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Abstract Research performed during the past decade

revealed an important role of symmetry energy in the

equation of state (EOS) of strange quark matter (SQM). By

introducing an isospin-dependent term into the quark mass

scaling, the SQM stability window in the equivparticle

model was studied. The results show that a sufficiently

strong isospin dependence CI can significantly widen the

SQM region of absolute stability, yielding results that

simultaneously satisfy the constraints of the astrophysical

observations of PSR J1614-2230 with 1.928 ± 0.017 M�

and tidal deformability 70�K1:4 � 580 measured in the

event GW170817. With increasing CI, the difference

between the u, d, and s quark fractions for the SQM in

b�equilibrium becomes inconspicuous for C[ 0, leading

to small isospin asymmetry d, and further resulting in

similar EOS and structures of strange quark stars (SQSs).

Moreover, unlike the behavior of the maximum mass of u-

d QSs, which varies with CI depending on the sign of the

parameter C, the maximum mass of the SQSs decreases

monotonously with increasing CI.
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1 Introduction

At sufficiently high baryon number densities, strange

quark matter (SQM) [1–4] with deconfined u, d, and

s quarks is expected to be the true ground state of quantum

chromodynamics (QCD). Owing to its possible implica-

tions in many fields, e.g., nuclear physics, astrophysics, and

cosmology, it has garnered significant attention in the last

few decades. Theoretically, SQM is a system dominated

mainly by strong interactions, which can be studied in

detail using QCD. Unfortunately, owing to the well-known

quark confinement phenomenon at relatively low densities,

which could be relevant to neutron-star interiors and quark

stars, naive perturbative QCD calculations of SQM are not

reliable [5]. In addition, although the ab initio lattice QCD

calculations were very successful in the finite-temperature

regime with a zero chemical potential (baryon number

density), they still suffer from the famous

intractable Fermion sign problem [6]. Therefore,

researchers typically resort to phenomenological models,

such as the density-dependent model [7–11], quark cluster

model [12, 13], quasi-particle model [14–18], Nambu-

Jona-Lasinio model [19], and so on. In Refs. [20, 21],

strong magnetic field effect on the properties of SQM had

been investigated, and numerous interesting results have

been obtained in other studies [22–25].

To study the SQM properties using phenomenological

models, one of the most important issues is determining

reasonable values of the model parameters. Given the

conjecture that SQM is absolutely stable, the most com-

monly used constraint is that, for SQM, the energy per

baryon should be smaller than 930 MeV, while for the bulk

u-d quark matter (u-d QM) it should be larger than 930

MeV. Moreover, significant progress has been made in the

observations of global properties of compact objects, such

as mass, radius, and tidal deformability. For example, the

measurements of PSR J1614-2230 and PSR J0348?0432

several years ago precisely determined masses of 1.97 ±

0.04 M� [26] (a more precise mass measurement yielded

1.928 ± 0.017M� [27] with a 68% credible level) and 2.01

± 0.04 M� [28], respectively. In addition, the more

recently measured gravitational mass of PSR J0740 ? 6620

reached 2.14þ0:20
�0:18 M� with 95.4% credibility, likely making

it the largest compact star observed up to date [29] (the

updated result for PSR J0740 ? 6620 is 2.08þ0:07
�0:07 M� [30]

with 68.3% credibility). Therefore, these observations of

pulsar masses have been widely used to constrain the EOS

of compact stars and the onset of the phase transition from

hadronic matter to quark matter in hybrid stars [31, 32].

In addition, with the coming of multi-messenger

observations of neutron stars, owing to the detection of

gravitational waves for events GW170817 [33] and

GW190814 [34], additional stringent constraints on the

EOS of compact star matter have been appeared [35–37].

Specifically, it was determined that for GW190814, the

newly discovered compact binary merger possesses a sec-

ondary component with mass as large as 2.50-2.67 M� at

the 90% credibility level. If it is confirmed to be a compact

star, rather than a light black hole, it will be possible to rule

out many EOSs. Moreover, this detection of gravitational

waves for GW170817 offers a novel opportunity to directly

probe the properties of matter under extreme conditions

found in the interior of compact stars, yielding improved

estimates of tidal deformability K1:4 ¼ 190þ390
�120 [38]. This

measurement of tidal deformability has been widely used

for constraining the properties of compact star matter

[39–46].

Recently, an interesting proposition was made, sug-

gesting that, instead of the SQM, the u-d QM may be the

true ground state of QCD [47]. According to this propo-

sition, it has been found that the properties of the u-d QS

are in accordance with various astrophysical observations

[48], where quark symmetry energy effects are included in

the EOS of the u-d QM. In practice, it has been found that

symmetry energy plays an important role in determining

the properties of isospin asymmetry matter [49–53]. For

nuclear matter, although the symmetry energy behaviors

have been well determined below and around the saturation

density, it remains a big challenge to determine the density

behaviors of the symmetry energy at suprasaturation den-

sities, where phase transitions of strong interaction matter

may occur, and various new forms of matter may appear. In

fact, due to the different symmetry terms in different

phases, isospin effects are rather significant [54]. In this

study, considering the isospin effects of the SQM, we

investigated the stability window and symmetry energy of

SQM and employed some of the constraints mentioned

above in the equivparticle model [23] to examine whether

the SQS properties are consistent with the reported astro-

physical observations. It is found that inter-quark isospin

effects are necessary for reconciling the SQSs obtained in

the equivparticle model with the aforementioned

constraints.

The remainder of this paper is organized as follows.

Section 2.1 briefly describes the equivparticle model,

where quark mass scaling with isospin effects is intro-

duced. Then in Sect. 2.2, the equations for calculating the

tidal deformability of compact stars are presented. In

Sect. 3, the numerical results of the properties of SQM and

the structures of SQSs are given and discussed. Finally, we

conclude this paper with a brief summary in Sect. 4.
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2 Equations for symmetry energy and tidal
deformability

2.1 Equivparticle model with isospin asymmetry

In the equivparticle model, by introducing an effective

quark chemical potential l�i , the thermodynamic potential

density of the quark matter system can be written as [23]

X0ðl�i ;miÞ ¼ �
X

i

gim
4
i

24p2
f

l�i
mi

� �
;

where f ðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
ðx2 � 5

2
Þ þ 3

2
archðxÞ, gi(=6 for

quarks and 2 for electrons) is the particle degeneracy, mi is

the isospin density-dependent equivalent quark mass, and

mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�2i � m2

i

p
is the Fermi momentum of particle spe-

cies i. Using the basic thermodynamic relation

qi ¼ �dX0=dl�i , the particle number density qi is readily

obtained

qi ¼� dX0

dl�i
¼ � oX0

ol�i
� oX0

omi

omi
ol�i

¼ gim3i
6p2

¼ gi
6p2

l�2i � m2
i

� �3=2
:

ð1Þ

Regarding the equivalent quark mass mi, different types of

quark mass scaling were constructed to account for strong

inter-quark interactions [7, 10, 23, 55]. Conventionally, in

the equivparticle model, mi is a function of the baryon

number density qb. To include the isospin effect on the

EOS of quark matter, the isospin asymmetry term d �
3ðqd � quÞ=ðqd þ quÞ is introduced into the mass scaling

framework. In Ref. [56], mi is parameterized as mi qb; dð Þ ¼
mi0 þ Dq�1=3

b � sidDIq
a
be

�bnb with si being the third com-

ponent of the isospin for quark flavor i. In this study, we

used the parameterization that was recently proposed in

Ref. [48], i.e.,

miðqb; dÞ ¼ mi0 þ mIiðqb; dÞ
¼ mi0 þ Dq�1=3

b þ Cq1=3b þ CIid
2qb;

ð2Þ

where mi0 is the quark current mass, D is the confinement

parameter indicating the linear confinement effect, C rep-

resents the one-gluon exchange interaction for C\0 and

the leading-order perturbative interaction for C[ 0, and

parameter CIi (CIu ¼ CId;CIs ¼ 0) is used for adjusting the

strength of the isospin-dependent equivalent quark mass

and thus the magnitude of the quark-matter symmetry

energy. In addition, this equivalent quark mass satisfies the

exchange symmetry between u and d quarks in quark

matter in the absence of inter-quark electromagnetic

interactions.

The energy density and pressure of the SQM are,

respectively, given as

E ¼ X0 �
X

i

l�i
oX0

ol�i
¼
X

i

gim
4
i

16p2
g

l�i
mi

� �
; ð3Þ

where gðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
ð2x2 � 1Þ � archðxÞ and

P ¼ �X0 þ qb
X

j

oX0

omj

omj

oqb
þ
X

i;j

qi
od
oqi

oX0

omj

omj

od
: ð4Þ

Based on the definition of the isospin asymmetry d, the
derivatives of d with respect to qu and qd are, respectively

od
oqu

¼ � 6qd
ðqd þ quÞ2

and
od
oqd

¼ 6qu
ðqd þ quÞ2

: ð5Þ

Accordingly, the summation of the index i in the third term

on the right-hand side of Eq. (4) is zero, which leads to the

following simple pressure form:

P ¼ �X0 þ qb
X

i

oX0

omi

omi

oqb
; ð6Þ

with

omi

oqb
¼ � D

3qb4=3
þ C

3qb2=3
þ CIid

2; ð7Þ

and

oX0

omi
¼ gimi

4p2
l�i mi � m2

i ln
l�i þ mi
mi

� �� �
: ð8Þ

To obtain the EOS of the SQM, one has to solve the fol-

lowing equations, which are, respectively, the electric-

charge neutrality conditions

2qu � qd � qs � 3qe ¼ 0; ð9Þ

the conservation of the baryon number density

qb ¼ 1

3
ðqu þ qd þ qsÞ; ð10Þ

and the b-equilibrium condition

lu þ le ¼ ld ¼ ls: ð11Þ

It should be noted that the chemical potentials in Eq. (11)

are real ones, instead of the effective ones. The relationship

between the real chemical potential li and effective

chemical potential l�i in the equivparticle model is

li ¼l�i þ
X

j

oX0

omj

omj

oqi

¼l�i þ
1

3

X

j

oX0

omj

omj

oqb
þ od
oqi

X

j

oX0

omj

omj

od
;

ð12Þ

with

123

Symmetry energy of strange quark matter... Page 3 of 12 143



omj

od
¼ 2CIjdqb: ð13Þ

Using Eqs. (12, 13), Eq.(11) can be rewritten as

l�s ¼ l�u þ
od
oqu

X

j

oX0

omj

omj

od
þ le; ð14Þ

and

l�s ¼ l�d þ
od
oqd

X

j

oX0

omj

omj

od
: ð15Þ

Using Eqs. (9) and (10), Eqs. (14) and (15) can be con-

sidered as a set of equations for qu and qd. By solving these

equations for a given qb, we obtain qu and qd, and then,

accordingly, the EOS of the SQM.

There are two methods for obtaining the symmetry

energy. The first approach uses the parabolic law,

approximately given by [56, 57]

Esymðqb; qsÞ ’
1

9
½Eðqb; d ¼ 3; qsÞ � Eðqb; d ¼ 0; qsÞ�;

ð16Þ

which implies that the symmetry energy is an estimate of

the energy cost required for converting all u quarks in the

symmetric u-d QM to d quarks, for given qb and qs. The
other one can be analytically deduced from the following

definition, i.e.,

Esymðqb; qsÞ ¼
1

2

o2Euds=qb
od2

				
d¼0

; ð17Þ

where

Euds ¼
g

2p2

Z ð1�d=3Þ
1
3m

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ m2

u

q
k2dk

þ g

2p2

Z ð1þd=3Þ
1
3m

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ m2

d

q
k2dk

þ g

2p2

Z ms

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ m2

s

q
k2dk:

ð18Þ

Here, the Fermi momenta of u and d quarks are expressed,

respectively, as

mu ¼ ð1� d=3Þ
1
3m;

md ¼ ð1þ d=3Þ
1
3m;

ð19Þ

where m is the quark Fermi momentum of the symmetric u-

d QM at the quark number density. q ¼ 2qu ¼ 2qd.
According to Eq. (18), Eq. (17) can be explicitly written

as

Esymðqb; qsÞ

¼ 9CIqbm

2m3
Aþ 1

18

m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ m2

p
� �

3qb � qs
3qb

;
ð20Þ

with

A ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ m2

p
� m2arcsh

m
m


 �
; ð21Þ

where m ¼ m0 þ Dq�1=3

b
þ CIiq

1=3

b
with m0 � mu0 ¼ md0.

Here, we have assumed mu0 ¼ md0. If mu0 6¼ md0, then

Esymðqb; qsÞ

¼
3CIqbm

0
u

2m3
Au þ

1

54

m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ m02

u

p
 !

3qb � qs
2qb

þ
3CIqbm

0
d

2m3
Ad þ

1

54

m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ m02

d

p
 !

3qb � qs
2qb

;

ð22Þ

with

m0
i ¼ mi0 þ Dq�1=3

b
þ CIiq

1=3

b
ð23Þ

and

Ai ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ m02

i

q
� m02

i arcsinh
m
m0

i

� �
: ð24Þ

We found that the discrepancy between the symmetry

energies given by Eqs. (20) and (22) is essentially negli-

gible. Therefore, in the following calculations, we adopted

Eq. (20) to calculate the SQM symmetry energy.

2.2 Equations for calculating structures and tidal

deformability of SQSs

To calculate the structures and tidal deformability of

SQSs, we briefly introduce relevant equations. To obtain

the SQS structures, one should numerically solve the Tol-

man-Oppenheimer-Volkov (TOV) equation:

dP

dr
¼ �GmE

r2
ð1þ P=EÞ 1þ 4pr3P=mð Þ

1� 2Gm=r
; ð25Þ

with subsidiary conditions:

dm

dr
¼ 4pr2E; ð26Þ

where G ¼ 6:707	 10�45MeV�2 denotes the gravitational

constant.

Dimensionless tidal deformability is defined as [58–61]

K � 2

3
k2C

�5; ð27Þ

where C � M
R G is the compactness and k2 is the gravita-

tional Love number with its value usually in the range of
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0.2–0.3. To calculate K as a function of the star mass M or

radius R, we need the value of k2, which is defined as

k2 ¼
8C5

5
ð1� 2CÞ2 2þ 2C yR � 1

� �
� yR

� 


	 2C 6� 3yR þ 3C 5yR � 8
� �� 


þ 4C3
�

	 13� 11yR þ C 3yR � 2
� �

þ 2C2 1þ yR
� �� 


þ 3ð1� 2CÞ2 2� yR þ 2C yR � 1
� �� 


lnð1� 2CÞg�1;

ð28Þ

where yR � yðRÞ and y(r) is obtained as the solution to the

following differential equation:

r
dy

dr
þ y2 þ yFðrÞ þ r2QðrÞ ¼ 0: ð29Þ

Here, F(r) and Q(r) are, respectively, defined as

FðrÞ � 1� 4pr2½�ðrÞ � PðrÞ�G
f ðrÞ ; ð30Þ

and

QðrÞ � 4p
f ðrÞ 5�ðrÞGþ 9PðrÞGþ �ðrÞ þ PðrÞ

v2sðrÞ
G

�

� 6

4pr2

�
� 4

mðrÞ þ 4pr3PðrÞ
r2f ðrÞ G

� �2
;

ð31Þ

where v2s ¼ oPðrÞ=o�ðrÞ denotes the squared sound veloc-

ity. In the case of a bare SQS, the energy density on the star

surface is finite, which requires a correction to be added to

the calculation of yR to account for the energy disconti-

nuity, reading

yR ! yR � 4pR3�s
M

; ð32Þ

where �s is the energy density difference between internal

and external regions.

3 Numerical results and discussion

To study the isospin effects on the EOS of the SQM and

the SQS structures, the values of the model parameters

should be designated. First, the current masses of quarks

are given as mu0 ¼ 5 MeV, md0 ¼ 10 MeV, and ms0 ¼ 100

MeV. If Eq. (20) is used for computing the symmetry

energy, the values of the up and down quark current masses

are mu0 ¼ md0 ¼ 7:5 MeV. The values of the parameters C,

D, and CI are determined by studying the SQM stability

window, combined with the astrophysical observation data

of both massive compact star PSR J1614-2230 with 1.97 ±

0.04 M� and tidal deformability 70�K1:4 � 580 measured

for GW170817.

Shown in Fig. 1 are the SQM stability windows for

different CI, with the value labeled in each panel. The black

solid line in each panel indicates 930 MeV per baryon for

the SQM; the SQM becomes unstable if the energy per

baryon exceeds 930 MeV. Similarly, the dashed line in

each panel corresponds to the 930 MeV (per baryon) level

for the u-d QM; below this line, the energy per baryon of

the bulk u-d QM is smaller than 930 MeV, and nuclei are

likely to decay to the u-d QM. This case contradicts the

modern nuclear physics and should be forbidden. There-

fore, only the area between the black solid and dashed lines

is the SQM’s absolute-stability region. In addition, the blue

line in each panel represents the configuration that can

yield the maximum SQS mass with 2 M�. However, when
CI and/or C is negative, and baryon number density is

sufficiently large, further decreasing CI will lead to a

negative quark mass and the requirement of maximum

mass with 2 M� will be no longer satisfied. Therefore, the

blue lines in Fig. 1 will end at a certain point that is

indicated by a star. The red line indicates the upper limit of

K1:4 ¼ 580 measured for GW170817. Moreover, it is worth

mentioning that, if we decrease the values of the maximum

mass Mmax or tidal deformability K1:4, the lines repre-

senting them will shift upward, as indicated in panel

(a) with up arrows.

Comparing the three panels in Fig. 1, it is evident that,

by increasing the isospin dependence parameter, CI, the

dashed line will move significantly downward, whereas the

solid line will be barely affected. Consequently, this will

widen the SQS stable region. However, comparing panels

(b) and (c), it can be observed that, for sufficiently high

isospin parameter CI values (e.g., for CI ¼ 400 MeV fm3),

further increasing it does not affect the absolute-stability

region. In particular, we verified that beyond CIJ10000

MeV fm3, the absolute-stability region barely changed as

the value of the parameter was further increased.

By contrast, the blue lines for massive SQSs with 2 M�
and red lines for the SQS tidal deformability with K1:4 ¼
580 tend slightly downward as CI increases, but neither is

affected significantly by varying CI. To satisfy these two

astrophysical observations (i.e., Mmax ¼ 2 M� and

K1:4 ¼ 580), the cross-points of the blue and red lines

should be located in the absolute-stability region. Unfor-

tunately, from these three panels, we can easily observe

that, although the cross-point approaches the stable region

with increasing CI, it does not end up in the stable region,

even for CI values as high as 10000 MeV fm3. Given that

the absolute-stability region does not change significantly

by increasing CI when it is already sufficiently large, we

conclude that in the equivparticle model with mass scaling

as given by Eq. (2), the two observables Mmax ¼ 2 M� and
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K1:4 ¼ 580 cannot be simultaneously satisfied by one set of

model parameters.

However, if we loosen the constraint on tidal deforma-

bility to its lower limit, namely decreasing K1:4 to 70, the

red line moves upward to the position of the red line with

circles, as shown in panel (c). Therefore, it can be inferred

that as K1:4 decreases, the intersection point of the blue and

red lines moves upward along the blue line. Therefore, we

can choose the point ðC;D1=2=MeVÞ ¼ ð�0:6; 164:5Þ
indicated by the black dot in panel (c) as one of the typical

parameter sets, which is located in the SQM absolute-sta-

bility region. For comparison, we select parameter sets

ðC;D1=2=MeVÞ ¼ ð�0:7; 168Þ and (0.08, 139) as typical

parameter sets for investigating the SQM properties and the

SQS structures, which are, respectively, indicated with a

red square and blue diamond in panel (c). To study the

effect of isospins on the SQM properties and SQS struc-

tures, we also chose points ðC;D1=2=MeVÞ ¼
ð�0:6; 164:5Þ in panels (a) and (b) as typical model

parameter sets indicated by black dots, which are in the

SQM unstable region.

In Fig. 2, the density behavior of the energy per baryon

is shown for typical parameters. The figure reveals that in

the equivparticle model, the minimum energy (circles) for

each curve is at exactly the same density as zero pressure

(asterisks), satisfying the requirement of thermodynamic

consistency. Moreover, the one-gluon exchange interaction

(C\0) can significantly lower the minimum energy per

baryon, which makes SQM much more stable than normal

nuclear matter. In addition, comparing the three black

lines, we find that with increasing CI, the minimum energy

per baryon increases. However, for high values of CI, the

difference between the solid black line (CI ¼ 10000

MeVfm3) and dashed black line (CI ¼ 400 MeV fm3)

becomes small. This is because, with increasing CI, the

difference between u and d quark fractions becomes small

in b-equilibrated SQM, which results in vanishing isospin

asymmetry d. We can examine this point in Fig. 3. With

Fig. 1 (Color online) Stability windows for the SQM, for different

values of the isospin strength parameter CI. The absolute-stability

region between the black solid and dashed lines widens significantly

with increasing CI, yielding results consistent with both the

astrophysical observations of massive compact star PSR J1614-2230

with 1.98 ± 0.017 M� and tidal deformability 70�K1:4 � 580,

measured for GW170817. The blue line denotes the maximum mass

of the SQSs with 2 M�, the red line represents the upper limit of tidal

deformability measured for GW170817, i.e., K1:4 ¼ 580, and the red

line with circles in panel (c) gives the lower limit K1:4 ¼ 70. The

typical model parameters are indicated in panels

Fig. 2 (Color online) Density behavior of SQM energy per baryon in

b-equilibrium. It is obvious that the minimal energy (circles) for each

curve is exactly at the density corresponding to zero pressure

(asterisks), satisfying the requirement of thermodynamic consistency
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the parameter set ðC;D1=2=MeVÞ ¼ ð�0:6; 164:5Þ, the

quark fractions are expressed as different CI values indi-

cated in each panel in Fig. 3. Evidently, the differences

between u, d, and s quark fractions become smaller as CI

increases. In particular, for CI ¼ 10000 MeV fm3, the

difference between the u and d quark fractions is small,

which leads to vanishing d. Additionally, in this case, it is

interesting to note that when qbJ0:6 fm-3, the u, d, and

s quark fractions are essentially equal and approach 0.33,

similar to the case of the color-flavor-locked (CFL) phase.

The results for the density behavior of quark fractions in

this study resemble those reported in Ref. [56].

Figure 4 shows the density behavior of the symmetry

energy for typical parameters. From the left panel of Fig. 4,

it can be seen that the value of C plays an important role in

determining the symmetry energy. Generally, for the

nuclear matter symmetry energy there are essentially two

groups of density behavior, where one increases mono-

tonously with density, and the other first increases and then

decreases with increasing density [57, 62]. The latter is

typically regarded as soft. Specifically, if the symmetry

energy of nuclear matter becomes negative at suprasatu-

ration densities, neutron stars exhibit pure neutron matter

cores [63]. Similar to nuclear matter symmetry energy, the

behavior of the SQM symmetry energy in the present work

can be divided into two groups, depending on the value of

the model parameter C. For non-negative C, the symmetry

energy increases with increasing density. Otherwise, it first

increases and then decreases with increasing density, which

means that it becomes soft at high densities. However,

unlike the nuclear matter symmetry energy, the quark

matter symmetry energy in our model does not become

negative, because the quark masses given by Eq. (2)

become negative at sufficiently high densities with nega-

tive C. However, the soft quark matter symmetry energy

will affect the chemical composition of the SQS core and

may have important implications for the structures and

dynamical evolution of SQSs; this issue requires further

studies.

Moreover, as will be discussed later, to satisfy the

requirement of the two-solar-mass constraint of the SQS

maximum mass, the symmetry energies shown in the left

panel can be as high as 3500 MeV, as indicated by the solid

black line. In addition, in the left panel of Fig. 4 we also

show the results from Fig. 1 in Ref. [56]; these are shown

here by the red dashed line indicated with DI-300 9 30.

The reason for choosing the parameter set DI-300 for

comparison was that the SQM symmetry energy with DI-

300 is of the same order of magnitude as the nuclear matter

symmetry given by the RMF model with interaction NLqd.
Therefore, from this panel, we can see that the SQM

symmetry energy is approximately 30 times higher than the

nuclear matter symmetry energy, which is consistent with

the findings in Ref. [56]. In addition, it is interesting to note

that at relatively low densities, the symmetry energies

shown by the black solid and black dashed lines are

indistinguishable. The right panel of Fig. 4 shows that, on

one hand, when CI = 0, the symmetry energy increases with

increasing density, while when CI ¼ 400 or 10000 MeV

fm3, the symmetry energy first increases and then decreases

for densities above 0.4 fm-3; on the other hand, the sym-

metry energy increases drastically with increasing strength

of the isospin dependence parameter CI, e.g., the symmetry

energy for CI = 10000 MeV fm3 is approximately 20 times

that for CI = 400 MeV fm3, or even more than 150 times

that for vanishing CI.

Left and right panels of Fig. 5 show, respectively, the

SQS structures and tidal deformability. The left panel of

Fig. 5 shows that, as the isospin dependence parameter CI

increases, the maximum mass and the corresponding radius

of the SQS decrease, which is different from some previ-

ously reported results [56]. Moreover, although all

Fig. 3 Quark fraction as a

function of the baryon number

density in the equivparticle

model, with the corresponding

parameters indicated in each

panel. The blue, black, and red

lines are, respectively, for the u,
d, and s quark fractions. See text
for a detailed discussion
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maximum mass values in the left panel are above 1.93 M�,
namely, the lower limit of the observed mass of PSR

J1614-2230, only the black lines with parametric sets are in

the SQM absolute-stability region, which is illustrated in

Fig. 1. This finding reflects the crucial role of the symmetry

energy on the SQM EOS in the equivparticle model.

Typically, the black solid line with ðC;D1=2=MeVÞ ¼
ð�0:6; 164:5Þ and CI = 10000 MeV fm3 yields the

Fig. 4 Quark matter symmetry energy as a function of the baryon

number density. The left panel shows that for C\0 the symmetry

energy peaks at a certain density. In addition, the red dashed line with

DI-300 is replotted from Ref. [56], which has the same order of

magnitude as nuclear matter symmetry energy. For the sake of

comparison with the presently obtained results, we multiplied it by

30. Therefore, for satisfying the constraints imposed by astrophysical

observations, the SQM symmetry energy can be as much as 30 times

the nuclear matter symmetry energy. From the two panels we find that

by increasing the isospin dependence parameter CI, the symmetry

energy can be drastically increased, especially for C[ 0

Fig. 5 Mass–radius relations of SQSs and the relation between the

dimensionless tidal deformability and the SQS mass, for different

model parameters. The solid black line for the parameter set

ðC;D1=2=MeVÞ ¼ ð�0:6; 164:5Þ and CI = 10000 MeV fm-3 yields

the maximum mass Mmax ¼ 1:97 M�, corresponding to the measured

mass of PSR J1614-2230. Although the dashed black line does not

reach the maximum mass for the configuration with the model

parameter set ðC;D1=2=MeVÞ ¼ ð�0:7; 168Þ and CI = 10000 MeV

fm-3, it yields the maximum mass above 2.01 M�, which is in

accordance with the observed mass of PSR J0348 ? 0432

123

143 Page 8 of 12 J.-F. Xu et al.



maximum mass Mmax ¼ 1:97 M�, corresponding to the

measured mass of PSR J1614-2230. In addition, owing to

the fact that with increasing SQS central density the quark

equivalent mass given by Eq. (2) becomes negative, the

dashed black line where ðC;D1=2=MeVÞ ¼ ð�0:7; 168Þ
does not reach the maximum mass. However, the mass of

the most massive star given by the black dashed line can

exceed 2.01 M�, which is in accordance with the measured

mass of PSR J0348 ? 0432 [28]. If we constrain the

parameters to the SQM absolute-stability region in panel

(c) of Fig. 1, we obtain that the SQS maximum mass can be

as large as 2.02 M� in the present model, which is still

within the limits of the measured mass of PSR J0740 ?

6620 with values of 2.08 ± 0.07M� [29]. Nevertheless, for

GW190814 [34] it was shown that the binary merger

possesses a secondary compact object with the mass as

high as 2.50-2.67 M� at the 90% credibility level, which

is far beyond the maximum mass of 2.02 M� in the present

model. If the secondary compact object is a neutron star or

a quark star, this may imply that other inter-quark inter-

actions should be taken into consideration, or a novel quark

mass scaling should be proposed for the equivparticle

model. Specifically, Table 1 lists the typical quantities and

symmetry energy for the SQS core. From Table 1, all the

maximum masses shown are approximately 2M�, and with
a positively valued model parameter C, the SQS maximum

mass yields a lower central density. However, it is worth

mentioning that the quark matter symmetry energy at the

SQS center for positive C is much higher than that for

negative C, although the central density is lower.

The right panel in Fig. 5 shows the relation between the

dimensionless tidal deformability and the SQS mass, for

the equivparticle model with different parameter sets in

Fig. 5. The horizontal blue dashed line in the right panel of

Fig. 5 corresponds to the SQS with 1.4 M�, whereas the

two blue solid lines indicate the range of the tidal

deformability, that is, 70�K� 580, based on the improved

analysis of GW170817 using LIGO and Virgo collabora-

tion [38]. Note that the tidal deformability increases rapidly

as the SQS mass decreases, which means that lighter SQSs

can be deformed easier than heavier SQSs. Meanwhile, it is

evident that all intersections of the typical lines and the

blue dashed line are located between the two solid blue

lines. Given the maximum masses in the left panel, the

typical configurations with the parameter sets we have

chosen in the present model can satisfy both the astro-

physical observations of the massive compact star PSR

J1614-2230 with 1.97 ± 0.04 M� and the tidal deforma-

bility 70�K1:4 � 580 measured for GW170817.

Shown in Fig. 6 is the dependence of the maximum

mass on CI, for the u-d QS (left panel) and SQS (right

panel). Comparing the two panels, it is evident that, for the

same model parameters, the maximum u-d QS mass is

higher than that of the SQS. In addition, unlike the maxi-

mum SQS mass, which decreases monotonously with

increasing CI, the variation in the maximum mass of the u-

d QS is complex. In particular, for non-negative C the u-d

QS maximum mass first increases with CI at CI\100 MeV

fm3 and then decreases with CI; by contrast, for negative C

the maximum u-d QS mass first decreases with increasing

CI to approximately 400 MeV fm3 and then increases with

increasing CI. From these two panels, it is evident that for

sufficiently large CI (e.g., for CI = 10000 MeV fm3), further

increasing CI will not significantly affect the maximum

mass. Furthermore, Fig. 6 shows that for ðC;
ffiffiffiffi
D

p
=MeVÞ =(-

0.6,164.5), the maximum u-d QS mass can be as large as

2.3 M�, exceeding the observed 2.08 M� for J0740 ?

6602. Nevertheless, in this case, the tidal deformability of

the u-d QS yields K1:4 
 720, not in the 70�K1:4 � 580

range. This is illustrated in Table 2, where the typical

parameters ðC;D1=2=MeVÞ, the maximum mass Mmax, the

tidal deformability K1:4, and the energy per baryon E=nb
are shown for the u-d QS. Moreover, the data in the

table suggest that, if the value of
ffiffiffiffi
D

p
is increased to 170,

175, or 180, the tidal deformability will be located in a

reasonable range, but the maximum u-d QS mass will

decrease as well. Specifically, for ðC;
ffiffiffiffi
D

p
=MeVÞ =(-

0.6,170), the energy per baryon for the u-d QM will exceed

930 MeV, implying an unstable state for the u-d QM,

although the parameter set will yield proper values of

Mmax 
 2:16M� and K1:4 
 520, satisfying the constraints

of astrophysical observations. Therefore, for determining

whether the u-d QS can simultaneously satisfy all of the

above-mentioned constraints, further detailed investiga-

tions are needed.

4 Summary

In this study, we investigated the isospin effects on the

SQM stability window by introducing an isospin-depen-

dent term into the quark mass scaling to account for the

Table 1 With the typical parameters ðC;D1=2=MeVÞ, the maximum

mass Mmax, the radius corresponding to the maximum mass R, the
central density n0, and the quark matter symmetry energy at the SQS

center Esym are listed in the following table

ðC;D1=2=MeVÞ (0.08,139) (- 0.6,164.5) (- 0.7,168)

Mmax= M� 1.93 1.97 2.01

R (km) 11.39 10.44 10.61

n0 (fm�3) 0.98 1.20 1.11

Esym (MeV) 7493.97 874.38 215.93
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quark-matter symmetry energy and further studied the EOS

of the isospin-asymmetric SQM. We found that by

increasing the isospin dependence parameter CI, the SQM

absolute-stability region becomes significantly wider,

therefore enabling support of the massive compact star

PSR J1614-2230 with 1.97 ± 0.04 M� and the tidal

deformability 70�K1:4 � 580 measured for GW170817.

As for quark fractions, we found that with increasing CI the

difference between u and d quark fractions became negli-

gible, yielding vanishing isospin asymmetry d; in addition,

as the baryon number density increases, the u, d, and s

quark fractions approach approximately 0.33, similar to the

CFL phase results. The symmetry energy properties were

then examined by considering different values of CI. It is

interesting to note that for C\0, with increasing CI the

SQM symmetry energy first increases and then decreases,

implying soft symmetry energy. In addition, the symmetry

energy increases drastically with increasing isospin

dependence parameter CI, especially for C[ 0. Owing to

the widening of the SQM absolute-stability region by

incorporating the isospin effects into the SQM EOS, the

measured mass of PSR J1614-2230 with 1.97 M� and the

dimensionless tidal deformability 70�K1:4 � 580 mea-

sured for GW170817 could be well explained as SQSs by

choosing proper model parameter values in the SQM

absolute-stability region. However, considering that the

measured mass of PSR J0740 ? 6620 can be as large as

2.08 M�, the present equivparticle model still cannot

explain more massive SQSs with masses exceeding 2.02

M�. This may imply that other SQM effects should be

considered, e.g., the presence of u-d quark Cooper pairs

(2SC phase) [51], or a novel quark mass scaling framework

should be developed [56]. Finally, unlike the SQS maxi-

mum mass, which decreases monotonously with increasing

CI, the variation in the u-d QS maximum mass is uncertain,

depending on the sign of the model parameter C.
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