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Abstract To perform nuclear reactor simulations in a

more realistic manner, the coupling scheme between neu-

tronics and thermal-hydraulics was implemented in the

HNET program for both steady-state and transient condi-

tions. For simplicity, efficiency, and robustness, the matrix-

free Newton/Krylov (MFNK) method was applied to the

steady-state coupling calculation. In addition, the optimal

perturbation size was adopted to further improve the con-

vergence behavior of the MFNK. For the transient coupling

simulation, the operator splitting method with a staggered

time mesh was utilized to balance the computational cost

and accuracy. Finally, VERA Problem 6 with power and

boron perturbation and the NEACRP transient benchmark

were simulated for analysis. The numerical results show

that the MFNK method can outperform Picard iteration in

terms of both efficiency and robustness for a wide range of

problems. Furthermore, the reasonable agreement between

the simulation results and the reference results for the

NEACRP transient benchmark verifies the capability of

predicting the behavior of the nuclear reactor.

Keywords Coupling calculation � High-fidelity
neutronics � Thermal-hydraulics � Matrix-free Newton/

Krylov method � Transient simulation

1 Introduction

With the growing computing power and requirement of

safety analysis [1], there has been interest in the high-

fidelity simulation of the nuclear reactor core [2–4]. The

operational phenomena in the reactor to be simulated are

very complex owing to the close interaction among various

physical fields, particularly neutronics and thermal

hydraulics [5, 6]. More specifically, the power density from

the neutron flux significantly affects the thermal properties,

which in turn has a powerful influence on neutronics

through cross sections. Hence, to achieve a realistic pre-

diction of reactor behavior under steady-state and transient

conditions, the strong bond between neutronics and ther-

mal-hydraulics must be considered.

Because the steady-state solution is generally regarded

as the initial condition for transients [7], the first priority is

to address the steady-state coupling of neutronics and

thermal hydraulics. For steady-state coupling calculations,

the Picard iteration has been studied and used extensively

in high-fidelity simulation codes. However, convergence

may be difficult and inefficient when the nonlinearity of the

problem increases significantly [8]. Hence, some approa-

ches have emerged to address the limitations of Picard

iteration, such as relaxation, partially converging physics

[8], and Anderson acceleration [9]. Alternatively, the fully

implicit Jacobian-free Newton–Krylov (JFNK) method

[10], with fast convergence and good robustness, has come

into focus. However, most high-fidelity neutronics codes
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do not form the residuals required to implement JFNK.

Therefore, the application of JFNK requires significant

modifications to the algorithms of these well-developed

codes. For simple implementation and good convergence

performance, the MFNK method was proposed [11]. In

contrast to the JFNK method, MFNK constructs residuals

through the solutions of individual subsystems within the

Picard iteration framework. Thus, MFNK can possess the

advantage of implicit coupling while avoiding the refor-

mulation of the coupled subsystems into a larger nonlinear

system.

After the steady-state coupling calculation, the transient

coupling simulation was emphasized. Although the implicit

coupling scheme mentioned above has been applied to the

nodal method for transient coupling calculation [12], most

transient coupled systems still adopt the operator splitting

(OS) method to compromise between computational bur-

den and accuracy. Numerical instability may occur because

of the explicit exchange of coupled information. Some

improvements to the OS method have been developed, and

the two main strategies are using staggered time mesh and

higher-order time discretization of the nonlinear terms [12].

The high-fidelity Neutron Transport Program (HNET) is

a 2D/1D transport code based on multilevel acceleration

theory [13, 14]. The accuracy and efficiency of HNET have

been verified against various steady-state and transient tests

[15, 16], but only for problems without thermal–hydraulic

feedback. To consider the interaction between neutronics

and thermal hydraulics, a simplified internal thermal–hy-

draulic module was developed in HNET to provide ther-

mal–hydraulic feedback. The MFNK method was adopted

for the steady-state coupling calculation. Moreover, the OS

method with a staggered time mesh was applied to the

transient simulation.

The remainder of this paper is organized as follows. In

Sect. 2, the MFNK method and the estimation of the

associated optimal perturbation size are introduced. Sec-

tion 3 describes the implementation of the coupling neu-

tronics with thermal hydraulics. An assessment of the

MFNK method for the VERA core physics benchmark

problem 6 [17] and the numerical results for the NEACRP

transient benchmark [18] are presented in Sect. 4. Finally,

conclusions are drawn in Sect. 5.

2 Matrix-free Newton/Krylov method

2.1 Derivation of MFNK method

The MFNK method is based on the block Gauss–Seidel

(BGS)-style Picard iteration. For the nuclear reactor non-

linear system considering neutronics and thermal

hydraulics, the BGS-style Picard iteration alternatively

solving each physical field can be written as in Eqs. (1) and

(2).

xkþ1 ¼ FTHðykÞ; ð1Þ

ykþ1 ¼ FNðxkþ1Þ; ð2Þ

where vector x denotes the fuel temperature, coolant tem-

perature, and coolant density in the thermal–hydraulic

model, and y denotes the power density derived from the

neutron fluxes. FTH and FN represent the thermal–hydraulic

solver and neutronics solver, respectively. Superscript

k represents the iteration number. Because the coupled

problem is implicit, the overline in Eqs. (1) and (2) indi-

cates that the corresponding variables should be trans-

formed further. In this sense, FTH and FN should be

regarded as abstract solvers involving the total required

operations, rather than only an actual solver. For brevity,

the tilde is omitted from the expressions in the subsequent

analysis.

When the coupled problem converges, the solutions to

Eqs. (1) and (2) must be consistent, which implies that the

nonlinear system can be expressed in terms of a residual

form, as in Eq. (3).

FðykÞ ¼ yk � FN FTHðykÞ
� �

¼ 0 ð3Þ

Subsequently, Newton method was adopted to resolve

the nonlinear equation. By applying Taylor’s expansion to

the right-hand side of Eq. (3) around yk, and ignoring the

higher-order terms yields Eq. (4).

Fðyk þ dyÞ ¼ FðykÞ þ F0ðykÞdy ¼ 0 ð4Þ

Then, Eq. (4) can be rearranged as shown in Eq. (5),

which is referred to as Newton iteration.

JðykÞdy ¼ �FðykÞ ð5Þ

where J(yk) represents the Jacobian matrix.

The linear system Eq. (5) can be solved using the Krylov

subspace method, where the Jacobian matrix is only uti-

lized for the action of the matrix–vector product. In this

scheme, the Jacobian matrix–vector product can be

approximated by the finite difference approximation to

avoid assembling the Jacobian matrix explicitly, as shown

in Eq. (6).

J yk
� �

v ¼ Fðyk þ evÞ � FðykÞ
e

¼ v�
FN FTHðyk þ evÞ

� �
� FN FTHðykÞ

� �

e
;

ð6Þ

where e is the perturbation size and v is the basis vector of

the Krylov iteration.

Upon the dy, the power density is updated:

ykþ1 ¼ yk þ dy: ð7Þ
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The MFNK iteration is repeated until the convergence

criteria are met. Subsequently, thermal–hydraulic results

are obtained based on the converged value y. From the

above analysis, it can be found that only the solution and

not the residual of individual subsystems are necessary to

implement MFNK.

2.2 Optimal perturbation size

The finite difference approximation implemented in

Eq. (6) results in truncation and rounding errors, as well as

convenience. The truncation error is proportional to the

perturbation size, whereas the rounding error is the oppo-

site. Therefore, a balance should be found between the

truncation error and the rounding error through the selec-

tion of the perturbation size.

Xu [11] proposed a method to estimate the optimal

perturbation size. Assuming that y, v, and e are given at the

machine precision, the error ed introduced by the finite

difference approximation can be arranged into Eq. (8).

ed ¼ Fðyþ evÞ � FðyÞ � eF0ðyÞv
e

þ Fðyþ evÞ � Fðyþ evÞ � FðyÞ þ FðyÞ
e

; ð8Þ

where yþ ev is the finite precision representation of yþ ev
and F is the function F evaluated for finite precision

arithmetic. The terms on the right-hand side of Eq. (8) are

referred to as truncation and round-off errors, respectively.

After quantifying the error caused by the finite differ-

ence approximation [11], the error upper bound can be

obtained. Subsequently, the optimal perturbation size can

be estimated by minimizing the upper error bound, as

shown in Eq. (9).

eopt ¼
1

vk k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

emach

F0ðyÞk k þ 2g
c

yk k

s

; ð9Þ

where emach is the machine precision, c represents the

Lipschitz constant, g is the relative error in computing

FN(FTH(y)), and �k k denotes the L-2 norm in this study,

except where otherwise noted.

Note that the numeric values of F0ðyÞk k and c are

unavailable during the MFNK scheme process. To over-

come this difficulty, the following approximation of

Eqs. (10) and (11) were adopted.

M ¼ max
1� j�m

Fðyþ evÞ � FðyÞk k
evk k ; ð10Þ

c ¼
2 Fðykþ1Þ
�� ��

skk k2
; ð11Þ

where, sk is the increment of the kth Newton iteration.

By replacing F0ðyÞk k and c in Eq. (9) with that given in

Eqs. (10) and (11), the optimal perturbation size is com-

puted using Eq. (12).

ropt ¼
1

vk k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

emach

M þ 2g
c

yk k

s

ð12Þ

From the above derivation, it can be observed that there is

almost no additional computing cost in the estimation of

the optimal perturbation size. Additionally, the ratio of

M=c is the most important, not the value of M or c itself.

3 Implementation of coupling neutronics
with thermal-hydraulics

3.1 High-fidelity neutron transport program

(HNET)

HNET is a 3D whole-core transport code capable of

performing high-fidelity neutron transport calculations for

both steady-state and transient problems. The 2D/1D

method with multilevel generalized equivalence theory-

based CMFD acceleration (gCMFD) was developed in

HNET for transport calculations. Specifically, the 2D

method of characteristics (MOC) was utilized for the radial

solver, and the two-node nodal expansion method is used

for the axial dependency. The 2D and 1D solutions were

coupled using transverse leakage. To decrease the com-

putational cost of the CMFD, an innovative self-developed

RSILU-preconditioned GMRES solver was utilized for the

CMFD linear system. Regarding transient simulation, the

multilevel predictor–corrector quasi-static scheme, toge-

ther with the multilevel gCMFD acceleration, was devel-

oped to accelerate the time-dependent neutron transport

calculation. Additionally, HNET employs the 47-group

HELIOS library to provide cross sections, and the sub-

group method was used for resonance self-shielding cal-

culations. A detailed description of the transport

calculations in HNET can be found in the References

[14, 15, 19, 20].

3.2 Thermal–hydraulic model

To provide the fuel temperature, coolant temperature,

and coolant density to the neutronics field, a simplified

internal thermal–hydraulic module was developed in the

HNET. For pressurized water reactors, the module consists

of a 1D radial heat conduction model and a 1D axial heat

convection model, which have been proven to be effective

for a wide range of applications [8].

The heat-transfer calculation began with a cylindrical

conduction equation. Because of the large ratio of axil
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length to radius and the axisymmetric geometry, axial and

circumferential heat transfer can be ignored; thus, only

radial heat conduction is considered for the fuel rods, as in

Eq. (13).

qcp
oT

ot
¼ 1

r

o

or
k Tð Þr oT

or

� �
þ q000 r; tð Þ; ð13Þ

where T, q, cp, k, and r denote temperature, density,

specific heat, thermal conductivity, and radius, respec-

tively. The volumetric power density q000 contributes to the

fission reaction.

In addition, it is necessary to provide boundary condi-

tions between heat conduction and convection. The heat

flux transferred from the pellet to the fluid is determined by

the following boundary condition as in Eq. (14).

hwðTM � TfÞ ¼ �k
oT

or

����
r¼rM

; ð14Þ

where TM and Tf are the temperatures of the cladding outer

wall and coolant, respectively, and hw is the convective

heat-transfer coefficient, which is determined by the Dittus-

Boelter correlation.

In terms of the flow field, a single-channel model with

the following reasonable assumptions is applied: (a) Each

assembly is defined as a channel region. In addition, no

cross-flow between the adjacent channels was considered.

(b) The coolant was always in the liquid phase. (c) The

coolant pressure was approximately constant during the

steady state and was fast transient.

Under these assumptions, the momentum conservation

equation was removed. Thus, only the remaining mass and

energy conservation equations were resolved in the flow

field, and their general formulas in the axial direction are

given by Eqs. (15) and (16).

oq
ot

þ oqv
oz

¼ 0 ð15Þ

oqh
ot

þ oqhv
oz

¼ LH
Ac

q00w þ q000c ; ð16Þ

where q, v, and h denote the density, velocity, and enthalpy

of coolant, respectively. z is the height in the axial direction

and t represents time. LH and Ac are the heated perimeter

and the cross-sectional area of the channel, respectively.

q00w is the heat flux at the cladding surface, and q000c is the

heat source generated directly inside the coolant.

To solve the 1D radial heat conduction equations and 1D

axial heat convection equations, the finite volume method

is used to carry out spatial discretization, the theta method

is adopted to discretize the time derivative terms, and the

discrete formulas for the numerical calculation can be

obtained.

3.3 Coupling implementation

The implementation of the MFNK method in the steady-

state coupling calculation is shown in Fig. 1. Notably, two

coupling configurations can be arranged according to the

choice of the initial guess. Because the dimension of power

density is small in comparison with thermal–hydraulic

solutions, the power density was selected as the initial

estimate in this study. Next, to initiate the MFNK

scheme with an appropriate initial power density y, the

Picard iteration was performed first. Specifically, according

to a primary y, thermal–hydraulic solutions are calculated

and then used to update the macroscopic cross sections.

Then, based on the results of the transport calculation, a

new yPicard was obtained.

The MFNK method began after the initial guess calcu-

lation. Based on the given y, the Picard iteration was per-

formed to form the residual, as described in Eq. (3).

Subsequently, the Newton iteration was solved using the

GMRES method, where the required matrix–vector product

was approximated through a finite difference approxima-

tion with the optimal perturbation size. In each Newton

step, a new solution y was updated. The iterative

scheme was repeated until convergence was achieved. In

addition, the maximum Krylov subspace dimension was

chosen as two, and the transport solver was fully converged

in each calculation.

In the transient simulation, the OS method was used to

implement the transient coupling scheme. To improve

stability, a staggered time mesh was applied to the OS

method [21]. In this scheme, the two physical fields are

Fig. 1 Solution scheme of MFNK for steady-state coupling

calculation
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advanced for different time step sizes (Fig. 2). The ther-

mal-hydraulics problem was solved first with one-half of

the neutronics time step. Subsequently, based on the

updated thermal–hydraulic conditions, the neutronics sol-

ver was invoked to calculate the neutron flux. Then, the

thermal-hydraulics solver was advanced again using the

new power density with one-half of the neutronics time

step.

4 Numerical results and analysis

VERA Problem 6 [17] with different power levels and

boron concentrations was first employed to study the

convergence performance of the MFNK method. A com-

parison of the numerical results for MFNK, Picard, and

Picard with relaxation is presented in this section. Subse-

quently, the NEACRP transient benchmark [18] was used

to preliminarily test and verify the transient coupling cal-

culation. The corresponding results were compared with

reference solutions for verification.

4.1 Assessment of MFNK performance

VERA Problem 6 describes a single fuel assembly

problem under typical full-power and nominal thermal–

hydraulic conditions, which are presented in Table 1. The

assembly consisted of 264 fuel rods, 24 guide tubes, and an

instrument tube at the center. Meanwhile, there were six

intermediate grids and two end grids in the assembly along

the axial direction. More detailed geometric and material

specifications are provided in [17].

For VERA Problem 6, the transport equation was solved

using the 2D/1D method via gCMFD acceleration. Based

on the 47-group HELIOS library, nuclide density, and

temperature, the cross sections were obtained through

resonance treatment. Figure 3 illustrates the discretization

of MOC mesh in radial direction, the heterogeneous fuel

pins are divided into 56 flat source regions (FSR), and the

reflector cells use the 2 9 2 Cartesian sub-mesh. In

addition, a ray spacing of 0.03 cm with 64 azimuthal

angles and a Tabuchi-Yamamoto polar quadrature using 3

polar angles per half-space were utilized for MOC calcu-

lation. The active fuel region was divided into 49 axial

layers, similar to VERA Problem 3 [17]. Furthermore, the

core plates, nozzles, and grids were explicitly modeled for

the transport domain. The radial boundaries were set to be

reflective, and the vacuum boundary condition was applied

axially, owing to the top and bottom water reflectors. For

the thermal–hydraulic domain, each fuel pin, including the

fuel pellet, gap, and cladding, was explicitly modeled and

calculated individually using the radial power density

inside the fuel pin. The discretization of the coolant

channel in the axial direction is the same as that in the

transport calculation. In addition, the inlet coolant condi-

tions were adopted for the bottom structural material below

the active fuel, whereas the average exit conditions of the

coolant at the top of the active fuel region were used as the

top structural material.

Generally, a fission source is used to measure the con-

vergence of a coupled system. To evaluate the convergence

behavior of MFNK, a strict convergence criterion using the

power density residual norm was set for VERA Problem 6,

as in Eq. (17).

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðyÞk k2

n

s

� 1� 10�6; ð17Þ

where RMS is the root mean square of the residual vector

and n is the linear system dimension.
Fig. 2 (Color online) OS method with staggered time step

Table 1 Nominal thermal-hydraulics conditions

Parameter Value

System pressure (psia) 2250

Rated power (100%) (MW) 17.67

Rated coolant mass flow (Mlbs/hr) 0.6823

Inlet coolant temperature (K) 565

Boron concentration (ppm) 1300

fuel

gap

clad

coolant

(a) (b)

Fig. 3 (Color online) The division of MOC mesh in radial direction:

a fuel pin; b reflector cell
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First, according to Eq. (6), the influence of perturbation

size on the MFNK method was investigated through VERA

Problem 6. To test the behavior of the optimal perturbation

size defined by Eq. (12), three empirical perturbation sizes

were considered for the comparison. The first was a simple

empirical perturbation with a constant value of 0.001. The

second method is based on Pernice’s method [22].

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ yk kÞemach

p

vk k ð18Þ

The third empirical perturbation size proposed by Knoll

[11] is given by Eq. (19).

e ¼ 1

n vk k
Xn

i¼1

b yij j þ b; ð19Þ

where b is a constant whose magnitude is within a few

orders of magnitude of the square root of the machine

round-off.

Figure 4 illustrates how the perturbation size affects the

convergence behavior of the MFNK method for VERA

Problem 6. It can be observed that MFNK with a constant

perturbation size converges very slowly. The performances

of the other two empirical perturbation sizes are relatively

consistent, and their residual norms seem to stagnate

around 0.1. By contrast, MFNK with an optimal pertur-

bation size can converge further and satisfy the conver-

gence criterion. The primary reason is that the optimal

perturbation size can reduce the error introduced by the

finite difference approximation even when the residual

norm becomes small, whereas the empirical ones cannot.

Hence, the optimal perturbation size is used in the fol-

lowing analysis.

Subsequently, a convergence analysis was performed by

comparing the results between the MFNK and Picard

methods. Notably, in order to make an appropriate com-

parison between the MFNK and Picard methods, the

convergence history was monitored by the iteration index

of the MOC, which is a time-consuming procedure, rather

than their individual outer iterations.

The convergence history of keff and the maximum fuel

temperature for VERA problem 6 are shown in Figs. 5 and

6, respectively. The results indicate that MFNK achieved a

stable state quickly, whereas Picard initially exhibited

oscillatory behavior. For instance, the oscillation of keff in

MFNK was a maximum of 1 pcm, whereas the maximum

variation of keff in Picard is approximately 38 pcm. In

addition, as illustrated in Figs. 5 and 6, the solutions

resulting from MFNK and Picard match well.

To further evaluate the performance of MFNK, VERA

Problem 6 with a modification of the power level and boron

concentration was simulated. Traditionally, relaxation has

been introduced to Picard for better convergence behavior.

Hence, Picard and Picard with relaxation applied to the

temperature solution were performed for comparison.

Because the optimal choice of relaxation factor depends

strongly on the problems, a relaxation factor of w = 0.5

was adopted in this paper [8]. The overall convergence

performances of MFNK, Picard, and Picard with relaxation

are summarized in Tables 2 and 3. In addition to the MOC

iterations required for convergence, the total number of

resonance calculations is also presented because of the

relatively high computational cost. Notably, the resonance

calculation was performed in the coupling scheme only

when the maximum temperature change between two

adjacent resonance calculations was larger than 1 K.

As shown in Table 2, MFNK and Picard with relaxation

can considerably reduce the MOC iterations compared with

Picard over all except for the 60% power level case.

Although the three methods displayed a dependence on the

power magnitude, MFNK and Picard with relaxation were

less susceptible to the power level than Picard. Further-

more, it was observed that MFNK and Picard with relax-

ation could achieve convergence criteria in all cases,

Fig. 4 The effect of perturbation size in the MFNK method Fig. 5 (Color online) Convergence history for keff
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whereas Picard performed poorly and even diverged as the

power level increased. This is primarily because increasing

the power enhances coupling strength. However, Picard is

generally unable to handle this stronger coupling. Addi-

tionally, the number of MOC iterations for MFNK was the

same as or less than that for Picard with relaxation. More

specifically, MFNK can decrease the number of MOC

iterations from Picard with a maximum relaxation of 15.

In terms of boron perturbation, Table 3 demonstrates

that varying the boron concentration does not affect the

convergence behavior. As shown in Table 3, the perfor-

mance of MFNK is slightly better than that of Picard with

relaxation, and poor convergence can be found in the

Picard results. Tables 2 and 3 show that the number of

resonance calculations for MFNK and Picard with relax-

ation are comparable, and both are less than that for Picard

as a whole. In other words, the cross sections can converge

faster in MFNK and Picard with relaxation.

Figure 7 compares the power density residual norm of

MFNK against Picard with and without relaxation with

respect to the variation in the power level. In contrast to

Picard with relaxation, the residual norm of MFNK drop-

ped more rapidly in the 80% and 140% power cases. In

addition, Picard converged at a markedly slower rate and

divergence behavior occurred in Picard at a 140% power

level.

Based on the above analysis, it can be concluded that

although MFNK does not perform as efficiently as Picard

at the 60% power level, it can display a better convergence

performance than Picard for a wider range of problems.

Moreover, although the performance of MFNK is better

than that of Picard with a relaxation factor of 0.5 in given

cases, the opposite results may occur if the optimum values

of the relaxation factor are selected. Nevertheless, it should

be easier to improve the convergence rate and enhance the

numerical stability when utilizing MFNK than when

applying a relaxation scheme, because the optimal relax-

ation factor is problem-dependent and generally chosen

empirically [21].

4.2 Transient simulation of control rod ejection

The NEACRP benchmark is a 3D PWR core transient

problem constructed to simulate the ejection of a control

assembly (CA) from the core under operational conditions.

The assembly arrangement is shown in Fig. 8. Moreover,

2-group macroscopic cross sections were set for 11

homogenized compositions. However, the NEACRP

benchmark was originally specified for diffusion-based

codes, resulting in a lack of total and self-scattering cross

sections. To obtain an equivalent transport version, the

Fig. 6 (Color online) Convergence history for maximum fuel

temperature

Table 2 Iterations to

convergence for VERA

Problem 6 at various power

levels

Couple scheme Iterations Power level (%)

60 80 100 120 140

MFNK MOC 85 105 107 126 122

Picard (w = 0.5) Resonance 10 12 11 10 11

MOC 103 113 117 126 137

Resonance 11 11 11 12 12

Picard MOC 72 122 197 Divergence Divergence

Resonance 5 10 26 Divergence Divergence

Table 3 Iterations to convergence for VERA Problem 6 at various

boron concentrations

Couple scheme Iterations Boron concentration (ppm)

0 500 900 1300 1700

MFNK MOC 112 115 111 107 113

Picard (w = 0.5) Resonance 11 12 12 11 13

MOC 119 116 117 117 122

Resonance 12 12 12 11 11

Picard MOC 177 209 223 197 216

Resonance 20 27 30 26 29
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total cross sections can be approximated to transport cross

sections, and then the self-scattering cross sections are

calculated using Eq. (20).

Rs;g!g ¼ Rt;g � Ra;g �
XG

g0¼1
g0 6¼g

Rs;g!g0 ; ð20Þ

where Rt, Ra, and Rs are the total, absorption, and scat-

tering cross sections, respectively.

The NEACRP benchmark comprises six cases with

different combinations of control arrangements, original

positions, and power levels. A detailed description of the

geometry, macroscopic cross sections, and initial

configuration of the control assemblies can be found in

[18]. In this study, cases A2 and B2 were considered to

verify the accuracy of the transient simulation. Both cases

were initiated by the rapid ejection of the CA in 0.1 s at hot

full-power state; the CA to be ejected is marked by a circle

in Fig. 8. Specifically, the symbols A and B represent the

ejected CA of cases A2 and B2, respectively.

To resolve the NEACRP benchmark using the transient

2D/1D transport solver in HNET [15], the geometry was

uniformly discretized into an FSR mesh size of

0.7202 cm 9 0.7202 cm for the MOC calculation. Addi-

tionally, the ray spacing for the NEACRP benchmark is the

same as that for VERA Problem 6. From bottom to top, the

active zone was divided into 26 layers with heights of 7.7,

11, 15 (21 layers), 12.8 (2 layers), and 8.0 cm, which dif-

fered from the division of the NEACRP benchmark for

high accuracy of results. A reflective boundary was used to

the west and north because of symmetry, whereas the rest

used vacuum boundary conditions. Concerning the ther-

mal–hydraulic calculation, an average fuel pin, represent-

ing all fuel pins of the associated assembly, was modeled in

detail to obtain the radial temperature distribution by

applying the average assembly power density. In the axial

direction, the separation of the coolant channel was con-

sistent with that of the transport calculation.

The steady-state thermal–hydraulic conditions are listed

in Table 4. The relation between thermal properties, such

as thermal conductivity and specific heat capacity, and

temperature is derived from [18]. Moreover, to consider the

feedback effects from thermal hydraulics and boron con-

centration, the macroscopic cross sections for each com-

position are defined by Eq. (21).

Fig. 7 (Color online) Convergence behavior of the residual norm for VERA Problem 6 with power perturbation: a 80% power level; b 140%

power level

A

Fuel assembly

Control assembly

Reflector

CA to be ejected

B

B

A
B
C
D
E
F
G
H

1 2 3 4 5 6 7 8

I

9

Fig. 8 (Color online) Radial layout of the quadrant core in NEACRP

benchmark
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R ¼ R0 þ
X

x¼q
m;

ffiffiffi
Tf

p
;C;Tm

oR
ox

� �
ðx� x0Þ; ð21Þ

where q, Tm, Tf, and C are the moderator temperature,

moderator density, fuel temperature, and boron density,

respectively. The subscript 0 represents the reference

values.

A comparison of steady-state and transient solutions for

cases A2 and B2 is given in Table 5. The reference results

listed in Table 5 were derived from [23]. As shown in

Table 5, there is good agreement between the simulation

and reference results. The critical boron concentration at

the steady state deviated slightly from the reference value,

and the maximum difference was approximately 31 ppm,

which is considered acceptable. In addition, the represen-

tative parameters in the transient process coincided well

with the reference.

Figure 9 depicts the evolution of the core-normalized

power and reactivity for case A2. Here, the adopted ref-

erence solutions are computed using the PARCS code [24].

As indicated, the HNET results for case A2 are in agree-

ment with that of PARCS. The slight deviation in the

normalized power and reactivity curves can be explained

by the difference in the neutronics methodology. The

NEACRP benchmark is resolved by neutron transport

calculations in HNET, whereas the nodal method is used in

PARCS. In addition, as illustrated in Fig. 10a, there is no

significant difference in the responses of the coolant exit

temperature to the CA ejection between these two codes.

Because the result of the Doppler temperature from the

PARCS is not provided in [24], Fig. 10b plots only the

solution of the HNET. From Fig. 10b, an increase in the

average Doppler temperature owing to power increments is

observed, which behaves as expected.

As shown in Figs. 11 and 12, to further test the level of

agreement, a closer analysis of the axial relative power and

radial normalized power for case A2 was performed at 0 s,

0.1 s, and 5 s. The relative error e is defined by Eq. (22).

e ¼ calc � ref

ref
� 100% ð22Þ

where calc represents the values calculated by HNET, and

ref is the reference value derived from PARCS [24].

The normalized power in the pin and assembly levels

are calculated using Eqs. (23) and (24).

Ppin ¼
PpinNpin

Pcore

ð23Þ

Passem ¼ PassemNassem

Pcore

; ð24Þ

where Ppin and Passem denote the axial-integrated power per

fuel pin and per fuel assembly, respectively; Npin and

Nassem represent the total number of fuel pins and fuel

assemblies, respectively; and Pcore is the core power.

With respect to the axial relative power, no significant

difference between HNET and PARCS is observed in

Fig. 11. Figure 12 shows that the results of assembly level

normalized power at the considered temporal points from

HNET agree well with PARCS. Moreover, because the

NEACRP benchmark was performed using a transient

transport solver, the pin-wise power distribution can be

obtained directly without power reconstruction. Figure 13

depicts the pin-wise radial normalized power for case A2 at

0.0 s and 0.1 s. The comparison shows that the pin power

in the center increases significantly after the withdrawal of

the control rod, which coincides with the sharp increase in

power observed in Fig. 9. The above results prove that the

evolution of the power distribution can be effectively

captured when the reactivity is being inserted.

Table 4 Steady-state thermal–hydraulic characteristics

Parameters Value

Core thermal output (MW) 2775 (HFP)

Core pressure (MPa) 15.5

Coolant inlet temperature (�C ) 286

Mass flow (kg/s) 12,893

Table 5 Steady-state and transient calculation results

Parameters A2 B2

Reference Calculation Deviation Reference Calculation Deviation

Critical boron concentration (ppm) 1156.63 1187.66 31.03 1183.83 1214.79 30.96

Power peak 1.0800 1.0821 0.0021 1.0630 1.0651 0.0021

Peak time (s) 0.0100 0.0105 0.0005 0.1200 0.1200 0

Final power at 5 s 1.0350 1.0357 0.0007 1.0380 1.0399 0.0019

Coolant outlet average temperature at 5 s (�C) 324.600 325.049 0.449 324.700 325.164 0.464
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Fig. 9 (Color online) Transient responses in case A2: a normalized power; b reactivity

Fig. 10 (Color online) Transient responses in case A2: a coolant exit temperature; b core averaged Doppler temperature

Fig. 11 (Color online) Axial relative power for case A2: a time at 0.0 s; b time at 0.1 s; c time at 5.0 s
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Finally, because the thermal-hydraulics feedback is

provided at the assembly level for the NEACRP bench-

mark, Fig. 14 shows the local temperatures in assemblies

C-3 and B-8, where the highest and lowest powers appear,

respectively. It can be observed that there are obvious

discrepancies for fuel centerline temperatures between the

two assemblies. As shown in Fig. 14b, the increase in

temperatures between 0 and 5 s in assembly B-8 is larger

than that in assembly C-3, particularly the fuel centerline

temperature.

5 Conclusion

The primary objective of this study was to couple neu-

tronics with thermal hydraulics in HNET. First, a simpli-

fied internal thermal–hydraulic module was developed for

thermal properties. Subsequently, a steady-state coupling

calculation is achieved by implementing the MFNK

method. Next, the OS method with a staggered time mesh

was used to accomplish the transient coupling simulation.

The investigation of the perturbation size shows that the

optimal perturbation size can significantly enhance the

convergence of the MFNK method compared with the

empirical perturbation size. With respect to VERA problem

6 at different power levels and boron concentrations, the

MFNK method is slightly sensitive to the feedback inten-

sity and can considerably reduce the computational cost

compared with the Picard iteration in most cases. It can be

proven that the MFNK method is more stable and efficient

than the Picard iteration for a wider range of problems.

Notably, the performance of MFNK is as good as or better

than that of Picard with relaxation, and there is no

requirement for input data in MFNK compared with the

relaxation approach. Furthermore, the numerical results for

the NEACRP transient benchmark are in agreement with

the reference values, indicating the validation of the tran-

sient coupling calculation in the hot full-power state. In

conclusion, the results demonstrate that the neutronics and

thermal-hydraulics coupling simulation is effectively per-

formed in HNET under both steady-state and transient

conditions.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

A 1.068 0.712 0.628 0.686 0.526 0.331 0.473 0.969 A 1.322 1.382 1.281 1.332 1.158 0.969 1.131 0.319 A 1.199 1.279 1.203 1.270 1.112 0.920 1.094 0.354

B 0.721 0.634 0.608 0.587 0.506 0.344 0.273 0.782 B 1.382 1.293 1.254 1.225 1.145 0.977 0.379 0.143 B 1.279 1.206 1.183 1.163 1.085 0.932 0.331 0.172

C 0.645 0.625 0.623 0.558 0.465 0.127 0.714 C 1.273 1.254 1.238 1.183 1.091 0.766 0.075 C 1.203 1.183 1.183 1.124 1.048 0.721 0.112

D 0.722 0.621 0.567 0.501 0.316 0.420 0.753 D 1.323 1.208 1.174 1.100 0.936 0.216 0.118 D 1.270 1.163 1.124 1.061 0.890 0.170 0.144

E 0.577 0.549 0.501 0.335 0.206 0.443 E 1.141 1.119 1.073 0.927 0.804 0.170 E 1.104 1.085 1.040 0.890 0.772 0.137

F 0.392 0.399 0.176 0.390 0.429 F 0.943 0.949 0.747 0.196 0.156 F 0.920 0.932 0.721 0.170 0.137

G 0.544 0.209 0.659 0.706 G 1.107 0.347 0.097 0.134 G 1.082 0.331 0.112 0.159

H 0.900 0.713 H 0.347 0.161 H 0.354 0.172

(a) (b) (c)

Fig. 12 (Color online) Relative error of assembly normalized power for case A2 in quarter core geometry (%): a time at 0.0 s; b time at 0.1 s;

c time at 5.0 s

Fig. 13 (Color online) Pin

normalized power distribution

for case A2 in quarter core

geometry: a time at 0.0 s;

b time at 0.1 s
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