validate and

determine the accuracy of the separation quality, we

compute the signal-to-interference ratio (SIR) to estimate

the original sources that comprise the detector mixed out-

put signals. Figure 4 illustrates that the recorded mixed

signals are formed by two independent components (ICs:

2nd and 5th). We performed the separation task with a

mean SIR value of approximately 76 dB, which reflects a

very good signal processing performance, as shown in

Fig. 4. In fact, SIR C 30 dB indicates an optimal separa-

tion performance and perfect reconstruction of the original

sources [33, 38]. This can also be justified by the fact that

the nonnegative tensor factorization methods adopt more

projection axes than 2-D to achieve the blind separation

task. This allows information to be extracted from different

projections (tensors) and therefore results in coherent

components that are more independent of each other.

4.2 Step 2: Mexican-hat function-based CWT

processing

The characterization of both ICs (IC2 and IC5) was

carried out using a Mexican-hat-function-based CWT. We

determined that IC2 and IC5 have one high-energy zone

situated in the same scale range of 5–38 and at different

time ranges of 700–720 ms and 300–320 ms, respectively

(see Fig. 5). The comparison of both obtained scalograms

with those of pure neutrons and gamma-ray signals

demonstrates that IC2 and IC5 represent the neutrons and

gamma-ray signals, respectively.

The results of the NMF application [16] have shown that

the scalograms of the neutron signal are formed by two

main high-energy bands situated at ranges of approxi-

mately 0–25 ms and 700–720 ms. These energies appear in

the scale range of 7–43 (Fig. 6a). The gamma-ray signal

scalograms have only one high-energy band situated at a

range of approximately 300–320 ms and scales of 6–35

scales (Fig. 6b). These differences appear owing to the

high level of accuracy that the NTF-2 provides while

Fig. 4 (Color online) Plot of

SIR as a function of column

index in the original mixing

matrix-A
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extracting the independent components that form the

recorded signals. Therefore, the true energy of the signal

appears only on its corresponding scalogram.

4.3 Step 3: otsu thresholding processing

We conclude that TNeutron ¼ TGamma ¼ 0:5098 (Fig. 7a,

b) is the optimal threshold that can be used to segment the

neutrons and gamma-ray images (Fig. 7c, d). From each

image, we have extracted 13 geometrical features that

represent: ‘‘ConvexArea’’, ‘‘Area’’, ‘‘Eccentricity’’,

‘‘EquivDiameter’’, ‘‘MajorAxisLength’’, ‘‘FilledArea’’,

‘‘MinorAxisLength’’, ‘‘Extent’’, ‘‘PerimeterOld’’, ‘‘Orien-

tation’’, ‘‘Solidity’’, ‘‘EulerNumber’’, and ‘‘Perimeter’’

[16].

4.4 Step 4: principle components analysis

processing

To enhance the prediction ability of the SVM model, we

adopted principle component analysis (PCA) to select

significant features among the 13 extracted features. We

inferred that ‘‘Area’’, ‘‘MajorAxisLength’’, and ‘‘Mi-

norAxisLength’’ are the most useful features (Fig. 8).

4.5 Step 5: SVM processing

We use the three selected features as a vector of attri-

butes that are implanted in the SVM model for training,

cross-validation, and testing the SVM model.

For the training and cross-validation SVM model, both

neutron and gamma-ray datasets were balanced using 2000

binary images (or segmented images) with 1000 images for

neutrons labeled -1 and 1000 images for gamma rays

labeled ? 1. To define the shape of the separation margin

used to classify the support vectors, we conducted tests

with three kernel functions: linear, polynomial, and Gaus-

sian. The selection of a suitable kernel was based on its

configuration that allows for a small generalization error

using a cross-validation process. This configuration repre-

sents the variation in the SVM model complexity.

According to the simulation tests carried out, we

Fig. 5 (Color online) Scalograms of neutron (IC2) (a) and gamma-ray (IC5) (b) signals resulting from the application of Mexican-hat-function-

based CWT for the NTF-2 application

Fig. 6 (Color online) Scalograms of neutron (a) and gamma-ray (b) signals resulting from the application of Mexican-hat-function-based CWT

for the NMF application
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determined that the Gaussian kernel is suitable as it pro-

vides a small generalization error (0.04%). Note that the

Gaussian complexity is based on two parameters: the

penalty coefficient C and bandwidth c, which are defined

using grid search and stratified K-fold cross-validations,

respectively. To achieve these, we randomly divided the

dataset into K ¼ 10 subsets that were used to calculate the

cross-validation with this grid search

C ¼ 2�5; 2�3; . . .; 215; c ¼ 2�15; 2�13; . . .; 23
� �

and finally

achieve the best pair C ¼ 40 and c ¼ 0:7. Figure 9 shows

the variation of the prediction error of the train and test

dataset as a function of log2ðCÞ model complexity.

From the perspective of bias-variance analysis, a good

bias–variance trade-off value between train and test errors

Fig. 7 (Color online) Gray-level histograms of neutron (a) and gamma-ray (b) signals. Binary images of neutron (c) and gamma-ray (d) signals

Fig. 8 (Color online) Feature selection of neutron (a) and gamma-ray (b) signals in the binary image, using PCA method
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was determined as log2ðCÞ ¼ 5, which demonstrated the

capability of our SVM model for maximizing its general-

ization performance and thus minimizing the prediction

error.

To examine the performance of our SVM model, we

tested 1000 new images (i.e., 500 images for neutrons and

500 images for gamma rays). We successfully classified 99

images with a high classification rate (99.96%), which

completes the efficiency proof of the neutron-gamma dis-

crimination process introduced. Compared to the results

obtained in [16], the NMF-SVM method allowed the use of

the same kernel function (Gaussian) as a neutron-gamma

discrimination with a rate of 99.93%. This rate was

achieved using C = 32 and c = 0.5 as the best parameters of

the Gaussian function and with a generalization error of

0.065%.

4.6 Performance evaluation

To evaluate and validate the performance of the pro-

posed method, we compared it to CCM/PSD. Figure 10

shows the bi-parametric histogram of the tail-to-total

integral as a function of the total integral obtained from a

stilbene crystal scintillator and PMT. We can see that the

neutron and gamma-ray regions can be identified visually.

As illustrated, there are two classes: the upper class rep-

resents neutron pulses and the lower class corresponds to

gamma-ray pulses. Therefore, this representation allows

the qualitative assessment of the effectiveness of neutron-

gamma discrimination methods.

To quantify the obtained results by using NTF/SVM

compared to the CCM, the FOM was used (Fig. 11). The

computation of the FOM value is determined from the

analysis of the tail-to-total integral histogram, which shows

that NTF/SVM has a higher FOM (2.20) when compared to

the CCM (FOM = 0.99). This clearly indicates the charge

distribution of the neutron and gamma-ray events. Conse-

quently, this distribution confirms the results achieved in

Fig. 10, thus validating the previous results.

As stated above and based on the achieved results, using

the NTF model in the separation task is more efficient than

using the NMF algorithm, [13] and it is evident through the

higher classification rate obtained (99.96%). From the

separation perspective, the NTF model (or PRAFAC

model) adopts 3D projection matrices, and thus the sepa-

ration task is more accurate than the NMF that uses

2D projection matrices. Despite this difference, the

obtained results with NMF and/or NTF algorithms of the

BSS methods, coupled with SVM, prove its ability to

perform accurate neutron-gamma discrimination with a

true classification rate as high as that of conventional

methods such as a common PSD standard technique. The

comparison results show that the FOM provided by the

SVM-based NTF method is superior.

5 Conclusion

In this study, we proposed a novel method for neutron-

gamma discrimination without any a priori information on

the signal to be analyzed using NTF/BSS (unsupervised

learning method) and SVM (supervised learning method).

The first method aims to extract the original components

from the mixture signals recorded at the output of the

stilbene scintillator detector, while the second method aims

Fig. 9 (Color online) Evaluation of SVM model using bias-variance

analysis based on the cross-validation process

Fig. 10 (Color online) Bi-

parametric histogram of tail-to-

total integral as a function of the

total integral obtained from a

stilbene crystal scintillator and

PMT via SVM based on NTF

(a) and CCM/PSD (b)

123

Neutron-gamma discrimination method based on blind source separation and machine learning Page 9 of 11 18



to classify these components. In addition to SVM, we

applied the Mexican-hat-function-based CWT, Otsu

thresholding, and PCA methods to improve the prediction

ability of our SVM model. Furthermore, we used bias-

variance analysis to evaluate the SVM model complexity

as it provided an optimal level with the highest possible

generalization performance. Furthermore, we compared

our method with CCM/PSD for validation. The FOM val-

ues obtained using the SVM-based NTF method were

determined to be significantly higher (FOM = 2.20) than

those obtained using CCM. Therefore, all obtained results

clearly indicate that SVM based on the NTF method pro-

posed in this study can provide neutron/gamma PSD ability

with very high resolution. Presently, this method can

become one of the most effective methods for neutron

measurement systems, using the digital signal processing

technique, as well as the stilbene crystal organic detector.

The promising results obtained encouraged us to vali-

date our proposed process experimentally with other

organic scintillator detectors (i.e., plastic and liquid) and

time-of-flight methods, as well as testing it in low activity

or random detection. We also aim to introduce other arti-

ficial intelligence methods to improve the performance of

the entire processing method. Furthermore, our NMF/NTF

combined with SVM approaches is implemented on DSP

and FPGA-based cards to perform real-time tests.
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