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Abstract Based on the Monte Carlo approach and con-

ventional error analysis theory, taking the heaviest doubly

magic nucleus 208Pb as an example, we first evaluate the

propagated uncertainties of universal potential parameters

for three typical types of single-particle energy in the

phenomenological Woods–Saxon mean field. Accepting

the Woods–Saxon modeling with uncorrelated model

parameters, we found that the standard deviations of single-

particle energy obtained through the Monte Carlo simula-

tion and the error propagation rules are in good agreement.

It seems that the energy uncertainty of the single-particle

levels regularly evoluate with certain quantum numbers to

a large extent for the given parameter uncertainties. Fur-

ther, the correlation properties of the single-particle levels

within the domain of input parameter uncertainties are

statistically analyzed, for example, with the aid of Pear-

son’s correlation coefficients. It was found that a positive,

negative, or unrelated relationship may appear between two

selected single-particle levels, which will be extremely

helpful for evaluating the theoretical uncertainty related to

the single-particle levels (e.g., K isomer) in nuclear struc-

tural calculations.

Keywords Uncertainty propagation � Correlation effect �
Woods–Saxon potential

1 Introduction

The fundamental theory of strong interactions is quan-

tum chromodynamics [1]. As a final goal, all phenomena in

nuclear structures are expected to be derived from the

interactions of quarks and gluons. To date, although the

density functional theory has been applied, attaining such a

goal remains difficult. In practice, to make the task

tractable and more physically intuitive, numerous simpli-

fications are usually made in theoretical nuclei modeling.

As is well known, the first approximation is the use of the

concept of nucleons and their interactions, which has been

adopted in nearly all contemporary theories of a nuclear

structure. Further, mean-field approximations and nucleon

effective interactions are proposed, respectively, owing to

the difficulty of solving the many-body problem and the

complexity of the nucleon-nucleon interactions. In general,

theoretical models for a nuclear structure can be grouped

into ab initio methods, mean-field theories, and shell model

theories, among others ([2] and the references therein).

Nuclear mean-field theories include phenomenological

or empirical [3–6] (e.g., the nuclear potentials of Woods–

Saxon and Nilsson types) and self-consistent [7–9] (e.g.,

numerous variants related to the Hartree–Fock approxi-

mation) approaches, which assume that all nucleons move

independently along their orbits. In this type of nuclear

theory, the underlying element contributing to the high
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quality of the theoretical calculations is the reliable mean-

field single-particle energies, which sensitively depend on

the corresponding Hamiltonian modeling and model

parameters. For a defined mathematical model, the sam-

pling (selection) and quality of the experimental data will

determine the resulting optimal parameter set and its

quality. In principle, this can be achieved through standard

statistical fitting procedures, such as a least squares and v2

fitting [10–13]. The physical quantity can then be com-

puted using the optimal parameters. However, in the lan-

guage of statistics, an overfitting (underfitting) may appear

if the model contains more (less) parameters. For instance,

it was pointed out that the so-called realistic model inter-

actions appear most of the time to be strongly over-pa-

rameterized [14]. Therefore, there will remain

uncertainties originating from the size of the sample

database, errors in the experimental data, a limited relia-

bility of the model, and the numerical method used [15]. In

recent years, model prediction capacities and estimations

of theoretical uncertainties have been of significant interest

in many subfields of physics and technological applica-

tions [16–20]. Even so, it was pointed out that model

predictions without properly quantified theoretical errors

will have an extremely limited utility [23].

The phenomenological mean field, for example, the

realistic Woods–Saxon potential, has been used for many

decades in nuclear physics and is considered to have an

extremely high predictive power for single-nucleon ener-

gies, whereas related computing algorithms remain rela-

tively simple. The model uncertainties and predictive

power of a spherically symmetric Woods–Saxon mean field

have been investigated [14], with particular attention paid

to issues of parameter adjustment and parametric correla-

tions. Prior to this study, based on a one-body Hamiltonian

with a phenomenological mean field of the deformed

Woods–Saxon type, some studies [24–27] have been con-

ducted on different isotopes within the framework of the

macroscopic-microscopic model [28, 29] and cranking

approximation [30, 31], focusing on different ground-state

and high-spin nuclear properties. The main interest of our

present study is not the fitting of the new parameters, the

parameter uncertainties, or an investigation of parameter

correlations, but rather the propagation of the reasonably

given parameter uncertainties and the statistical correlation

properties of the calculated single-particle levels within the

domain of the input parameter uncertainties using the same

Woods–Saxon Hamiltonian. Thus far, such a systematic

study is scarce and meaningful, particularly for the theo-

retical calculations (e.g., K isomer predictions) that depend

strongly on single-particle levels. As is well known, the

single-particle levels are independent (which means that

the eigenfunctions of the Hamiltonian operator are

orthogonal for different levels) in the mean-field approxi-

mation without the inclusion of the residual interaction.

The wording of the ‘correlation properties’ for the levels

may be considered unsuitable, and may even be seriously

misunderstood by general readers. Therefore, it should be

noted that the correlation property mentioned here indi-

cates the statistical correlation (rather than something else,

e.g., the correlation between the spin partners j ¼ l� 1=2)

used to reveal the linear relationship of any two levels

within the small domains related to their energy uncer-

tainties. The calculated single-particle levels have a prob-

ability distribution (namely, the property of a stochastic

quantity) after considering the uncertainty propagation of

the model parameters. That is, each calculated single-par-

ticle level will have a fixed value when calculating at a

fixed mean field without considering the model parameter

uncertainties, whereas it will possess a stochastic value

near its ‘fixed’ value once the model parameter uncer-

tainties are considered. As one of the aims of the present

study, we investigate the correlations between these

stochastic values rather than the ‘relationships’ of those

‘fixed’ values. It should also be noted that, as an example

for conducting the present investigation, we first accept the

Woods–Saxon modeling with independent model parame-

ters and then take the doubly magic nucleus of 208Pb

(which has always been regarded as a benchmark in studies

on the nuclear structure). The parameter uncertainties for

the Woods–Saxon potential, and even the parameter cor-

relations, have been estimated based on the maximum

likelihood and Monte Carlo methods [14, 19].

The remainder of the paper is organized as follows. In

Sect. 2, we briefly introduce our theoretical framework on

the single-particle Hamiltonian, Monte Carlo method, and

propagation of the uncertainty and Pearson’s product-mo-

ment correlation. Section 3 presents our results and a dis-

cussion of the evaluation of universal potential parameters,

the generation of pseudo data, uncertainties of single-par-

ticle energies, and the correlation effects between them.

Finally, we provide some concluding remarks in Sect. 4.

2 Theoretical framework

Given that our main goal is the uncertainty evolution of

single-particle levels and the assessment of correlations

among them owing to the error propagation of the model

parameters rather than the Hamiltonian modeling, the fit-

ting of the parameters or other physics issues, we review

some related points that are helpful for general readers,

although there are numerous related references for each

aspect.

123

16 Page 2 of 13 Z.-Z. Zhang et al.



2.1 Woods–Saxon single-particle Hamiltonian

The single-particle levels and wave functions are cal-

culated by numerically solving the stationary Schrödinger

equation with an average nuclear field of the Woods–Saxon

type. The single-particle Hamiltonian for this equation is

given by [5, 6]

HWS ¼� �h2

2m
r2 þ Vcentðr~; b̂Þ þ Vsoðr~; p~; s~; b̂Þ

þ 1

2
ð1 þ s3ÞVCoulðr~; b̂Þ;

ð1Þ

where the Coulomb potential VCoulðr~; b̂Þ, defined as a

classical electrostatic potential of a uniformly charged drop

is added for protons. The first part on the right side of

Eq. (1) is the kinetic energy term. The central part of the

Woods–Saxon potential, which mainly controls the number

of levels in the potential well is [6]

Vcentðr~; b̂Þ ¼
V0½1 � jðN � ZÞ=ðN þ ZÞ�

1 þ exp½distRðr~; b̂Þ=a�
; ð2Þ

where the plus and minus signs hold for protons and neu-

trons, respectively, and a is the diffuseness parameter of

the nuclear surface. The spin-orbit potential, which can

strongly affect the level order, is defined as follows:

Vsoðr~; p~; s~; b̂Þ ¼ � k
h �h

2mc

i2

�
rV0½1 � jðN � ZÞ=ðN þ ZÞ�

1 þ exp½distRso
ðr~; b̂Þ=aso�

�
� p~ � s~;

ð3Þ

where k denotes the strength parameter of the effective

spin-orbit force acting on the individual nucleons. In

Eq. (2), the term disRðr~; b̂Þ indicates the distance of a point

r~ from the nuclear surface, R. The nuclear surface is

parameterized in terms of the multipole expansion of

spherical harmonics Yklðh;/Þ, namely,

R : Rðh;/Þ ¼ r0A
1=3cðb̂Þ

h
1 þ

X
k

Xþk

l¼�k

aklY�
klðh;/Þ

i
;

ð4Þ

where the function cðb̂Þ ensures the conservation of the

nuclear volume with a change in the nuclear shape, and b̂
denotes the set of all considered deformation parameters.

This is similar in Eq. 3, although the new surface Rso
needs to be calculated using different radius parameters.

Based on the Woods–Saxon Hamiltonian as mentioned

above, the Hamiltonian matrix is calculated using the

axially deformed harmonic-oscillator basis in the cylin-

drical coordinate system with the principal quantum num-

ber N 6 12 and 14 or protons and neutrons, respectively.

Then, after a diagonalization procedure, the single-particle

levels and their wave functions can be obtained. It is shown

in the present study that the calculated single-particle levels

with such a basis cutoff will be sufficiently stable with

respect to a possible basis enlargement. Of course, one can

see that for a given (Z, N) nucleus, the calculated energy

levels fegp;m depend on two sets of six free parameters:

fVc; rc; ac; kso; rso; asogp;m; ð5Þ

one set with the symbol p for protons, and the other set

with m for neutrons; in addition, the superscripts ‘c’ and

‘so’ denote the abbreviations for ‘central’ and ‘spin-orbit’,

respectively.

For convenience, we define the parameter set

fpg � fp1; p2; p3; p4; p5; p6g, which is associated with the

original as follows:

fp1; p2; p3; p4; p5; p6gp;m ! fVc; rc; ac; kso; rso; asogp;m:
ð6Þ

Further, following the notation of [32, 33], we can denote a

point in such a parameter space by

p ¼ ðp1; p2; p3; p4; p5; p6Þ. According to the inverse prob-

lem theory, the model parameters are usually determined

by fitting to a set of observables within a selected sample

(e.g., the available sample database of the experimental

single-particle levels). For a given mathematical model, for

example, accepting the Woods–Saxon Hamiltonian with

free parameters, the optimum parametrization po can usu-

ally be obtained with a least-squares fitting using a global

quality measure [33–35],

v2ðpÞ ¼
XN
n¼1

O
ðthÞ
n ðpÞ � O

ðexpÞ
n

DOn

 !2

ð7Þ

where ‘th’ indicates the calculated values, ‘exp’ represents

the experimental data, and DO indicates the adopted errors,

which generally contain the contributions from both

experimental and theoretical aspects. Note that the defini-

tion of the objective function v2 is the standard, and several

powerful techniques for finding its minimum value have

already been developed. The universal parameter set used

in the present investigation is indeed one such ‘optimal’

parameter set. Having determined po, in principle, any

physics quantity, for example, the single-particle level ei,

can be computed at eiðpoÞ. From this point, we can to an

extent regard the calculated energy level ei as a function of

the corresponding parameter set fpg, namely,

ei ¼ eiðp1; p2; p3; p4; p5; p6Þ: ð8Þ

There is no doubt that the p value depends on the size and

quality of the selected sample database. In fact, the func-

tional relationship of Eq. (8) expresses not only a physical
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law but also the measured and calculated processes. All

uncertainties during the physical modeling, experimental

measurement, and theoretical calculation may lead to

uncertainty of the p value. By contrast, the uncertainty of

the p value will propagate to the results of the calculations.

2.2 Uncertainty estimation of single-particle levels

By reasonably assuming that input parameters fpg are

Gaussian random variables, we will be able to estimate the

uncertainties of the single-particle levels owing to the input

uncertainties of the potential parameters using the con-

ventional analysis method [36–38] (e.g., the formula of

uncertainty propagation) and the Monte Carlo

method [39–43]. Based on the functional relationship of

Eq. (8) and the uncertainty propagation formula, the

uncertainty of the ith single-particle level ei with random

and uncorrelated inputs can be given analytically by the

following:

rei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X6

j¼1

oei
opj

� �2

�r2
pj

vuut ; ð9Þ

where rpj is the standard deviation of the input parameter

pj; in addition, the partial derivative oei=opj is usually

called the sensitivity coefficient, which provide the effect

of the corresponding input parameter on the final result.

Note that both the linearity of the function (at least, near

the calculated point pj) and the ‘small’ uncertainty of the

input parameter are prerequisites of a conventional uncer-

tainty estimation method. However, there is no such limi-

tation for the Monte Carlo simulation method, which can

handle both small and large uncertainties in the input

quantities. Moreover, the Monte Carlo simulation, which

can be generally defined as the process of replication of the

‘real’ world, has the ability to account for partial correla-

tion effects for the input parameters. It is also convenient to

study the correlation effect, e.g., between two Gaussian-

distributed variables, whereas the conventional method

cannot do so.

As known in such a simulation, the availability of high-

quality Gaussian random numbers is important. Generally

speaking, the realization of a Gaussian-random-number

generator can adopt both software and hardware methods.

The former has limited speed and poor real-time charac-

teristics, whereas the latter (which is based on digital

devices) is not only fast, with real-time implementation,

but also has good flexibility and accuracy. At present, the

majority of the frequently used digital methods for gener-

ating Gaussian random variables are based on transfor-

mations from uniform random variables. Popular methods,

for instance, include the Ziggurat method [44], an inver-

sion method [45], the Wallace method [46], and the Box–

Muller method [47–50]. In the present study, we realize

hardware Gaussian random number generators using the

Box–Muller algorithm. In other words, taking each value

po
j of the universal parameter set fpo

1 ; p
o
2 ; p

o
3 ; p

o
4 ; p

o
5 ; p

o
6 g

as the corresponding mean value, one can generate the

random and uncorrelated input parameter pj following a

normal distribution Nðpo
j ; rpjÞ. With a large sample of

input parameters, the uncertainties of single-particle levels

can be estimated. For instance, considering the uncertainty

of one input parameter pj and keeping other universal

values unchanged, the variance of the calculated ei can be

given by the following:

r2
ei
¼ 1

N � 1

XN
k¼1

½eiðpjkÞ � eiðpo
j Þ�

2; ð10Þ

where the sampling number N should be chosen to be

sufficiently large (e.g., 10,000 or more). Similar calcula-

tions can be conducted when the uncertainties of two or

more input parameters are opened. Therefore, we will be

able to investigate the effects of the uncertainties of dif-

ferent input parameters and their combinations on the

uncertainties of single-particle levels.

2.3 Pearson product moment correlation

The single-particle levels with certain uncertainties can

usually be regarded as the input variables in further nuclear

mean-field calculations, for example, K isomeric calcula-

tions. In this case, to evaluate further theoretical predic-

tions, it will be extremely useful to know both the

uncertainties and correlation properties of the single-par-

ticle levels. As a simple example, the energy uncertainty of

one-particle one-hole (1p1h) excitation is directly related to

two corresponding single-particle levels to a large extent.

We can arbitrarily regard the excitation energy E1p1h as a

function of two single-particle levels e1 and e2 with the

standard deviations re1
and re2

, respectively, namely,

E�
1p1h ¼ f ðe1; e2Þ: ð11Þ

Regardless of whether e1 and e2 are independent, the

standard uncertainty of such an excited state can be written

as [51]

rE�
1p1h

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
of

oe1

� �2

r2
e1
þ of

oe2

� �2

r2
e2
þ2

of

oe1

of

oe2

qðe1;e2Þre1
re2

s
;

ð12Þ

where the quantity qðe1;e2Þ is the Pearson’s correlation

coefficient, which is given by [52, 53]
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qðe1; e2Þ ¼
covðe1; e2Þ
re1

re2

: ð13Þ

Such a cross-correlation coefficient measures the strength

and direction of a linear relationship between two vari-

ables, for example, e1 and e2. The greater the absolute

value of the correlation coefficient, the stronger the rela-

tionship. The extreme values of �1 and 1 indicate a per-

fectly linear relationship where a change in one variable is

accompanied by a perfectly consistent change in the other.

For these two cases, all of the data points fall on a line. A

zero coefficient represents a non-linear relationship. That

is, as one variable increases, there is no tendency in the

other variable to either increase or decrease. When the

cross-correlation coefficient is between 0 and ?1/-1, there

will be a relationship, but not all points fall on a line. The

sign of the correlation coefficient represents the direction

of the linear relationship. Positive coefficients indicate that

when the value of one variable increases, the value of the

other variable also tends to increase. Positive relationships

produce an upward slope on a scatterplot. Negative coef-

ficients indicate that when the value of one variable

increases, the value of the other variable tends to decrease.

Correspondingly, negative relationships produce a down-

ward slope. It should be noted that the Pearson’s correla-

tion coefficient, which measures only the linear

relationships between two variables, will not detect a

curvilinear relationship. For instance, when the scatterplot

of two variables shows a symmetric distribution, a rela-

tionship may exist, but the correlation coefficient is zero.

3 Results and discussion

3.1 Evaluation of Woods–Saxon potential

parameters

In the phenomenological nuclear mean field, the realistic

Woods–Saxon potential has shown certain advantages and

is still widely used. For instance, it provides a good

description of not only the ground-state properties but also

the excited-state properties of the nuclei. Currently, many

authors are still working on different issues with the

Woods–Saxon potential. Such a simple nuclear mean field

has been successfully applied to explain and predict the

nuclear equilibrium deformations, the high-K isomer, the

nucleon binding energies, the fission barriers, numerous

single-particle effects for super-deformed and fast rotating

nuclei, and so on. As shown in Table 1, there exist various

parametrizations of the Woods–Saxon potential ([6] and

references therein), which are usually obtained by fitting

the available single-particle data (or part of the data,

namely, one of the sub-databases) or other observables.

Indeed, based on the same mathematical modeling and

different sample databases and sub-databases, different

parameter sets can be obtained. It can be seen that these

parameter sets are somewhat different, even rather different

for some quantities among them. Correspondingly, the

different parameter sets are suitable for a certain nuclear

mass region. Occasionally, the difference in the corre-

sponding quantity (e.g., single-particle energies) calculated

theoretically using different parameter sets is referred to as

a model discrepancy, which can be evaluated by using

different models and/or different parameter sets. The uni-

versal parameter set of the Woods–Saxon potential is one

of the most common parameter sets. In principle, it can be

used for the ‘global’ calculation of the nuclei. In the pre-

sent study, we conducted our investigation based on the

universal parameter set.

To evaluate the universal potential parameters, Fig. 1a

shows the discrepancies DE (� etheo:
i � eexp:

i ) of the calcu-

lated single-particle energies from the available data (e.g.,

eight spherical nuclei [54, 55]: 16O,40Ca,48Ca,
56Ni,90Zr,132Sn,146Gd and 208Pb). The discrepancies show

us that the single-particle levels generated by the universal

parameters, in fact, cannot agree with the data very well

(i.e., similar to the mass calculation [56], the quest for

some possibly missing interactions and ‘better’ mathe-

matical modeling will never cease). Moreover, most of the

values are smaller or larger than the data. For instance, as

shown, a systematic overestimation and underestimation

for protons and neutrons exist, respectively, particularly in

lighter nuclei. To see the statistical properties of the

parameters, the percentage difference, PDðpjÞ, of the

model parameter pj (as an example, j ¼ 1 herein) extracted

from the experimental data is presented in Fig. 1b, which is

defined as follows:

PDðpjÞ ¼
pb
j � po

j

pb
j þpo

j

2

� 100%; ð14Þ

where po
j indicates the jth ‘optimal’ (universal) value of the

fpg parameters, and the pb
j parameter denotes the so-called

best value that can be obtained based on the following

method. For a certain model parameter, for example, the

potential depth p1 (namely, V0) of the Woods–Saxon

parameters, we calculate the corresponding single-particle

energies of a given nucleus by varying the value of this

parameter p1 around its optimal value po
1 and keeping other

parameters with universal values unchanged. If the dis-

crepancy of the calculated single-particle energy for a

certain nucleus from the corresponding experimental data

equals zero, the ‘‘best’’ value pb
1 of this parameter p1 for

this nucleus is therefore obtained. In principle, for a large
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sample, we can extract the standard deviation rp1
with a

confidence level of 68:3% for the parameter p1. From

Fig. 1b, it was found that the percentage differences dis-

tribute between �10%. Similar distributions exist for other

potential parameters as well. Based on these statistical

properties and some previous studies (for exam-

ple, [16, 19]), we can evaluate the uncertainty of Woods–

Saxon parameters to an extent. Furthermore, we will be

able to temporarily provide the standard deviations frpg �
frp1

; rp2
; rp3

; rp4
; rp5

; rp6
g for the parameters fpg within

reasonable domains, taking the universal parameters

fpo
1; p

o
2; p

o
3; p

o
4; p

o
5; p

o
6g as the corresponding mean values.

3.2 Producing pseudo-data of potential parameters

Based on the given mean values fpog and the corre-

sponding standard deviations frpg, the Gaussian-dis-

tributed random sets fpg can, in principle, be numerically

generated in the spirit of the Monte Carlo approach. Con-

sidering the uncertainty estimations of the Woods–Saxon

parameters and the sensitivity coefficients of single-particle

levels, in practice, we use a set of percentage coefficients

fcg�fc1;c2;c3;c4;c5;c6g¼f0:1%;0:1%;1%;3%;1%;10%g

to calibrate the standard deviations frpg during the cal-

culations. That is, the standard deviations are given by the

following:

rp1

rp2

rp3

rp4

rp5

rp6

0
BBBBBBBB@

1
CCCCCCCCA

¼ c1 c2 c3 c4 c5 c6ð Þ

po
1

po
2

po
3

po
4

po
5

po
6

0
BBBBBBBB@

1
CCCCCCCCA
: ð15Þ

Such a set rp may deviate from the ‘true’ values to a

certain extent but does not affect the conclusion of our

investigation because the values lie within the reasonable

domains. Moreover, the strong overlaps of the ‘peaks’ of

single-particle levels can be avoided (as shown below). We

conducted Woods–Saxon single-particle-level calculations

with 10,000 samples for fpg, which is sufficient large to

suppress the error coming from stochastic choices. To

show the quality of the normally distributed random

quantities fpg, Fig. 2 presents the two-dimensional scatter

plots related to the six Woods–Saxon parameter samplings

of neutrons, together with the corresponding correlation

-6

-4

-2

0

2

4

6

-15%

-10%

-5%

0%

5%

10%

(a)

ΔE
/M

eV

N
Z

(b)

PD
(p

1)

48Ca16O 40Ca 56Ni 90Zr 132Sn 146Gd 208Pb
Nucleus

Fig. 1 (Color online) a Discrepancies between the available exper-

imental data and the calculated single-particle energies using the

Woods–Saxon Universal parameter set for even-even nuclei 16O,
40Ca,48Ca, 56Ni,90Zr,132Sn,146Gd and 208Pb. The data were taken

from [54, 55]. b Percentage differences between the ‘best’ and

‘optimal’ p1 (namely, V0) parameters. See the text for more details

Table 1 Various parameter sets

for Woods–Saxon potential
Parameter V0 (MeV) rc0 (fm), ac

0 (fm) k rso
0 (fm) aso

0 (fm)

Wahlborn [57] 51.0 1.27 0.67 32.0 1.27 0.67

Rost [58] n 49.6 1.347 0.7 31.5 1.280 0.7

p 1.275 17.8 0.932

Chepurnov [59] 53.3 1.24 0.63 23:8 � ð1 þ 2IÞ 1.24 0.63

New [60] n 49.6 1.347 0.7 � � 0.7

p 1.275 � �
Universal [6] n 49.6 1.347 0.7 35.0 1.31 0.7

p 1.275 36.0 1.32

Optimized [61] n 49.6 1.347 0.7 36.0 1.30 0.7

p 1.275

Cranking [62, 63] 53.754 1.19 0.637 29.494 1.19 0.637
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coefficients. Note that this is similar for the protons as well.

For comparison, the normal distribution Nðpo
i ; rpiÞ is

transformed into the standard normal distribution N(0, 1)

by defining the dimensionless parameter xi ¼ ðpi � po
i Þ=rpi

in Fig. 2. The Gaussian-distributed and independent prop-

erties of these parameters can be seen. In addition, the

calculated skewness and kurtosis values are zero, as

expected, indicating Gaussian-type distributions.

3.3 Uncertainties of single-particle energies

With the sampling fpg, the uncertainties of the single-

particle energies will be able to be precisely evaluated.

Indeed, this is an advantage of the Monte Carlo method.

For convenience, using a similar c� c coincidence tech-

nique, which is widely applied for experimentally deducing

the nuclear level scheme, we construct a level-level coin-

cidence matrix (namely, a two-dimensional histogram).

Each axis of the matrix corresponds to the energy of the

calculated single-particle levels. The matrix has channel

dimensions of 4096 � 4096, with an energy calibration of

10 keV/channel. Such a matrix provides an energy range of

�40:96 to 0.00 MeV, covering the range of the single-

particle energies (e.g., all bounded ones for neutrons)

considered. By using the gated spectra on different level-

level matrice, the peak distributions of single-particle

levels and even their correlation properties can be conve-

niently analyzed under different conditions.

It is well known that there are three typical types of

single-particle levels during the evolution of the nuclear

models (for instance, from the harmonic oscillator model,

adding strong spin-orbit coupling to obtain the shell model,

and an axial deformation to provide the collective model).

In this study, we use a more realistic Woods–Saxon

potential (lying between the harmonic oscillator potential

and the finite square well) to produce these three types of

single-particle levels and study their energy uncertainties

originating from the model parameters. Similar to the

parameter space ðp1; p2; p3; p4; p5; p6Þ, let us define a cor-

respondingly six-dimensional ‘switch’ space

ðs1; s2; s3; s4; s5; s6Þ, where si ¼ 0 or 1 (for i ¼ 1; 2; � � � ; 6).

Moreover, if si ¼ 0, the universal parameter po
i is always

adopted (i.e., the standard deviation rpi is not used). For

si ¼ 1, this indicates that the sampling pi value is adopted

(i.e., the parameter rpi is opened). Clearly, we can evaluate

the effects of different parameter uncertainties and their

Fig. 2 Two-dimensional scatter

plots, together with their

corresponding correlation

coefficients, between six

independent WS model

parameters

123

Uncertainty evaluation and correlation analysis of single-particle energies… Page 7 of 13 16



combinations on single-particle levels by calculating at

different points s ¼ ðs1; s2; s3; s4; s5; s6Þ.
In Fig. 3, we show the spherical single-particle levels

(labeled as fnlg quantum numbers) calculated using the

Woods–Saxon potential without the inclusion of spin-orbit

coupling. Note that in the spectroscopic notation, the

bounded states under angular momentum with l ¼
0; 1; 2; 3; 4; 5; � � � are indicated with the letter

s; p; d; f ; g; h; � � �, respectively. The projection spectra at

different s points are obtained by gating at the 1s level.

Figure 4 shows the second type of single-particle levels

(labeled as fnljg) calculated at two s points using the

spherically Woods–Saxon potential with the spin-orbit

part. In this case, the l orbital is split into two j ¼ l� 1
2

substates. Similar to Fig. 4, in Fig. 5, we show the

deformed Woods–Saxon single-particle levels (labeled as

fX½NnzK�g, the so-called Nilsson quantum numbers) cal-

culated at b2 ¼ 0:1, which is an arbitrarily selected axial

deformation value. In Fig. 5, the peak heights of the

deformed single-particle levels are all the same, with a

sampling value of 10,000, because the two-fold degenerate

levels fX½NnzK�g are no longer degenerate. However, the

levels labeled fnlg and fnljg have ð2nþ 1Þ- and ðjþ 1
2
Þ-

fold degeneracies, respectively, owing to the spherical

symmetry of the Woods–Saxon potential. As shown in

Figs. 3a and 4a, the counts dividing by 10,000 indicate the

degrees of degeneracy of the corresponding levels. Based

on these gated spectra at different s points, we can analyze

the distributed properties of the single-particle levels

without a strong overlap. For instance, it is convenient to fit

the distributions in Figs. 3 and 4, whereas it is difficult to

do so in the right part of Fig. 5 because the distributions

strongly overlap.

In Fig. 6a, as an example, we show the uncertainty

evolution of the selected spherical i13=2 level as an

increasing number of uncertainty parameters are revealed.

It can be seen that the energy uncertainty of this level

increases with increasing ‘1’ in the ‘switch’ space. The

results of the Gaussian fits to the peaks at the s ¼
ð1; 0; 0; 0; 0; 0Þ and (1, 1, 1, 1, 1, 1) points are presented in

Fig. 6b, including the standard deviations and full width at

half maximum (FWHM). The FWHM is a parameter

commonly used to describe the width of a ‘‘bump,’’ e.g., on

a function curve given by the distance between points on

the curve at which the function reaches half its maximum

value. The FWHM can be used to describe the width of any

distribution. For a normal distribution Nðl; rÞ, its FWHM

is 2
ffiffiffiffiffiffiffiffiffi
2ln2

p
rð	 2:3548r). In principle, we can extract the

standard deviation rei for each single-particle level ei and

further find the possible evolutionary law. It was found

that, in practice, the correct fitting will be rather difficult to

be achieved once the peak is not ‘pure’, although we try to

limit the amplitudes of the given standard deviations frpg.

Fortunately, we found that the single-particle energy ei
depends linearly on the potential parameters within the

uncertainty domain near the universal parameters. That is,
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Fig. 3 Calculated single-neutron levels labeled fnlg in 208Pb (gated

at the 1s level). The dotted lines are provided to guide the eye. See the

text for further details
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it is sufficient to use the first-order Taylor approximation in

Eq. (8), which means that we can approximate the function

ei ¼ eiðpjÞ using its tangent line at the po
j point. Therefore,

we can analytically calculate the energy uncertainty rei
according to Eq. (8). The partial derivatives (sensitivity

coefficients) of the single-particle energies ei with respect

to the potential parameters fpg at fpog can be numerically

calculated using the finite-difference formula:

oei
opj

’
eiðpþj Þ � eiðp�j Þ

pþj � p�j
; ð16Þ

with values of pþj and p�j suitably close to po
j . For con-

venience, we define an adjusted sensitivity coefficient as

follows:

ojei �
oei
opj

rpj : ð17Þ

By giving a set of suitable frpg, the adjusted sensitivity

coefficients foeig � fo1ei; o2ei; o3ei; o4ei; o5ei; o6eig will

have a similar order of magnitude. Figure 7 shows the

adjusted sensitivity coefficients for the three types of cal-

culated neutron single-particle levels labeled, respectively,

by fnlg, fnljg, and fX½NnzK�g in 208Pb. From this figure, it

can be seen that the adjusted sensitivity coefficients show

us regular evolution trends. In particular, the spectrum

envelopes, e.g., in Fig. 7g–i and m–o, show different but

interesting properties. It will be meaningful to reveal the

physics behind them. Based on these sensitivity coeffi-

cients and the standard deviations of these model param-

eters or their combinations (namely, the adjusted sensitivity

coefficients), we can calculate the energy uncertainty ei
analytically. Indeed, for the i13=2 level, the analytical result

coincides with the fitting value of the peak generated using

the Monte-Carlo method. The typical error between the

calculated and fitted values is less than 3%.

Based on the above method, we analytically calculate

the overall uncertainties of the three levels mentioned

above for both neutrons and protons in 208Pb. In the cal-

culations, all parameter uncertainties are taken into

account, which indicates that calculations are conducted at

the s ¼ ð1; 1; 1Þ point for fnlg levels and at the s ¼
ð1; 1; 1; 1; 1; 1Þ point for fnljg and fX½NnzK�g. As shown in

Fig 8, one can note that the changing trends of the standard

deviations are similar for neutrons and protons. For the

fnlg single-particle levels, there is no obvious change with

changing n, l quantum numbers or single-particle energies.

For fnljg and fX½NnzK�g, respectively, it seems that the

increasing trends of the energy uncertainties appear with

increasing energies or angular momentum j for a given n,

for example, n ¼ 1. Note that one spherical j mean-field

orbital will split into ðjþ 1
2
Þ deformed substates, for

example, at b2 ¼ 0:1. In addition, it was confirmed that the

same conclusions should be obtained using the Monte
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Carlo technique. More attention has been paid to the

uncertainty propagation from the model parameter rather

than the physical discussion behind it.

3.4 Correlation coefficients between single-particle

energies

As mentioned above, the single-particle levels are usu-

ally the input quantities in further theoretical calculations

(e.g., [64, 65]), for example, the calculations of high-K

isomers, shell correction, and pairing correction. Both the

energy uncertainties and the correlation effects are

important for further uncertainty predictions. Based on

Eq. 13 the Pearson’s correlation coefficients will be able to

be calculated between any two levels. Further, we can

investigate the correlation effects among them within the

‘small’ energy domains associated with parameter uncer-

tainties, frpg. Figure 9 shows the two-dimensional scatter

plots between three pairs of arbitrarily selected fnljg sin-

gle-neutron energies,1i13=2 
 1j15=2, 1i13=2 
 3p1=2, and

1g7=2 
 1i13=2, near the Fermi surface. From the left to right

side in this figure, the calculations are applied at

s ¼ ð1; 0; 0; 0; 0; 0Þ, (1, 1, 0, 0, 0, 0), (1, 1, 1, 0, 0, 0),

(1, 1, 1, 1, 0, 0), (1, 1, 1, 1, 1, 0), and (1, 1, 1, 1, 1, 1)

points, respectively. It should be noted that similar to the

operation shown in the plot in Fig. 2, before plotting, the

normal distributions of the selected single-particle levels

Fig. 7 (Color online) The

adjusted sensitivity coefficients

ojei of the three types of typical

neutron single-particle levels

labeled by fnlg, fnljg, and

fX½NnzK�g in 208Pb. See the text

for more details
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are transferred into the standard normal distributions by

defining a dimensionless parameter,

xi ¼ ½eiðpÞ � eiðpoÞ�=rei . In Fig. 9, the dimensionless

parameters xl for l ¼ 1; 2; 3, and 4 correspond to the

spherically mean-field single-particle levels

1i13=2; 1j15=2; 3p1=2, and 1g7=2. When revealing an increas-

ing number of uncertainty parameters, the evolutions of the

correlation coefficients and the scatterplot distributions can

clearly be seen. In particular, it was found that positive,

zero, and negative values appear in the correlation

coefficients.

To provide an overall investigation, we show the color-

coded plot of the calculated correlation coefficients

between single-particle levels with energy ei\0 for pro-

tons and neutrons in Fig. 10. As shown, the correlation

coefficients do not have the same values but cover a rather

wide range. It is certainly important to consider these

correlation effects when the single-particle levels with

energy uncertainties are taken as input data to conduct

further calculations.

4 Summary

Taking the 208Pb nucleus as the carrier, we investigated

the single-particle energy uncertainties and statistical cor-

relations of different levels owing to the uncertainty

propagation of independent model parameters, which are

important for further theoretical predictions, for example, a

K isomer calculation. The adjusted sensitivity coefficients

were introduced and discussed for three types of single-

particle levels. In addition, the overall standard deviations

Fig. 9 (Color online) Scatter

plots (with correlation

coefficients q) between three

pairs of arbitrarily selected

single-neutron energies,

1i13=2 
 1j15=2 (top), 1i13=2 

3p1=2 (middle), and 1g7=2 

1i13=2 (bottom), near the Fermi

surface in 208Pb. From left to

right, the uncertainties of an

increasing number of

parameters are considered as

indicated in the text
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0.8≤ρFig. 10 (Color online) Color-

coded plot of the calculated

correlation coefficients between

single-particle energy levels for

neutrons (a) and protons (b) in
208Pb
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of the single-particle levels in the Woods–Saxon nuclear

mean field were shown, and the evolution properties were

briefly discussed. It was also found that the correlation

coefficients involve a rather wide domain, which are

important for further theoretical uncertainty predictions

relying on single-particle levels. Note that the practical

energy uncertainties will depend on the practical standard

deviations of the model parameters during the further cal-

culations, whereas the evolution laws of parameter uncer-

tainty propagations and the correlation properties of single-

particle levels are still similar and valid. In a follow-up

study, we will further investigate the uncertainty propa-

gation of the model parameters with partial correlation

effects. It will also be interesting to extend this study to

other phenomenological or self-consistent models used in

nuclear physics, or even in other fields.
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