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Abstract With the two-flavor Nambu–Jona–Lasinio (NJL)

model, we carried out a phenomenological study on the

chiral phase structure, mesonic properties, and transport

properties of momentum-space anisotropic quark matter. To

calculate the transport coefficients we utilized the kinetic

theory in the relaxation time approximation, where the

momentum anisotropy is embedded in the estimation of both

the distribution function and relaxation time. It was shown

that an increase in the anisotropy parameter nmay result in a

catalysis of chiral symmetry breaking. The critical endpoint

(CEP) is shifted to lower temperatures and larger quark

chemical potentials as n increases, and the impact of

momentum anisotropy on the CEP temperature is almost the

same as that on the quark chemical potential of the CEP. The

meson masses and the associated decay widths also exhibit a

significant n dependence. It was observed that the tempera-

ture behavior of the scaled shear viscosity g=T3 and scaled

electrical conductivity rel=T exhibited a similar dip

structure, with the minima of both g=T3 and rel=T shifting

toward higher temperatures with increasing n. Furthermore,

we demonstrated that the Seebeck coefficient S decreases

when the temperature rises and its sign is positive, indicating

that the dominant carriers for converting the temperature

gradient to the electric field are up-quarks. The Seebeck

coefficient S is significantly enhanced with a large n for a

temperature below the critical temperature.

Keywords Heavy-ion collision � Momentum anisotropy �
NJL model � Chiral phase transition � Transport
coefficient � Quark matter

1 Introduction

The properties of strongly interacting matter described

by the quantum chromodynamics (QCD) in extreme con-

ditions of temperature T and density have aroused a ple-

thora of experimental studies in the last thirty years [1, 2].

The experiment studies performed at the Relativistic Heavy

Ion Collider (RHIC) in BNL and the Large Hadron Col-

lider (LHC) in CERN have revealed that a new deconfined

state of matter, the quark–gluon plasma (QGP), can be

created at high temperature. Further, the non-central heavy-

ion collisions produce the strongest magnetic fields and

orbital angular momenta, which can induce a number of

novel phenomena [3–5]. The lattice QCD calculation,

which is a powerful gauge invariant approach to investigate

the non-perturbative properties, has also confirmed that the

phase transition is a smooth and continuous crossover for

vanishing chemical potential [6, 7]. Owing to the so-called

fermion sign problem [8], lattice QCD simulation is limited

to low finite density [9, 10], even though several
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calculation techniques, such as the Taylor expansion

[11, 12], analytic continuations from imaginary to real

chemical potential [13, 14], and multi-parameter

reweighting method [15], have been proposed to address

this problem and improve the validity at high chemical

potential. More detailed reviews of lattice calculation can

be found in Refs. [16, 17]. Alternatively, one also can rely

on effective models, the Dyson–Schwinger equation

approach [18, 19] and the functional renormalization group

approach [20, 21], to study the chiral aspect of QCD for

finite baryon chemical potential lB. Currently, there are

various QCD inspired effective models, such as the

Nambu–Jona–Lasinio (NJL) model [22, 23], Polyakov-

loop enhanced NJL (PNJL) model [24, 25], Quark–Meson

(QM) model [26, 27], and Polyakov QM (PQM) model

[28, 29], which not only can successfully describe the

spontaneous chiral symmetry breaking and restoration of

QCD but also have been applied to explore the QCD phase

structure and internal properties of the meson at arbitrary T

and lB. These model calculations have predicted that at

high chemical potential, the phase transition is a first-order

phase transition, and with decreasing lB, the first-order

phase transition has to end at a critical end point (CEP) and

change into a crossover. At this CEP, the phase transition

is of second order. However, owing to various approxi-

mations adopted in the model calculations, there is no

agreement on the existence and location of the CEP in the

phase diagram. Furthermore, the rotation effects [30, 31],

magnetic field effects [32–35], finite-volume effects

[36–40], non-extensive effects [41, 42], external electric

fields [43–45], and chiral chemical potential effects

[46–49] have also been considered in the effective models

to provide a better insight into the phase transition of the

realistic QCD plasma.

Apart from the QCD phase structure information, the

transport coefficients, characterizing the non-equilibrium

dynamical evolution of QCD matter in heavy-ion collisions

[50–52], have also attracted significant attention. The shear

viscosity g, which quantifies the rate of momentum transfer

in a fluid with inhomogeneous flow velocity, has been

successfully used in the viscous relativistic hydrodynamic

description of the QGP bulk dynamics. The small shear

viscosity to entropy density ratio g=s can be extracted from

the elliptic flow data [53]. In the literature, there are vari-

ous frameworks for estimating the g of strongly interacting

matter, e.g., the kinetic theory within the relaxation time

approximation (RTA), QCD effective models [54–58], the

quasiparticle model (QPM) [59, 60], and the lattice QCD

simulation [61]. The electrical conductivity rel, as the

response of a medium to an applied electric field, has also

attracted attention in high energy physics. The presence of

rel not only can affect the duration and strength of

magnetic fields [62], but also is directly proportional to the

emissivity and production of soft photons [63, 64]. The

thermal behavior of rel has been estimated using different

approaches, such as the microscopic transport models

[65–67], lattice gauge theory simulation [68, 69], hadron

resonance gas model [70, 71], quasiparticle models

[72, 73], effective models [54, 74], string percolation

model [75], and holographic method [76]. Recently, studies

of electrical conductivity in QGP in the presence of mag-

netic fields have also been performed [77–79]. Another less

concerned but interesting coefficient is the Seebeck coef-

ficient (also called thermopower). When a spatial gradient

of temperature exists in a conducting medium, a corre-

sponding electric field can arise and vice versa, which is

the Seebeck effect. When the electric current induced by an

electric field can compensate with the current owing to the

temperature gradient, the thermal diffusion ends. Accord-

ingly, the efficiency of converting the temperature gradient

to an electric field in the open circuit condition is quantified

by the Seebeck coefficient S. In past years, the Seebeck

effect has been extensively investigated in condensed

matter physics. Very recently, the exploration has been

extended to the hot QCD matter. For example, the Seebeck

coefficient with and without magnetic fields has been

studied in both the hadronic matter [80, 81] and QGP

[82, 83]. In Ref. [84], the Seebeck coefficient has also been

estimated based on the NJL model, where the spatial gra-

dient of the quark chemical potential is considered in

addition to the presence of a temperature gradient.

In the initial stages of a HIC, the pressure gradient of the

created fireball along the beam direction (denoted as lon-

gitudinal z-direction) is significantly lower than that along

the transverse direction. After the rapid expansion of the

medium along the beam direction, the system becomes

much colder in the beam direction than the transverse

direction, which causes the QGP to possess a local

momentum anisotropy, and this anisotropy can survive

during the entire evolution of the medium [85]. In addition,

the presence of a strong magnetic field can also induce a

local anisotropy in the momentum space. Inspired by the

presence of momentum-space anisotropy in HICs, the pri-

mary objective of the present work is to study phe-

nomenologically its effect on the chiral phase structure,

mesonic properties, and transport coefficients in the SU(2)

NJL model. To incorporate the momentum anisotropy into

numerical calculations, we follow the anisotropic distri-

bution function parametrization method proposed by

Romatschke and Strickland [86], f anisoðpÞ ! f iso

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ nðp � nÞ2
q

Þ. Here, the isotropic momentum-space

distribution function of particle (f iso) is deformed by

rescaling one preferred direction in the momentum space
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with the unit vector n and introducing the directional-de-

pendent parameter n, which is used to quantify the degree of
momentum-space anisotropy. This method has been exten-

sively employed to study phenomenologically the impacts of

momentum anisotropy on various observables, such as

photon production [87, 88], parton self-energy [89, 90],

heavy-quark potential [91], and various transport coeffi-

cients [92–94]. The relativistic anisotropic hydrodynamics

(aHydro) models can provide a more accurate description of

non-equilibrium dynamics compared to other hydrodynam-

ical models [95]. As inmost previous studies, the focus of the

present work is on the weakly anisotropic medium (very

close to the equilibrium) for which jnj � 1 and the distri-

bution function can be expanded up to linear order in n. We

found that even for small values of anisotropy, the effective

quark mass and meson masses change significantly com-

pared to the equilibrium result. Unlike most momentum

anisotropy studies of transport coefficients in QGP, in which

the effect of momentum anisotropy is not considered in the

different particle interaction channels, in the present work,

we incorporated the momentum anisotropy to the estimation

of the relaxation time to better study the impact of n on

transport properties of quark matter near the phase transition

temperature region.

This paper is organized as follows: Sect. 2 provides a brief

review of the basic formalism of the two-flavor NJL model.

In Sect. 3 and Sect. 4, we present a brief derivation of the

expressions associated with the constituent quark mass and

meson mass spectrum in both an isotropic and anisotropic

medium. Section 5 includes the detailed procedure for

obtaining the formulae of momentum anisotropy-dependent

transport coefficients. In Sect. 6,we present the estimation of

the relaxation time for (anti-)quarks. The numerical results

for various observables are phenomenologically analyzed in

Sect. 7. In Sect. 8, the present work is summarized with an

outlook. The formulae for the squared matrix elements in

different quark-(anti-)quark elastic scattering processes are

presented in the Appendix.

2 Theoretical frame

In this work, we start from the standard two-flavor NJL

model, which is a purely fermionic theory owing to the

absence of all gluonic degrees of freedom. Accordingly,

the Lagrangian is given as [22]

L ¼ �wðio� m̂0Þwþ G½ð �wwÞ2 þ ð �wic5ŝwÞ2�; ð1Þ

where wð �wÞ stands for the quark (antiquark) field with two-

flavors (u, d) Nf ¼ 2 and three colors Nc ¼ 3. m̂0 denotes

the diagonal matrix of the current quark mass of up and

down-quarks, and we take m0 ¼ m0
u ¼ m0

d to ensure isospin

symmetry of the NJL Lagrangian. G is the effective

coupling strength of four-point fermion interaction in the

scalar and pseudoscalar channels. ŝ is the vector of the

Pauli matrix in the isospin space.

In the NJL model, under the mean field (or Hartree)

approximation [22, 23], the quark self-energy is momen-

tum-independent and can be identified as the constituent

quark mass mq, which acts as order parameter for charac-

terizing the chiral phase transition. For an off-equilibrium

system, the evolution of the space-time dependence of the

constituent quark mass in the real time formalism can be

obtained by solving the gap equation [96]

mq ¼ m0 � 2GiTriS\ðx; xÞ; ð2Þ

where S\ðx; yÞ ¼ ih �wðyÞwðxÞi with x ¼ ðt; xÞ is the real

time Green function in the coordinate space [97, 98], h. . .i
denotes the thermal average, and the trace runs over spin,

color, and flavor degrees of freedom. Transforming Eq. (2)

to the phase space with the help of Winger transformation

and introducing the quasiparticle approximation (see Ref.

[99] for details), the gap equation can be further written as

[96, 98–100]

mq ¼ m0 þ 4NfNc

Z

d3p

ð2pÞ3
mq

Ep

�

1� fqðx; pÞ � �f �qðx; pÞ
�

;

ð3Þ

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ m2
qðxÞ

q

is the quasi-quark energy. As

the NJL model is a non-renormalizable model owing to the

point-like four fermion interaction in the Lagrangian, an

ultraviolet cutoff K is used to regularize the divergent inte-

gral. In the non-equilibrium case, the space-time evolution of

the one-particle distribution function f ðx; pÞ in Eq. (3) is

described by the Boltzmann–Vlasov transport equation from

theNJLmodel in theHartree level [100–102]. By solving the

Vlasov equation together with the gap equation concur-

rently, the constituent quark mass affecting the space-time

dependence of f ðx; pÞ can be determined self-consistently.

To better understand the meson dynamics in HICs, it is

useful to study the structure of the meson propagation in

the medium. In the framework of the NJL model, mesons

are bound states of quarks and antiquarks (collective

modes), and the meson propagator can be constructed by

calculating the quark–antiquark effective scattering

amplitude within the random phase approximation (RPA)

[23, 96, 98]. Following Refs. [96, 98], the explicit form for

the pion (p) and the sigma meson (r) propagators in the

RPA reads as

DMðx; k0; kÞ ¼
2iG

1� 2GPMðx; k0; kÞ
: ð4Þ

All information of a meson is contained in the irreducible

one-loop pseudoscalar or scalar polarization function PM ,

where the subscript M corresponds to pseudoscalar (p) or
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scalar (r) mesons. The space-time dependence of the

polarization function in a non-equilibrium system is given

as [96, 98]

PM ¼NcNf

Z

d3p

4p3
1

Ep
½1� fqðx; pÞ � f �qðx; pÞ�

�
�

1� ðk20 � k2 � m2MÞ
2Ep�k

�

Ep þ Ep�k

k20 � ðEp þ Ep�kÞ2

� Ep � Ep�k

k20 � ðEp � Ep�kÞ2
��

:

ð5Þ

Here, mM denotes the real value of the bound meson energy,

and mM ¼ 0 ð2mqÞ for the p ðrÞ meson.

3 Constituent quark and meson in an isotropic
quark matter

In an expanding system (e.g., the dynamical process of

heavy-ion collisions), the space-time dependence in the

phase-space distribution function is hidden in the space-

time dependence of temperature and chemical potential.

However, for a uniform temperature and chemical poten-

tial, i.e., for a system in global equilibrium, the distribution

function is well defined and independent of space-time.

Therefore, in the equilibrium (isotropic) state, to investi-

gate the chiral phase transition and mesonic properties

within the NJL model, one can employ the imaginary-time

formalism. Actually, the results in Ref. [96] have indicated

that the real-time calculation of the closed time-path

Green’s function reproduces exactly the finite temperature

result of the NJL model obtained from the Matsubara’s

temperature Green’s function in the thermodynamical

equilibrium limit. In the following, we will briefly present

the procedure for the derivation of the polarization function

in the imaginary time formalism. In an equilibrium system,

mq, which is temperature- and quark chemical potential-

dependent, can be directly calculated from the self-con-

sistent gap equation in momentum space [22, 23]:

mq ¼ m0 þ 4GNfNc

Z

d3p

ð2pÞ3
mq

Ep

�

1� f 0q ðpÞ � �f
0

�qðpÞ
�

:

ð6Þ

We can see that by taking the thermal equilibrium distri-

bution functions (Fermi–Dirac distributions), Eq. (3) has

the same form as Eq. (6). The equilibrium distribution

function of (anti-)quark f 0qð �qÞ is given by

f 0qð �qÞðpÞ ¼ ½exp½ðEp � lqð �qÞÞb� þ 1��1; ð7Þ

where b ¼ 1=T is the inverse temperature of the system,

and a uniform quark chemical potential l � lu;d � �l �u; �d

is assumed. It is noted that the ultraviolet divergence is not

presented in the integrand containing Fermi–Dirac distri-

bution functions, so the momentum integral does not need

to be regularized for finite temperatures. In the equilibrium,

the meson propagator is given as [57]

DMðk0; kÞ ¼
2iG

1� 2GPMðk0; kÞ
; ð8Þ

where PM at an arbitrary temperature and quark chemical

potential is given by [103, 104]

PMðk0; kÞ ¼ �
NcNf
8p2

½ððmq � mqÞ2 � k20 þ k2Þ

� B0ðk0; k; l; T ;mqÞ þ 2Aðl; T;mqÞ�:
ð9Þ

Theminus (plus) sign refers to pseudoscalar (scalar) mesons.

The function A, which relates to the one-fermion-line inte-

gral, in the imaginary time formalism for finite temperatures

and quark chemical potentials is given as [103]

A ¼ 16p2

b

X

n

expðixnyÞ
Z

d3p

ð2pÞ3
1

ðixn þ lÞ2 � E2
p

; ð10Þ

where xn ¼ ð2nþ 1Þp=b are the fermionic Matsubara

frequencies and the sum of n runs over all positive and

negative integer values. It is to be understood that the limit

y ! 0 is to be taken after the Matsubara summation. The

function B0 in Eq. (9) relates to the two-fermion-line

integral. At finite l and T, B0 is defined as [103]

B0ðiml;k;l;T ;mqÞ¼
16p2

b

X

n

expðixnyÞ
Z

jpj\K

d3p

ð2pÞ3
1

ððixnþlÞ2�E2Þ
� 1

ððixn� imlþlÞ2�E02Þ
;

ð11Þ

where we have abbreviated E0 ¼Ep�k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp�kÞ2þm2
q

q

and E¼Ep for convenience, and after the Matsubara

summation on n is carried out, the complex frequencies iml
are analytically continued to their values on the real plane,

i.e., iml!k0� i� (�[0) with k0 being the zero component

of the associated four-momentum. The full calculations of

functions A and B0 at arbitrary values of temperature and

chemical potential can be found in Ref. [105]. After eval-

uating the Matsubara summation by contour integration in

the usual fashion [106], Eq. (10) is given as

A ¼ 8p2
Z

d3p

ð2pÞ3Ep

	

f 0q þ f 0�q � 1



; ð12Þ

where the Fermi–Dirac distribution function is introduced.

Similar to the treatment of function A, after Matsubara

summation over n and the Matsubara frequencies iml are
analytically continued to real values, Eq. (11) can be

rewritten in the following form:
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B0ðk0; k; l; T ;mqÞ ¼ 16p2
Z

d3p

ð2pÞ3
f 0q ðpÞ þ f 0�q ðpÞ � 1

2E

�
�

1

ðE þ imlÞ2 � ðE0Þ2
þ 1

ðE � imlÞ � ðE0Þ2
�

:

ð13Þ

Inserting Eqs. (12) and (13) to Eq. (9), we finally can

obtain the expression for PM in the equilibrium state,

which is formally the same as Eq. (5), except that the

distribution functions are ideal Fermi–Dirac distribution

functions rather than space-time-dependent distribution

functions.

4 Constituent quark and meson in a weakly
anisotropic medium

As mentioned in the introduction, the consideration of

momentum anisotropy induced by rapid expansion of the hot

QCDmedium for existing phenomenological applications is

mostly achieved by parameterizing the associated isotropic

distribution functions. To proceed with the numerical cal-

culation, a specific form of anisotropic (non-equilibrium)

momentum distribution function is required. In this work,

we utilized the Romatschke–Strickland (RS) form [86] in

which the system exhibits a spheroidal momentum aniso-

tropy, and the anisotropic distribution was obtained from

an arbitrary isotropic distribution function by removing the

particle with a momentum component along the direction

of anisotropy, f anisoðpÞ ¼ f isoð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ nðp � nÞ2
q

Þ, where n
and n are, respectively, the anisotropy direction and aniso-

tropy parameter. As in previous studies [107], we shall

restrict ourselves here to a plasma close to local thermal

equilibrium, i.e., close to isotropy in the momentum space.

Accordingly, the explicit form of anisotropic momentum

distribution function in the local rest frame can be written as

f anisoðpÞ ¼ 1

exp½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ nðp � nÞ2 þ m2
q

q

� l0qð �qÞÞ=T 0� þ 1
;

ð14Þ

It is worth noting that for the anisotropic (non-equilibrium)

matter, the T 0 and l0 appearing in Eq. (14) lose the usual

meaning of T and l in the equilibrium system and may

have dimensionful scales related to the mean particle

momentum [108]. If we assume the system to be very close

to the equilibrium (in the small anisotropy limit), then the

parameters T 0 and l0 still could be taken to be the usual T

and l, respectively, as performed in previous studies

[92–94, 107]. The anisotropy parameter n is defined as

n ¼ hp2?i=ð2hp2kiÞ � 1, where p? ¼ jp� ðp � nÞ � nj and

pk ¼ p � n are the momentum components of particles

perpendicular and parallel to n, respectively. As the precise

time evolution of n is still an open question, we assume that

the anisotropy parameter n in a local anisotropic system is

constant and independent of time, where �1\n\0 cor-

responds to a contraction of momentum distribution along

the direction of anisotropy and n[ 0 corresponds to a

stretching of momentum distribution along the direction of

anisotropy. In Eq. (14), the three-velocity of partons and

anisotropy unit vector are selected as

n ¼ðsin v; 0; cos vÞ; ð15Þ

p ¼pðsin h cos/; sin h sin/; cos hÞ; ð16Þ

where v is the angle between p and n, and p � jpj
throughout the computations. With this choice, the

spheroidally anisotropic term nðn � pÞ2 in Eq. (14) can be

written as nðn � pÞ2 ¼ np2ðsin v cos/ sin hþ cos v cos hÞ2 ¼
ncðh;/; vÞ. We further assume that n points along the beam

(z) axis, i.e., n ¼ ð0; 0; 1Þ. It is essential to note that we shall
restrict ourselves here to a plasma close to the equilibrium

state and have small anisotropy around the equilibrium state.

Therefore, in the weak anisotropy limit (jnj � 1), one can

expand Eq. (14) around the isotropic limit and retain only the

leading order in n. Accordingly, the anisotropic momentum

distribution function in the local rest frame can be further

written as [107]

f anisoðpÞ ¼ f 0 � nðn � pÞ2

2ET
f 0ð1� f 0Þ; ð17Þ

where the second term is the anisotropic correction to the

equilibrium distribution, which is also related to the lead-

ing-order viscous correction to the equilibrium distribution

in viscous hydrodynamics. For a fluid expanding one-di-

mensionally along the direction n in the Navier–Stokes

limit, the explicit relation is given as [109, 110]

n ¼ 10

Ts
g
s
; ð18Þ

which indicates that the non-zero shear viscosity (finite

momentum relaxation rate) in an expanding system can

also explicitly lead to the presence of momentum-space

anisotropy. At the RHIC energy with the critical temper-

ature Tc 	 160 MeV, s 	 6 fm/c and g=s ¼ 1=4p, we can

obtain n 	 0:3. In principle, for the non-equilibrium

dynamics of the chiral phase transition, a self-consistent

numerical study must be performed by solving the Boltz-

mann–Vlasov transport equation together with gap equa-

tion in terms of the space-time-dependent quark

distribution as mentioned in Sect. 2. However, because the

non-equilibrium distribution function in the local rest

frame of weakly anisotropic systems has a specific form

and the temperature and chemical potential appearing in
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Eq. (17) are still considered as free parameters, the space-

time evolution is not addressed. Therefore, in the non-

equilibrium states possessing small momentum space ani-

sotropy, just by solving the gap equation with anisotropic

momentum distribution, i.e., Eq. (17), it is possible for us

to investigate phenomenologically the impact of momen-

tum anisotropy on the temperature and quark potential

dependence of the constituent quark mass. Accordingly,

the gap equation, i.e., Eqs. (2) or (6), is modified as

0 ¼
�

2NcNfG

Z 1

0

p2dp

p2
mq

E

�

� f 0q � f 0�q þ 1þ
p2nFp
6ET

��

þ m0 � mq:

ð19Þ

Here, we have abbreviated Fp ¼ f 0q ð1� f 0q Þ þ f 0�q ð1� f 0�q Þ
for convenience. The momentum anisotropy is also

embedded in the study of mesonic properties by substi-

tuting the anisotropic momentum distribution in the A

function part of Eq. (5), thus obtaining

A ¼ 4

Z

p2dp

E

�

f 0q þ f 0�q � 1� np2Fp

6ET

�

: ð20Þ

In the n ! 0 limit, the above equation reduces to Eq. (12).

Similar to the treatment of function A, the weak momen-

tum anisotropy effects can enter the B0 function (as given

in Eqs. (5) or (13)) by using the anisotropic momentum

distribution. Without loss of generality, we selected the

coordinate system in such a way that k is parallel to the z-

axis, i.e.,

k ¼ð0; 0; kÞ; jkj � k: ð21Þ

We first discuss a simple case, i.e., k ¼ 0, k0 6¼ 0. The

computation of function B0 in a weakly anisotropic med-

ium is trivial, viz,

B0s¼8p2
Z

d3p

ð2pÞ3E
ðf anisoq ðpÞþ f aniso�q ðpÞ�1Þ

� 1

k20�2Ek0þ i�sgnðk0Þ
þ 1

k20þ2Ek0� i�sgnðk0Þ

� �

:

ð22Þ

In the integrand of the above equation, there are two poles

at E¼E0 ¼
k0=2 if m�E0. Applying the Cauchy formula

lim�!0

1

x� i�
¼ P

1

x
þ ipdðxÞ; ð23Þ

where P denotes the Cauchy principal value. The function

B0 can finally be rewritten as

B0 ¼8P

Z

p2dp

Eðk20 � 4E2Þ ½f
0
q ðpÞ þ f 0�q ðpÞ � 1� np2

6ET
Fp�

� ip
2

k0

��

f 0q ðz0Þ þ f 0�q ðz0Þ � 1� nz20
3k0T

Fz0

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk0
2
Þ2 � m2

q

r

Hðk
2
0

4
� m2

qÞ
�

:

ð24Þ

Here, z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk0
2
Þ2 � m2

q

q

, and H is the step function to

ensure that the imaginary part appears only for k0=2[mq.

Next, in the case of k[ 0; k0 6¼ 0, the expression for

function B0 is slightly complicated and can be written as

B0 ¼
1

k

Z 1

0

pdp

E
ðf anisoq ðpÞ þ f aniso�q ðpÞ � 1ÞÞ

�
Z 1

�1

dx
	 1

xþ ðk20 þ 2k0E � k2Þ=2pk � i�sgnðk0Þ

þ 1

xþ ðk20 � 2k0E � k2Þ=2pk þ i�sgnðk0Þ



¼ Ban0 þ Biso0 ;

ð25Þ

with the abbreviation x ¼ cos h. The isotropic part Biso0

reads as

Biso0 ¼ 1

k

Z 1

0

pdp

E

�

f 0q þ f 0�q � 1

�

�
�

log

�

�

�

�

ðk20 � k2 þ 2pkÞ2 � ð2k0EÞ2

ðk20 þ k2 � 2pkÞ2 � ð2k0EÞ2

�

�

�

�

þ ipðHð2pk � jk20 þ 2k0E � k2jÞ

�Hð2pk � jk20 � 2k0E � k2jÞÞ
�

:

ð26Þ

The anisotropic part Ban0 reads as

Baniso0 ¼ � 1

k

Z 1

0

pdp

E

np2Fp

2ET

��

� ðk20 � k2 þ 2k0EÞ
pk

þ
�

k20 � k2 þ 2k0E

2pk

�2

log

�

�

�

�

k20 þ 2k0E � k2 þ 2pk

k20 þ 2k0E � k2 � 2pk

�

�

�

�

� ðk20 � k2 � 2k0EÞ
pk

þ
�

k20 � k2 � 2k0E

2pk

�2

log

�

�

�

�

k20 � 2k0E � k2 þ 2pk

k20 � 2k0E � k2 � 2pk

�

�

�

�

�

þ ip

�

k20 þ 2k0E � k2

2pk
Hð2pk � jk20 þ 2k0E � k2jÞ

� k20 � 2k0E � k2

2pk
Hð2pk � jk20 � 2k0E � k2jÞ

��

:

ð27Þ

When k0 ¼ 0, the imaginary part of Eq. (25) vanishes.

Therefore, the real and imaginary parts of meson
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polarization functions for different cases in a weakly ani-

sotropic medium are given by

RePMðk0; 0Þ ¼ NfNcP

Z 1

0

dpp2

p2E
�

1� f 0q ðpÞ � f 0�q ðpÞ þ
np2

6ET
Fp

�

E2 � m2M=4

E2 � ðk0=2Þ2
;

ð28Þ

ImPMðk0;0Þ¼
NcNf
8pk0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20�4m2
q

q

ðk20�m2MÞ
�

1� f 0q ðz0Þ� f 0�q ðz0Þ þ z20n
3k0T

Fz0

�

Hðk20�4m2
qÞ;

ð29Þ

RePMð0; kÞ ¼
NcNf
p2

Z 1

0

dpp2

E
ð1þ k2 þ m2M

4pk
ln

�

�

�

�

k � 2p

k þ 2p

�

�

�

�

Þ
�

1� f 0q ðpÞ � f 0�q ðpÞ
�

þ NcNf

p2

Z 1

0

np2dp
E2T

Fp

�

p2

6
þ k2 þ m2M

4

�

1þ k2

4pk
ln

�

�

�

�

k � 2p

k þ 2p

�

�

�

�

��

:

ð30Þ

Similar to the treatment in Eq. (6), the vacuum divergence

in Eqs. (28)–(30) also needs to be regularized. When the

effect of momentum anisotropy is turned off (n ¼ 0),

Eqs. (28)–(30) are reduced to the results of Ref. [57] in

thermal equilibrium. Once the propagators of mesons are

given, their masses can be determined by the pole in

Eq. (8) at zero three-momentum, i.e.,

1� 2GRePMðmp;r; 0Þ ¼ 0: ð31Þ

The solution is a real value for mp;r\2mq, and a meson is

stable. However, for mp;r [ 2mq, a meson dissociates to its

constituents and becomes a resonant state. Accordingly, the

polarization function is a complex function and PM has an

imaginary part that is related to the decay width of the

resonance as CM ¼ ImPMðmp;r; 0Þ=mp;r.

5 Transport coefficients in an anisotropic quark
matter

In this section, we study the effects due to the local ani-

sotropy of the plasma in the momentum space on the trans-

port coefficients (shear viscosity, electrical conductivity, and

Seebeck coefficient). The calculation is performed in the

kinetic theory that is widely used to describe the evolution of

the non-equilibrium many-body system in the dilute limit.

Assuming that the system has a slight deviation from the

equilibrium, the relaxation time approximation (RTA) can

be reasonably employed. The momentum anisotropy is

encoded in the phase-space distribution function, which

evolves according to the relativisticBoltzmann equation.We

provide the following procedures for deriving the n-depen-
dent transport coefficients.

5.1 Shear viscosity

The propagation of a single quasiparticle with temper-

ature- and chemical potential-dependent mass in an ani-

sotropic medium is described by the relativistic

Boltzmann–Vlasov equation [101]
�

plol þ
1

2
olm2

ao
ðpÞ
l

�

faðx; pÞ ¼ C½faðx; pÞ�; ð32Þ

where 1
2
olm2

a acts as the force term attributed to the

residual mean field interaction. The right-hand side of

Eq. (32) is the collision term. Considering that the system

has a small departure from the equilibrium due to an

external perturbation, the collision term within the RTA

can be given as

C½f � ’ � plul½faðx; pÞ � f 0a ðx; pÞ�
sa

¼ � pluldfa
sa

; ð33Þ

in which sa denotes the relaxation time for particle species

a and can quantify how fast the system reaches the equi-

librium again. Near equilibrium, the distribution function

can be expanded about a local equilibrium distribution

function for the quarks as

fa ¼ f 0a ðx; pÞ þ dfa; ð34Þ

with f 0a ðx; pÞ ¼ ½expððumðxÞpm � laðxÞÞbðxÞÞ þ 1��1
, where

pm � ðEa; pÞ is the particle four-momentum, and um ¼
cmð1; uÞ is the fluid four-velocity with cm ¼ ð1� u2Þ1=2. dfa
in Eq. (33) is the deviation of the distribution function from

the local equilibrium due to the external disturbance, which

up to first-order in the gradient expansion can be read as

dfa ¼ � sa
plul

�

plolf
0
a þ ma

dma

dT
ðolTÞoðpÞl f 0a

�

; ð35Þ

where the four-derivative can be decomposed into

ol � o=ol � ulDþrl, and D � ulol and rm � Dlmom
denote the time derivative and spatial gradient operator in

the local rest frame, respectively. glm ¼
diagð1;�1;�1;�1Þ is the metric tensor, and Dlm ¼ glm �
ulum is the projection operator orthogonal to ul. In the

presence of weak momentum anisotropy, the associated

covariant version of the weakly anisotropic function f ana for

particle species a can be written as

f anisoa ðx; pÞ ¼ 1

exp½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpmumÞ2 þ nðpmVmÞ2
q

� laÞb� þ 1

;

ð36Þ
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	 f 0a � nðpmVmÞ2

2Tpmum
f 0a ð1� f 0a Þ; ð37Þ

where Vm ¼ ð0; nÞ is defined as the anisotropy vector.

Employing Eq. (37) in Eq. (35), dfa can be decomposed

into two parts:

dfa ¼ df isoa þ df anisoa : ð38Þ

The first term on the right-hand side is

df isoa ¼ sa
plul

f 0a ð1� f 0a Þ
�

plpmbðulDum þrlumÞ

þ plðplulÞðulDbþrlbÞ þ
dm2

a

dT2
DT

�

:

ð39Þ

Employing the equation of motion in ideal hydrodynamics

and ideal thermodynamic relations, df isoa can be rewritten

as

df isoa ¼ sa
plul

f 0a ð1� f 0a Þ
�

plpm

T
rlm

þ
�

ððplulÞ2 � T2 dm
2
a

dT2
Þc2s þ

1

3
Dlmp

lpm
�

h
T

�

;

ð40Þ

with h ¼ oau
a and c2s being the expansion rate of the fluid

and squared sound velocity in the medium, respectively.

The velocity stress tensor has the usual definition:

rlm ¼ 1
2
DlaDmbðraub þrbua � 1

3
DlmhÞ. After tedious cal-

culations, one can obtain the second term in Eq. (38):

df anisoa ¼ðpmVmÞ2nb
2pmum

ð2f 0a � 1Þdf isoa

� ðpmVmÞ2n
2ðpmumÞ2

�

plpmbðulDum þrlumÞ

� plðplulÞðulDbþrlbÞ �
dm2

a

dT2
DT

�

� sa
plul

f 0a ð1� f 0a Þ

¼ ðpmVmÞ2nb
2pmum

ð2f 0a � 1Þdf isoa

� ðpmVmÞ2n
2ðpmumÞ2

sa
plul

f 0a ð1� f 0a Þ
�

plpm

T
rlm

�
�

ððplulÞ2 � T2 dm
2
a

dT2
Þc2s þ

1

3
Dlmp

lpm
�

h
T

�

:

ð41Þ

Allowing the system to be slightly out of equilibrium, the

energy–momentum tensor Tlm can be expanded as

Tlm ¼ Tlm
0 þ Tlm

diss
, where Tlm

0 is the ideal perfect fluid

form, and Tlm

diss
is the dissipative part of the energy–

momentum tensor. In the hydrodynamical description of

hot QCD matter, the dissipative part of the energy–mo-

mentum tensor up to the first order in the gradient expan-

sion has the following form [111]:

Tlm

diss
¼ plm �PDlm; ð42Þ

where plm and P are the shear stress tensor and bulk vis-

cous pressure, respectively. In present work, our focus is

the shear viscosity component only. In the kinetic theory,

the first-order shear stress tensor plm can be constructed in

terms of the distribution functions

plm ¼
Z

d3p

ð2pÞ3
1

u � pD
lm
/cp

/pcdf : ð43Þ

Here, the double projection operator is defined as

Dlm
/c ¼ 1

2
ðDl

/D
m
c þ Dl

cD
m
/Þ � 1

3
DlmD/c, which can project any

rank-2 Lorentz tensor onto its transverse (to ul) and

traceless part. Inserting Eqs. (38)–(41) to Eq. (43) and

comparing with the first-order Navier–Stokes equation

plm ¼ 2grlm [112], in the rest frame of the thermal system

with ul � ð1; 0Þ and pmum ¼ Ea, we finally obtain the

expression of the n-dependent shear viscosity of particle

species a,

ga ¼� nda
180T2

Z

dp

p2
sap8

E3
a

f 0a ð1� f 0a Þð1� 2f 0a þ T

Ea
Þ;

þ da
30T

Z

dp

p2
sap6

E2
a

f 0a ð1� f 0a Þ;
ð44Þ

which is consistent with the result from Ref. [92]. For a

system consisting of multiple particle species, the total

shear viscosity is given as g ¼
P

a ga. For SU(2) light

quark matter, a ¼ u; d; �u; �d and the spin-color degeneracy

factor reads explicitly as da ¼ 2Nc.

5.2 Electrical conductivity and Seebeck coefficient

We also investigate the effect of momentum anisotropy

on the electrical conductivity and thermoelectric coeffi-

cient. Under the RTA, the relativistic Boltzmann–Vlasov

equation for the distribution function of single-quasiparti-

cle of charge ea in the presence of an external electro-

magnetic field is given by
�

plol þ
�

1

2
olm2

a þ eaF
lmpm

�

oðpÞl

�

fa ¼ � pluldfa
sa

; ð45Þ

where Flm is the electromagnetic field strength tensor. We

only consider the presence of an external electric field,

Fi0 ¼ �F0i ¼ E ¼ ðE; 0; 0Þ. It is convenient to work in the

local rest frame of plasma, and under the steady-state

assumption (fa does not depend on time explicitly, ofa
ot=0),

Eq. (45) can be given by [84]
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va � rfa þ ðeaE �rEaÞ �
ofa
op

¼ � dfa
sa

; ð46Þ

where we have used of the chain rule op0

op
o
op0

þ o
op ! o

op. ea is

the electric charge of particle species a, and va ¼ oEa=op

is its velocity. To solve Eq. (46), we assume that the

deviation of the distribution function in an anisotropic

medium satisfies the following linear form:

dfa ¼ �saðeaE � oEa

ox
Þ � of

aniso
a

op
� sava �

of anisoa

ox
: ð47Þ

The spatial gradient of the equilibrium isotropic distribu-

tion oxf
0
a in the presence of a medium-dependent quasi-

particle mass can be expressed in the following linear form:

oxf
0
a ¼ �f 0a ð1� f 0a Þ oxð

Ea

T
Þ � oxð

la
T
Þ

� �

; ð48Þ

where la ¼ tal denotes the chemical potential of particle

species a and ta ¼ þ1ð�1Þ for the quark (antiquark).

Considering l to be homogeneous in space and a temper-

ature gradient only existing along the x-axis, and inserting

Eq. (47) into Eq. (46), the perturbative term dfa in an

anisotropic medium can then be written as

dfa ¼HasaðeaEvxÞ � Gasaoxð
la
T
Þvx

� nðp � nÞ2

EaT
f 0a ð1� f 0a ÞsaoxEa:

ð49Þ

The expressions of Ha and Fa in the above equation are as

follows, respectively:

Ha ¼
1

T
f 0a ð1� f 0a Þð1þ ncðh;/; vÞÞ

� np2cðh;/; vÞ
2EaT2

f 0a ð1� f 0a Þ 1� 2f 0a þ T

Ea

� �

;

ð50Þ

Ga ¼
1

T2
f 0a ð1� f 0a Þ �

np2cðh;/; vÞ
2EaT3

ðEa � laÞ

� f 0a ð1� f 0a Þ 1� 2f 0a � T

Ea � la

� �

:

ð51Þ

In the linear response theory, the general formula for the

electric current density Ja due to particle species a in

response to an external electric field (E) and temperature

gradient (rxT) is given by [113]

Ja ¼ rel;aðE � SarxTÞ; ð52Þ

where rel;a and Sa are the electrical conductivity and See-

beck coefficient of the a-th particle, respectively. In terms

of the distribution function, Ja within the kinetic theory can

be written as

Ja ¼ eada

Z

d3p

ð2pÞ3
vadfa: ð53Þ

Finally, the expressions for rel;a and Sa in the weakly

anisotropic medium are, respectively, obtained as follows:

rel;a ¼
e2adasa
6T

Z

dp

p2
p4

E2
a

f 0a ð1� f 0a Þ 1þ n
3

� �

� ne2adasa
36T2

Z

dp

p2
p6

E3
a

f 0a ð1� f 0a Þ 1� 2f 0a þ T

Ea

� �

;

ð54Þ

and

Sa ¼
1

rel;a

�

eadasa
6T2

Z

dp

p2
p4

E2
a

ðEa � laÞf 0a ð1� f 0a Þ

� eadansa
36T3

Z

dp

p2
p6

E3
a

ðEa � laÞf 0a ð1� f 0a Þ

� 1� 2f 0a � T

ðEa � laÞ

� ��

¼ aa
rel;a

;

ð55Þ

where aa is the thermoelectric conductivity due to particle

species a. In the isotropic limit n ! 0, Eqs. (54)–(55)

reduce to the formulae in the equilibrium. In condensed

physics, a semiconductor can exhibit either electron con-

duction (negative thermopower) or hole conduction (posi-

tive thermopower). The total thermopower in a material

with different carrier types is given by the sum of these two

contributions weighted by their respective electrical con-

ductivity values [114, 115]. Inspired by this, the total

Seebeck coefficient in a medium composed of light quarks

and antiquarks can be given as

S ¼
P

a Sarel;a
P

a rel;a
¼

P

a aa
P

a rel;a
¼ a

rel
; ð56Þ

where the fractional electric charges of up and down (anti-

)quarks are given explicitly by eu ¼ �e �u ¼ 2e=3 and

ed ¼ �e �d ¼ �e=3, where the electric charge reads e ¼
ð4pasÞ1=2 with the fine structure constant as ’ 1=137.

6 Computation of the relaxation time

To quantify the transport coefficients, one needs to

specify the relaxation time. In present work, the scattering

processes of (anti)quarks through the exchange of mesons

are encoded into the estimation of the relaxation time.

The relaxation times of (anti)quarks are microscopically

determined by the thermal-averaged elastic scattering cross

section and particle density. For light quarks, the relaxation

time in the RTA can be written as [57]
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s�1
l ðT; lÞ ¼n �q½�ru �u!u �u þ �ru �u!d �d þ �ru �d!u �d�

þ nq½�rud!ud þ �ruu!uu�;
ð57Þ

where the number density of (anti-)quarks in a weakly

anisotropic medium is given as nqð �qÞ ¼ dl
R

d3p

ð2pÞ3 f
an
qð �qÞ, with

dl ¼ d�l ¼ 2Nc denoting the degeneracy factor. The

momenta of the colliding particles for the elastic scattering

process aðp1Þ þ bðp2Þ ! cðp3Þ þ dðp4Þ obey the relation

p1 þ p2 ¼ p3 þ p4 ¼ 0, and we use the notation jp1j ¼
jp2j ¼ p for convenience. In the center-of-mass (cm)

frame, the Mandelstam variables s, t, u are given by

s ¼4m2
q þ 4p2; t ¼ �2p2ð1� cos hpÞ;

u ¼� 2p2ð1þ cos hpÞ;
ð58Þ

where hp is the scattering angle in the c.m. frame. The Man-

delstam variables hold the relation uþ sþ t ¼ 4m2
q. �rab!cd

denotes the thermal-averaged elastic scattering cross section

in the weakly anisotropic system, which can be written as

�rab!cd ¼
Z 1

s0

ds

Z tmax

tmin

dt
d�rab!cd

dt
sin2 hp

Z 1

�1

dx3

� ð1� f anisoc ðpcm; l; x3ÞÞ
Z 1

�1

dx4

� ð1� f anisod ðpcm; l; x4ÞÞLðs; l; x1; x2Þ;

ð59Þ

with ð1� f anc;d Þ denoting the Pauli-blocking factor for the

fermions due to the fact that some of the final states are

already occupied by other identical (anti-)quarks. d �r
dt ¼

1
16psðs�4m2

qÞ
j �Mj2 is the differential scattering cross section,

with j �Mj2 denoting the squared matrix element of a specific

scattering process. The formulae of the squared matrix

elements for various scattering processes are presented in

the Appendix. The integration limits of t are tmax ¼ 0 and

tmin ¼ �4p2cm ¼ �ðs� 4m2
qÞ, with pcm ¼

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s� 4m2
q

q

Þ=2 denoting the momentum in the c.m. frame.

The kinematic boundary of s reads s0 ¼ 4m2
q. The scatter-

ing weighting factor sin2 hp ¼
�4tðsþt�4m2

qÞ
ðs�4m2

qÞ
2 is introduced to

exclude the scattering processes with a small initial angle

because the large angle scattering dominates in the momen-

tum transport process [116]. In the c.m. frame, the leading-

order anisotropic distribution function can be rewritten as

f anisoðpcm;l; xÞ ¼ f 0ðpcm; lÞ

� p2cmnx2

2EcmT
f 0ðpcm; lÞð1� f 0ðpcm; lÞÞ;

ð60Þ

where Ecm ¼ s�m2
qþm2

q

2
ffiffi

s
p ¼

ffiffi

s
p

=2. In Eq. (59), L denotes the

probability of finding a quark-(anti)quark pair with the

center of mass energy
ffiffi

s
p

in the anisotropic medium, and it

is given by

L ¼C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs� 4m2
qÞ

q

f anisoa ðpcm; l; x1Þf anisob ðpcm; l; x2Þ

� vrelðsÞ;
ð61Þ

where vrelðsÞ ¼
ffiffiffiffiffiffiffiffiffiffi

s�4m2
q

s

q

is the relative velocity between

two incoming particles in the c.m. frame; C is the nor-

malization constant, which is determined from the

requirement that
R1
s0

ds
R 1

�1
dx1

R 1

�1
dx2L ¼ 1, where x1 ¼

cos h1 and x2 ¼ cos h2, with hi being the angle between pi
and n and x1 � �x3, x2 � �x4. Applying the above for-

mula of relaxation time to Eqs. (44), (54), and (55), we can

calculate the transport coefficients in the QCD medium and

study their sensitivity to the momentum anisotropy.

7 Results and discussion

Throughout this work, the following parameter set is

used: m0 ¼ m0;u ¼ m0;d ¼ 5:6 MeV, GK2 ¼ 2:44 and

K ¼ 587:9 MeV. These values are taken from Ref. [117],

where these parameters are determined by fitting quantities

in the vacuum (T ¼ l ¼ 0 MeV). At T ¼ 0, the chiral

symmetry is spontaneously broken and one obtains the

current pion mass m0;p ¼ 135 MeV, pion decay constant

fp ¼ 92:4 MeV, and quark condensate

�hwwi1=3 ¼ 241 MeV.

In the NJL model, the constituent quark mass is a good

indicator and an order parameter for analyzing the

dynamical feature of chiral phase transition. In the

asymptotic expansion-driven momentum anisotropic sys-

tem, the anisotropy parameter n is always positive owing to
the rapid expansion along the beam direction. However, in

the presence of a strong magnetic n, it becomes negative

because of the reduction in transverse momentum due to

Landau quantization. As we restrict the analysis to only a

weakly anisotropic medium, the anisotropy parameter we

address here is artificially taken as n ¼ �0:3; 0:0; 0:3 to

investigate phenomenologically the effect of n on various

quantities. In Fig. 1a, we show the thermal behavior of the

light constituent quark mass mq for vanishing quark

chemical potential at different n. For low temperature, mq

remains approximately constant at (mq 	 400 MeV), and

then, with increasing temperature mq, it continuously drops

to near zero. The transition to small mass occurs at higher

temperature for a higher value of n. These phenomena

imply that at zero chemical potential, the restoration of the
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chiral symmetry (the chiral symmetry is not strictly

restored because the current quark mass is nonzero) in an

(an-)isotropic quark matter takes place as crossover phase

transition, and an increase in n can lead to a catalysis of

chiral symmetry breaking.

In this work, the chiral critical temperature, Tc, was

determined by the peak location of the associated chiral

susceptibility vch, which is defined as vch ¼
�

�

dmq

dT

�

�. We

stress that the criterion of obtaining the chiral critical tem-

perature is different in different studies. Because of some

shortcomings of the NJL model, such as parameter ambi-

guity, nonrenormalization, and the absence of gluonic

dynamics, the value of Tc in the present work is not expected

to describe the lattice QCD result quantitatively. However,

these shortcomings cannot affect our present qualitative

results. The temperature dependence of chiral susceptibility

vch for different n at l ¼ 0 MeV is plotted in Fig. 1b. We

observe that Tc exhibits a significant n dependence. As n
increases, Tc shifts toward higher temperatures and the

height of the peak decreases. The locations of Tc for n ¼
�0:3; 0; 0:3 are � 180 MeV, 188 MeV, and 197 MeV,

respectively,whichmeans a change of approximately 10% in

temperature. Actually, the in-medium meson masses also

can be regarded as a signature of chiral phase transition. In

(a)

(b)

Fig. 2 (Color online) a Double mass of the constituent quarks 2mq

(gray lines), p meson mass (blue lines), and r meson mass (red lines)

as a function of temperature at l ¼ 0 GeV for different anisotropy

parameters n. b Temperature dependences of p (blue lines) and r (red

lines) meson decay widths for different n. The long dashed lines,

dashed lines, and solid lines represent the results for n ¼ �0:3, n ¼ 0,

and 0.3, respectively, with the corresponding Mott temperatures

approximately given by 187 MeV, 196 MeV, and 206 MeV

(a)

(b)

Fig. 1 (Color online) (a) Temperature dependence of the constituent

quark mass mq at l ¼ 0 MeV for different fixed anisotropy param-

eters. (b) Chiral susceptibility vch at l ¼ 0 MeV for different fixed

anisotropy parameters. The broad dashed lines, dashed lines, and solid

lines correspond to the results for n ¼ �0:3, n ¼ 0, and 0.3,

respectively
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Fig. 2a, we display the variation of p and r meson masses

with temperature for different n at l ¼ 0 MeV. As can be

observed, the pmass remains approximately constant up to a

particular temperature, whereas the r mass first decreases

and then increases. As temperature increases further, the

difference between the p mass and r mass decreases and

finally vanishes, where r and p mesons are degenerate and

become nonphysical degrees of freedom,which indicates the

restoration of chiral symmetry. Further, before p and r
meson masses emerge, the p mass decreases as n increases

beyond Tc, whereas the r mass first increases and then

decreases with the increase in n. Our result slightly differs

from that in Ref [40], in which the NJL model is used for a

quark matter of finite size. The study shows that below the

critical temperature, the p mass enhances as the system size

decreases, whereas the r mass first remains unchanged and

then increases. We also see that at a certain temperature, the

double constituent quark mass (2mq) is equal to the p mass,

so the pion meson is no longer a bound state but only a q�q

resonance and obtains a finite decay width. Accordingly, the

Mott transition temperature by the definition mpðTMottÞ ¼
2mqðTMottÞ can be obtained. The Mott temperatures for

n ¼ �0:3; 0, and 0.3 turn out to be � 187 MeV, 196 MeV,

and 206 MeV, respectively, which are slightly higher than

the correspondingTc. In the vicinity of theMott temperature,

the r meson features its minimal mass. In Fig. 2b, we illus-

trate the variation in the decay widths of both r and pmesons

with temperature for different n. As can be observed, the

decay width of the r meson, Cr, is finite in the entire tem-

perature range, whereas the decay width of the pmeson, Cp,

starts after the Mott temperature. At high temperature, the

merging behaviors of the decay widths for different mesons

are also observed.With the increase in n, the decay widths of
mesons are reduced.

We continue the analysis in the finite quark chemical

potential case to investigate the effect of momentum ani-

sotropy on the phase boundary and CEP position. First, we

display the temperature- and quark chemical potential-de-

pendence of constituent quark mass mq for different ani-

sotropy parameters, as shown in Fig. 3. We can observe

that at a small l, mq continuously decreases with increasing

T, whereas mq has a significant discontinuity or a sharp

drop along the T-axis at sufficiently high l, which is usu-

ally considered as the appearance of a first-order phase

transition. To visualize the phase diagram, we use the

significant divergent of vch at sufficiently high chemical

potential as the criterion for a first-order phase transition,

as shown in Fig. 4. With the decrease in l, the first-order

phase transition terminates at a CEP, where the phase

transition is expected to be of second order. As l decreases

further, the maximum of the chiral susceptibility (vch) as
the crossover criterion. The full chiral boundary lines in the

(l-T) plane for three different values of n are displayed in

Fig. 5. We observe that as n increases, the phase boundary

shifts toward higher quark chemical potentials and higher

temperatures. We observe that the CEP appears in the low

temperature and high chemical potential regions. Once the

effect of momentum anisotropy (n[ 0) is taken into

account, the rapid expansion and fast cooling of the created

fireball along the beam direction make the temperature of

the anisotropic system lower than that of the isotropic

system under the same conditions. By modifying the dis-

tribution function in the gap equation, we can study the

influence of momentum anisotropy on the position of the

CEP. It is noted that the criteria for determining the CEP

position remain the same for both isotopic and anisotropic

systems. Therefore, as n increases, the momentum com-

ponent (temperature) in the anisotropic distribution

Fig. 3 (Color online) Three-dimensional plot of the constituent quark mass mq with respect to temperature and quark chemical potential for

different anisotropy parameters (n ¼ �0:3; 0; 0:3)
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function f isoð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ nðp � nÞ2
q

Þ increases (decreases).

Accordingly, the chemical potential in the anisotropic

function for determining the CEP position is greater than

that in the isotropic distribution function. The CEP loca-

tions (TCEP; lCEP) in this work are presented at

(298.70 MeV, 88.2 MeV), (321.8 MeV, 82.4 MeV),

(348.4 MeV, and 74.2 MeV) for n ¼ �0:3; 0; 0:3,

respectively. The position of the CEP for n ¼ 0 in this

work is almost consistent with the existing result [118] for

the same parameter set. The value of lCEP (TCEP) from

n ¼ �0:3 to n ¼ 0:3 increases (decreases) by approxi-

mately 16% (17%), indicating that the influence degree of

momentum anisotropy on the temperature of the CEP is

almost the same as that on the quark chemical potential of

the CEP. This is different from the effect due to the finite

volume in Ref. [38], which has indicated that in the PNJL

model, the finite volume affects the CEP shift along the

temperature stronger than along the quark chemical

potential shift. When the system size is reduced to 2 fm, the

CEP in the PNJL model vanishes and the whole chiral

phase boundary becomes a crossover curve. Based on this

result, there also exists a possibility that if n further

increases, the CEP may disappear from the phase diagram.

To better understand the qualitative behavior of the

transport coefficients in the quark matter, we first discuss

the results of the scattering cross sections and the relax-

ation time. In Fig. 6, we display the total cross section of

quark–quark scattering processes �rqq ¼ �ruu!uu þ �rud!ud

(plot a) and the total cross section of quark–antiquark

processes �rq �q ¼ �ru �u!u �u þ �ru �d!u �d þ �ru �u!d �d (plot b) as

functions of temperature at different anisotropy parameters

for vanishing quark chemical potential. As can be

observed, �rqq and �rq �q have similar peak structures in their

temperature dependence, i.e., the scattering cross sections

first increase, reach a peak, and decrease with increasing

temperature afterward. In addition, the magnitude of �rq �q is
higher than that of �rqq, and this is mainly due to the

additional s-channel contribution to a resonance of the

exchanged meson with the incoming quark and antiquark,

which leads to a large peak in the cross section [74]. We

further observe that the scattering cross sections in the

weakly anisotropic medium have the same behaviors as

those in the isotropic medium. As n increases, �rqq increases
in the entire considered temperature domain, whereas �rq �q
first decreases as n increases and then increases as n
increases. With an increase in n, the maximum of the

scattering cross section shifts toward higher temperatures.

The location of the maximum for �rqq at different n is nearly
in agreement with the respective Tc, as the peak positions

of �rq �q, respectively, locate at � 1:07 T�0:3
c , 1:07 T0

c,

1:10 T0:3
c for n ¼ �0:3; 0; 0:3, with Tn

c denoting the chiral

critical temperature for a fixed n.
The dependence of total quark relaxation time sq on

temperature for vanishing quark chemical potential at dif-

ferent n is displayed in Fig. 7. As can be observed, sq first
decreases sharply with increasing temperature, and after an

inflection point (viz, the peak position of �rq �q), sq changes

modestly with temperature. Further, the increase in sq with
n is significant at low temperature, whereas at high

0 100 200 300 400
0

50

100

150

200

Fig. 5 (Color online) Chiral phase diagram for different anisotropy

parameters in the Nambu–Jona–Lasinio (NJL) model. The inside

curve is for n ¼ �0:3, the next curve is for n ¼ 0, and the outermost

curve is for n ¼ 0:3. The solid lines denote the first-order phase

transition curves, the dashed lines denote the crossover transition

curves, and the solid dots represent the critical endpoints (CEPs). We

observe that the CEP is shifted toward larger values of the quark

chemical potential but smaller values of the temperature for higher

anisotropy parameters

Fig. 4 (Color online) Three-dimensional plot of chiral susceptibility

vch for n ¼ �0:3 in the entire l and T ranges of interest. The gray

area means that vch is divergent. The values remain finite due to

numerical problems (differential quotient). The peak height at high l
is two orders of magnitude higher than that in cases with low l and

can be considered ‘‘divergent’’
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temperature, the reduction in sq with n is imperceptible.

This is the result of the competition between the quark

number density and the total scattering cross section in

Eq. (57). At low temperature, the n dependence of sq is

mainly determined by the inverse quark number density,

whereas at high temperature, it is primarily governed by

(a)

(b)

Fig. 6 (Color online) (a) Total cross section of the quark–quark

scattering processes �rqq as a function of temperature at l ¼ 0 MeV

for different anisotropy parameters. (b) The total cross section of

quark–antiquark scattering processes �rq �q as a function of temperature

at l ¼ 0 MeV for different anisotropy parameters, i.e., n ¼ �0:3
(orange long dashed line), n ¼ 0 (blue dashed line), and n ¼ 0:3 (red
solid line). The gray vertical lines (from left to right) represent the

critical temperatures Tc ¼ 180 MeV, 188 MeV, and 197 MeV for

n ¼ �0:3; 0; 0:3, respectively

Fig. 7 (Color online) Relaxation time of quarks at l ¼ 0 MeV as a

function of temperature for different anisotropy parameters, i.e., n ¼
�0:3 (orange long dashed line), n ¼ 0 (blue dashed line), and n ¼
0:3 (red solid line)

Fig. 8 (Color online) Temperature dependence of scaled shear

viscosity g=T3 in quark matter at vanishing chemical potential for

different anisotropy parameters, i.e., n ¼ �0:3 (orange long dashed

line), n ¼ 0 (blue dashed line), and n ¼ 0:3 (red solid line). The thick

cyan dotted line represents the result in the Nf ¼ 3 quasiparticle

model (QPM) [59], which is an effective model for the description of

non-perturbative QCD. The purple dash-dotted line shows the result

obtained in the Nf ¼ 2 NJL model by Zhuang et al. [57]. The brown

dots show the result from hadron resonance gas (HRG) model [70].

The green dots correspond to the result of Rehberg et al. in the Nf ¼
3 NJL model [58] using the averaged transition rate method for the

estimation of relaxation time
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the inverse total cross section, even though this effect is

largely canceled out by the inverse quark density effect.

Next, we discuss the results regarding various transport

coefficients. In Fig. 8, the temperature dependence of

scaled shear viscosity g=T3 in quark matter for different

momentum anisotropy parameters at a vanishing chemical

potential is displayed. We observe that with increasing

temperature, g=T3 first decreases, reaches a minimum

around the critical temperature, and increases afterward.

The temperature position for the minimum g=T3 is con-

sistent with the temperature for the peak �rq �q. This dip

structure of g=T3 mainly depends on the competition

between the quark distribution function f 0q and the quark

relaxation time sq in the integrand of Eq. (44). The

decreasing feature of g=T3 in the low temperature domain

is governed by sq, whereas in the high temperature domain,

the increasing behavior of f 0q overwhelms the decreasing

behavior of sq, resulting in g=T3 as an increasing function

of temperature. In addition, we observe that with an

increase in n, g=T3 has an overall enhancement and the

minimum of g=T3 shifts to higher temperatures. This

behavior of g=T3 can be understood from the related

expression in Eq. (44), where apart from the n-dependent
relaxation time, the first term in the integrand of Eq. (44)

has an additional n factor, which leads to an overall

enhancement of the absolute first term at low T. The

variation of the first term at low T is larger than the

counterpart of the second term, which results in a sup-

pression of g=T3 for the inclusion of positive n. Mean-

while, at high T, the qualitative and quantitative behavior

of g=T3 with n is dominated by the second term. The

location of the minimum for g=T3 at different n is con-

sistent with the peak position of �rq �q. We further observe

that g=T3 decreases as n increases in the entire temperature

region. In addition, we also compare our result for n ¼ 0

with the results reported in the literature. The calculation of

g=T3 in the hadron resonance gas (HRG) model [70]

(brown dots) using the RTA is a decreasing function with

temperature, which is qualitatively similar to ours below

the critical temperature. The quantitative difference

between the HRG model result and ours can be attributed

to the use of different degrees of freedom and scattering

cross sections. The result of Zhuang et al [57] in the Nf ¼
2 NJL model (purple dash-dotted line) is of the same order

of magnitude as ours, whereas at high temperature, their

result still has a decreasing feature because an ultraviolet

cutoff is used in all momentum integrals whether the

temperature is finite or zero. The result estimated in the

quasiparticle (QPM) [59] is a logarithmically increasing

function of temperature beyond the critical temperature,

and it is quantitatively larger than ours beyond the critical

temperature owing to the differences in both the effective

quark mass and relaxation time. The result of Rehberg et al

[58] for the Nf ¼ 3 NJL model in the temperature regime

close to the critical temperature is smaller than ours, and

the obvious dip structure is not observed because the

momentum cutoff is also used at finite temperature.

In Fig. 9, we plot the thermal behavior of scaled elec-

trical conductivity rel=T at l ¼ 0 MeV for different n.

Similar to the temperature dependence of g=T3, rel=T also

exhibits a dip structure in the entire temperature region of

interest. We also present the comparison with other pre-

vious results. The result obtained from the PHSD approach

[66] (brown stars), where the plasma evolution is solved by

a Kadanoff–Baym type equation, also has a valley struc-

ture, even though the location of the minimum is different

from ours. We also observe that in the temperature region

Fig. 9 (Color online) Temperature dependence of scaled electrical

conductivity rel=T in quark matter at vanishing chemical potential

for different anisotropy parameters, i.e., n ¼ �0:3 (orange long

dashed line), n ¼ 0 (blue dashed line), and n ¼ 0:3 (red solid line).

The green dotted line shows the result of Marty et al. in the Nf ¼ 3

NJL model [54]. The thick gray dash-dotted line represents the result

from the pQCD-based microscopic Boltzmann approach to multi-

parton scatterings (BAMPS) transport model [67] with running

coupling constant. The brown stars present the result in the parton-

hadron-string dynamics (PHSD) transport approach [66]. The cyan

dot dashed line shows the result within the excluded volume hadron

resonance gas (EVHRG) model with the RTA [71]. The darkyellow

dots are the lattice date obtained from Ref. [69]. The red open circles

are the calculation for hadronic gas in the transport approach

simulating many accelerated strongly interacting hadrons (SMASH)

[65] based on the Green–Kubo formalism
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dominated by the hadronic phase, the thermal behavior of

rel=T using the microscopic simulation code SMASH [65]

(pink open circles) is similar to ours. Furthermore, our

result is much larger than the lattice QCD data (dark yellow

dots) taken from Ref. [69] owing to the uncertainty in the

parameter set and absence of gluonic dynamics. The result

within the excluded volume hadron resonance gas

(EVHRG) model [71] (cyan dash-dotted line) and the result

obtained from the partonic cascade BAMPS [67] (gray

thick dash-dotted line) are qualitatively and quantitatively

similar to our calculations below the critical temperature

and beyond the critical temperature, respectively. Our

result is similar to that of Marty et al. obtained within the

Nf ¼ 3 NJL model [54] (green dotted line), with the

numerical discrepancy mainly coming from the differences

in the values of the model parameter set and scattering

cross sections. At low T, the absolute values of both the

first and second terms in Eq. (54) increase as n increases.

However, the variation of the first term is larger than that of

the second term, which results in an enhancement of rel=T .
At high T, the decreasing feature of relaxation time with n
can weaken the increasing behavior of rel=T with n, and
the values of rel=T for different n gradually approach and

eventually overlap. Our qualitative result of rel=T is dif-

ferent from the result in Ref. [73], where the rel=T of the

QGP is a monotonic decreasing function of n. This occurs
because the effect of momentum anisotropy is not incor-

porated in the calculation of the relaxation time and the

effective mass of quasiparticles, as the n dependence of

rel=T is only determined by the anisotropic distribution

function. We also observe that with the increase in n, the
minimum of rel=T shifts to higher temperatures, which is

similar to g=T3. However, the height of the minimum

increases, which is opposite to g=T3.

Finally, we study the Seebeck coefficient S in quark–

antiquark matter. Owing to the sensitivity of S to the charge

of particle species, at a vanishing chemical potential, quark

number density nq is equal to antiquark number density n �q,

and the contribution of quarks to S is exactly canceled by

that of antiquarks. Thus, a finite quark chemical potential is

required to obtain a non-zero thermoelectric current in the

medium. In Fig. 10, we plot the variation of S with respect

to temperature for different n at l ¼ 100 MeV. The com-

parison with other previous calculations, which were all

performed in the kinetic theory under the RTA, is also

presented. We remind the reader that at finite l, nq is larger
than n �q, and the contribution of quarks to total S in mag-

nitude is always prominent. As shown in Fig. 10, the sign

of S in our investigation is positive, which indicates that the

dominant carriers converting the heat gradient to the

electric field are positively charged quarks, i.e., up quarks.

Actually, the positive or negative sign of S is mainly

determined by the factor ðEq � lqÞ in the integrand of

Eq. (55). In Ref. [83], the Seebeck coefficient studied in

the QPM (brown dotted line) at l ¼ 50 MeV also exhibits

a decreasing feature with increasing temperature. The

result of Abhishek et al [84] at l ¼ 100 MeV in the Nf ¼
2 NJL model (the green dots) is very different from ours. In

Ref. [84], S is negative and its absolute value is an

increasing function with temperature. The reasons behind

this quantitative and qualitative discrepancy are twofold:

(1) the relaxation time in Ref. [84] was estimated using the

averaged transition rate �wij, whereas our relaxation time

was obtained from the thermally averaged cross section of

elastic scattering (a detailed comparison of the two meth-

ods can be found in Ref. [74]); (2) in Ref. [84], the spatial

gradient of chemical potential was also included apart from

the temperature gradient and accordingly, the sign of S was

primarily determined by the factor ðEq � x=nqÞ with x
denoting the enthalpy density in the associated formalism.

Given that the single-particle energy Eq remains smaller
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0.01

0.10

1

10

100

Fig. 10 (Color online) Temperature dependence of the Seebeck

coefficient in quark matter at l ¼ 100 MeV for different anisotropy

parameters, i.e., n ¼ �0:3 (orange broad dashed line), n ¼ 0 (blue

dashed line), and n ¼ 0:3 (red solid line). The brown dotted line

corresponds to the result for the QGP in the quasiparticle model [83]

at lq ¼ 50 MeV. The cyan thick-dotted line represents the result in

the hadron resonance gas model for lB ¼ 0:1 GeV [81]. The mauve

dash-dotted line and green dots, respectively, represent the results in

the HRG model for lB ¼ 50 MeV [80] and the Nf ¼ 2 NJL model

for l ¼ 100 MeV [84], where the gradient of the quark chemical

potential apart from a spatial gradient in temperature is also included
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than ðx=nqÞ, S in Ref. [84] is negative. We also observed

that with increasing temperature, S sharply decreased

below Tc, whereas the decreasing feature of S was incon-

spicuous above Tc. Further, the value of S at low T was

much larger than that at high T. This is also different from

the result in Ref. [84], where the absolute value of S in

quark matter increased with increasing temperature

because of the increasing behaviors of both the factor j �
x=nqj and the equilibrium distribution function. In addi-

tion, the Seebeck coefficient in the HRG model [80, 81] is

also positive (negative) without (with) the spatial gradient

of chemical potential (cyan thick dotted line and mauve

dash-dotted line). Nevertheless, the absolute value of S in

hadronic matter is still an increasing function of tempera-

ture regardless of the spatial gradient of l. We also

observed that as n increases, S has a quantitative

enhancement, which is primarily due to a significant rise in

the thermoelectric conductivity a, even though 1=rel has a
cancelation effect on the increase in S. At sufficiently high

temperature, the rise in 1=rel can almost compensate the

reduction in a, and as a result, S varies insignificantly with

the n of interest, compared to the value of S itself.

8 Summary

We phenomenologically investigated the impact of

weak momentum-space anisotropy on the chiral phase

structure, mesonic properties, and transport properties of

quark matter in the two-flavor NJL model. The momentum

anisotropy, which is induced by the initial preferential

expansion of the created fireball in heavy-ion collisions

along the beam direction, can be incorporated in the cal-

culation through the parameterization of the anisotropic

distribution function. Our result has shown that the chiral

phase transition is a smooth crossover for vanishing quark

chemical potential, independent of the anisotropy param-

eter n, and an increase in n can even hinder the restoration

of the chiral symmetry. We found that the CEP is highly

sensitive to the change in n. With the increase in n, the CEP
shifts to higher l and smaller T, and the momentum ani-

sotropy affects the CEP temperature to almost the same

degree as it affects the CEP chemical potential. Before the

merge of p and r meson masses, the n dependence of the p
meson mass is opposite to that of the r meson mass.

We also studied the thermal behavior of various trans-

port coefficients, such as the scaled shear viscosity g=T3,

scaled electrical conductivity rel=T , and Seebeck coeffi-

cient S at different n. The associated n-dependent expres-
sions are derived by solving the relativistic Boltzmann–

Vlasov transport equation in the relaxation time approxi-

mation, and the momentum anisotropy effect is also

embedded in the estimate of relaxation time. We found that

g=T3 and rel=T have a dip structure around the critical

temperature. Within the consideration of momentum ani-

sotropy, g=T3 decreases as n increases and the minimum

shifts to higher temperatures. With the increase in n, rel=T
significantly increases at low temperature, whereas its

sensitivity to n at high temperature is significantly reduced,

which is different from the behavior of g=T3 with respect

to n. We also found that the sign of S at l ¼ 100 MeV was

positive, indicating that the dominant carriers for convert-

ing the thermal gradient to the electric field are up quarks.

With increasing temperature, S first decreases sharply and

then almost flattens out. At low temperature, S significantly

increases with the increase in n, whereas at high temper-

ature, the rise is marginal compared to the value of S itself.

We note that it is of considerable interest to include the

Polyakov-loop potential in the present model to study both

chiral and confining dynamics in a weakly anisotropic

quark matter. A more general ellipsoidal momentum ani-

sotropy characterized by two independent anisotropy

parameters is then needed to gain a deeper understanding

of the QGP properties. In the present work, no proper time

dependence was given to the anisotropy parameter. How-

ever, in a realistic case, n varies with the proper time

starting from the initial proper time up to a time when the

system becomes isotropic. Thus, a proper time-dependent

anisotropy parameter [119] needs to be introduced to better

explore the effect of time-dependent momentum anisotropy

on chiral phase transition. For the strongly longitudinal

expanding QCD matter, the investigation of chiral phase

transition needs to be performed by numerically solving

both the Vlasov equation and gap equation concurrently

and continuously. In this case, the phase diagram of a

strongly expanding system is a map in the space-time plane

rather than in the T � l plane. In addition, the investigation

of the thermoelectric coefficients, especially the magneto-

Seebeck coefficient and Nernst coefficient in magnetized

quark matter, based on the PNJL model would be an

attractive direction, and we plan to work on it in the near

future.

Appendix

In the Nf ¼ 2 NJL model, there are 12 different elastic

scattering processes:

u�u ! u�u; u �d ! u �d; u�u ! d �d;

uu ! uu; ud ! ud; �u�u ! �u�u;

�u �d ! �u �d; d �d ! d �d; d �d ! u�u;

d �u ! d �u; dd ! dd; �d �d ! �d �d:

ð62Þ

The explicit expressions of the squared matrix elements for

123

Phenomenological study of the anisotropic quark matter...    150  Page 17 of 21



the u�u ! u�u, u �d ! u �d, and ud ! ud processes via

exchange of scalar and/or pseudoscalar mesons to 1=Nc
order are given as

j �Mu �u!u �uj2ðs; tÞ
¼ s2jDp

s j
2 þ t2jDp

t j
2 þ ðs� 4m2Þ2jDr

s j
2

þ ðt � 4m2Þ2jDr
t j

2

þ 1

Nc
Re

�

stDp

s Dp

t þ sð4m2 � tÞDp

s Dr

t

þ tð4m2 � sÞDp
t D

r

s

þ ðst þ 4m2ðsþ tÞ � 16m4ÞDr
t D

r

s

�

;

ð63Þ

j �Mu �d!u �dj
2ðs; tÞ

¼ 4s2jDp
s j

2 þ t2jDp
t j

2 þ ðt � 4m2Þ2jDr
t j

2�
1

Nc
Re

�

2stDp

s Dp

t þ 2sð4m2 � tÞDp

s Dr

t

�

;

ð64Þ

j �Mud!udj2ðt; uÞ
¼ 4u2jDp

u j
2 þ t2jDp

t j
2 þ ðt � 4m2Þ2jDr

t j
2

� 1

Nc
Re

�

2utDp

u Dp

t þ 2uð4m2 � tÞDp

u Dr

t

�

:

ð65Þ

The meson propagators in the above processes are n-de-
pendent. Based on the above formulae of three scattering

processes, the squared matrix element for the remaining

scattering processes can be obtained through charge con-

jugation and crossing symmetry [57, 120].
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