
Method for detector description transformation to Unity
and application in BESIII

Kai-Xuan Huang1 • Zhi-Jun Li1 • Zhen Qian1 • Jiang Zhu1 • Hao-Yuan Li1 •

Yu-Mei Zhang2 • Sheng-Sen Sun3,4 • Zheng-Yun You1

Received: 21 June 2022 / Revised: 3 September 2022 / Accepted: 20 September 2022 / Published online: 9 November 2022

� The Author(s), under exclusive licence to China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the

Chinese Academy of Sciences, Chinese Nuclear Society 2022

Abstract Detector and event visualization are essential

parts of the software used in high-energy physics (HEP)

experiments. Modern visualization techniques and multi-

media production platforms such as Unity provide

impressive display effects and professional extensions for

visualization in HEP experiments. In this study, a method

for automatic detector description transformation is pre-

sented, which can convert the complicated HEP detector

geometry from GDML in offline software to 3D modeling

in Unity. The method was successfully applied in the

BESIII experiment and can be further developed into

applications such as event displays, data monitoring, or

virtual reality. It has great potential in detector design,

offline software development, physics analysis, and out-

reach for next-generation HEP experiments as well as

applications in nuclear techniques for the industry.

Keywords Detector description � Visualization � Unity �
GDML � BESIII

1 Introduction

Detector description and visualization play important

roles in various aspects of the life cycle of a high-energy

physics (HEP) experiment, including detector design,

optimization, simulation, reconstruction, detector com-

missioning, monitoring, event display, physics analysis,

outreach, and education. In the HEP Software Foundation

(HSF) Community White Paper [1] and the Roadmap for

HEP Software and Computing R&D for the 2020s [2],

suggestions and guidelines for visualization tools and

techniques in future experiments have been specifically

discussed, focusing on detector geometry visualization,

event display, and interactivity.

The detectors in HEP experiments are usually large-

scale scientific apparatuses with complicated geometries,

which are composed of millions of detector units, such as

the ATLAS [3] and CMS [4] detectors at the Large Hadron

Collider (LHC) [5]. The detector description is developed

based on professional geometry toolkits, such as the com-

monly used Geometry Description Markup Language

This work was supported by the National Natural Science Foundation

of China (Nos. 11975021, 12175321, 11675275, U1832204, and

U1932101), National Key Research and Development Program of

China (Nos. 2020YFA0406300 and 2020YFA0406400), Guangdong

Basic and Applied Basic Research Foundation (No.

2021A1515012039), State Key Laboratory of Nuclear Physics and

Technology, Peking University (Nos. NPT2020KFY04 and

NPT2020KFY05), Strategic Priority Research Program of the

Chinese Academy of Sciences (No. XDA10010900), Chinese

Academy of Sciences (CAS) Large-Scale Scientific Facility Program;

Fundamental Research Funds for the Central Universities, Sun Yat-

sen University, National College Students Science and Technology

Innovation Project, and Undergraduate Base Scientific Research

Project of Sun Yat-sen University.

& Zheng-Yun You

youzhy5@mail.sysu.edu.cn

Yu-Mei Zhang

zhangym26@mail.sysu.edu.cn

1 School of Physics, Sun Yat-sen University,

Guangzhou 510275, China

2 Sino-French Institute of Nuclear Engineering and

Technology, Sun Yat-sen University, Zhuhai 519082, China

3 Institute of High Energy Physics, Chinese Academy of

Sciences, Beijing 100049, China

4 University of Chinese Academy of Sciences, Beijing 100049,

China

123

NUCL SCI TECH (2022) 33:142(0123456789().,-volV)(0123456789().,-volV)

https://doi.org/10.1007/s41365-022-01133-8

http://orcid.org/0000-0003-4459-3234
http://orcid.org/0000-0001-8377-8632
http://orcid.org/0000-0001-6377-2153
http://orcid.org/0000-0002-5615-0484
http://orcid.org/0000-0003-0733-7610
http://orcid.org/0000-0001-8324-3291
http://crossmark.crossref.org/dialog/?doi=10.1007/s41365-022-01133-8&domain=pdf
https://doi.org/10.1007/s41365-022-01133-8

(GDML) [6] and Detector Description Toolkit for High

Energy Physics (DD4hep) [7]. Detector geometry infor-

mation in GDML or DD4hep format can be imported into

the offline software of an experiment to provide a consis-

tent detector description for different applications [8, 9].

However, displaying complicated detectors in offline

software is difficult because the HEP software community

does not have a common visualization tool that meets the

requirements of visualization effects, speed, efficiency, and

portability. The ROOT software [10] and its EVE pack-

age [11] have been used in some experiments for detector

visualization and event display, such as ALICE [12],

BESIII [13], and JUNO [14, 15]. Although ROOT-based

event display tools have the advantage of their develop-

ment in offline software frameworks, their visualization

effects are limited, and they are also difficult to implement

on platforms other than Linux.

In recent years, popular video game engines from the

industry, such as Unity [16], have been used in HEP

experiments for detector visualization and event display.

Unity is a cross-platform engine for creating games,

architecture, videos, and animation. It supports more than

20 different platforms, including Windows, Linux, macOS,

iOS, and Android, which makes Unity the most popular

application development platform on Apple Store and

Google Play. The applications of Unity in ATLAS [3],

BelleII [17], and JUNO [18] have achieved good visual-

ization effects, and thus Unity is a promising platform for

visualization in future HEP experiments.

Despite the advantages of great display effects and

cross-platform support, a critical problem in using Unity

for detector visualization is that it does not support the

commonly used toolkits for HEP detector description,

GDML and DD4hep. Developers have to use the 3D

modeling system in Unity to reconstruct the complicated

detector from scratch again, which not only requires extra

human work and creates maintenance problems, but could

also make the detector description in Unity inconsistent

with that in the offline software.

In this study, we present a method to automate the

conversion of the GDML detector description into Unity.

The full detector geometry and its architecture, as descri-

bed with GDML or ROOT, can be imported into Unity for

automatic 3D detector modeling. The correlation between

detector elements and identifiers is also preserved, which

makes it convenient for further developments in event

displays or virtual reality (VR) applications. The method

was tested and validated using the BESIII detector

description [8, 9].

The remainder of this paper is organized as follows. In

Sect. 2, we introduce the detector description and its

visualization in HEP offline software and Unity. In Sect. 3,

the method for transformation from GDML to Unity and

the detector data flow is presented. Its application in

BESIII is introduced in Sect. 4. The potential for further

development of applications is discussed in Sect. 5.

2 Detector geometry and visualization

2.1 Detector description in HEP software

Detector description is an indispensable part of the HEP

offline software as it provides the detector geometry and

status information for different applications, including

simulation, reconstruction, calibration, event display, and

physics analysis. Commonly used HEP infrastructure

software products, such as Geant4 [19] or ROOT [10],

have their own specific detector construction systems. If

software developers define the detector geometry in these

types of software independently, potential inconsistencies

between them could be created. To solve this problem,

some frameworks provide software-independent detector

descriptions, such as GDML and DD4hep, for detector-

related applications in the HEP offline software.

GDML [6] is a detector description language based on

extensible markup language (XML) [20]. It describes the

detector information through a set of tags and attributes in

plain text format to provide a persistent detector descrip-

tion for an experiment. Several HEP experiments, includ-

ing BESIII [8, 9], PHENIX [21], LHCb [22–24], and

JUNO [25], have used GDML to describe and optimize the

detector geometry in conceptual design and offline soft-

ware development [26–28].

DD4hep [7] is a software framework that provides a

complete solution for a full detector description, including

geometry, materials, visualization, readout, alignment, and

calibration, for the full experimental life cycle. It offers a

consistent description through a single source of detector

information for simulation, reconstruction, and analysis.

DD4hep is aimed at applications in next-generation HEP

experiments, such as CEPC [29], ILC [30], FCC [31], and

STCF [32].

2.2 Visualization of detector and events

One important application of detector description is to

visualize it so that users can have a distinct view to better

understand HEP detectors. This is extremely important at

the stages of detector conceptual design and commission-

ing. In combination with event visualization, event display

provides a powerful tool to demonstrate the detector

response to particles, which plays an essential role in off-

line software development and physics analysis.

However, as part of the traditional industrial design,

computer-aided design (CAD) [33] has been dominant in

123

142 Page 2 of 10 K.-X. Huang et al.

several stages of HEP experiments, including detector

design, construction, and commissioning. There have

always been difficulties in sharing 3D modeling informa-

tion between the CAD and HEP offline software because

they belong to two different fields, industrial design and

HEP experimentation, respectively.

In HEP experiments, physicists usually develop detector

descriptions and event visualization tools in the HEP off-

line software. In offline software, developers can make full

use of the detector geometry service and event data model

to retrieve the corresponding information. Event display

tools are typically based on commonly used HEP software,

Geant4 or ROOT, whose visualization functions are

friendly to HEP users and are naturally convenient for

visualization software development. For example, the

BESIII event display software is based on the infrastructure

visualization function of ROOT. With the upgrade of

ROOT and its EVE package [11], the development of

event display tools has become more convenient. Several

recent HEP experiments, such as ALICE [12], CMS [4],

JUNO [25], and Mu2e [34], have developed event-display

software based on ROOT EVE.

However, owing to the limited visualization support of

ROOT, its display effects are unsatisfactory for meeting the

diverse requirements of physicists. Most ROOT applica-

tions are limited to Linux platforms. For better visualiza-

tion and interactivity, several event display tools have been

developed based on an external visualization software.

Atlantis [35, 36] and VP1 [37] are general-purpose event

display tools in ATLAS. CMS has also developed several

visualization systems such as Fireworks [38] and

SketchUp [39].

2.3 3D modeling and visualization in Unity

Unity is a professional video and game production

engine that supports more than 20 platforms. It is partic-

ularly popular for iOS and Android mobile app develop-

ment and has recently been used in HEP for scientific

research and outreach. The Cross-platform Atlas Multi-

media Educational Lab for Interactive Analysis (CAME-

LIA) [40, 41] is an event display software based on Unity

for ATLAS. Figure 1 shows the visualization of the

ATLAS detector and a proton–proton collision event in

CAMELIA. Another event display tool based on Unity, the

Event Live Animation with Unity for Neutrino Analysis

(ELAINA) [18] has also been developed in JUNO, as

shown in Fig. 2.

The visualization software based on Unity has several

advantages.

• Impressive visualization effects. The Unity engine, as a

professional 3D software, provides a more detailed

description of objects and striking visualization effects,

which makes it much more powerful than the tradi-

tional event display based on ROOT.

• Cross-platform support. Thanks to the multi-platform

support of Unity, after the development by building

models and functions in Unity, a project can be directly

exported and deployed in different operating systems,

including Windows, Linux, macOS, iOS, Android, and

network browsers. This feature makes the same visu-

alization project available for all the users on different

platforms. This not only reduces the workload in

project development, but also facilitates the

maintenance.

• Extensibility. Unity allows the project to be extended

and further developed into VR [42] or augmented

reality (AR) [43] projects, such as BelleII VR [44],

thus providing a quite different way for detector design,

offline software development, and physics analysis. It

can also be very helpful for advertising scientific

projects to the public, especially the physics behind the

large-scale scientific apparatus. It could be a powerful

Fig. 1 (Color online) CAMELIA [40], the ATLAS event display tool

based on Unity

Fig. 2 (Color online) ELAINA [18], the JUNO event display tool

based on Unity

123

Method for detector description transformation... Page 3 of 10 142

tool in education and outreach, such as the Total Event

Visualiser (TEV) of the CERN Media Lab [45].

Support for various VR or AR devices has been

integrated in Unity, and they will be continuously

supported with Unity upgrades, so that the visualization

project developers can focus on the software project

itself, instead of the support for different hardware.

Because of its prominent features, Unity has huge potential

and boosts promising prospects in the development of

visualization software. Not only can it be used for scientific

research in particle and nuclear physics, but it also has

wide application potential in nuclear techniques for the

industry.

3 Methodologies

Although Unity has great advantages for the develop-

ment of visualization software, many endeavors have to be

made for its application to large-scale scientific appara-

tuses. For example, HEP detectors are typically highly

complicated, with millions of components, which makes it

difficult to build a 3D model of the detector in Unity.

To develop the event display tool for HEP experiments,

the detector description in Unity should be fully consistent

with that in the offline software, so that the displays of the

tracks, hits, showers, and detector components match each

other. Usually, for an HEP experiment, the detector

description already exists in offline software. Therefore, we

propose a method to convert the HEP detector description

into 3D modeling in Unity automatically.

3.1 Automatic detector geometry transformation

In HEP offline software, to avoid inconsistency of the

detector description in data processing, it is essential that

the framework can provide a single source of detector

description for all applications. This idea is typically

realized by developing automatic geometry transformation

interfaces between different software packages. For an

existing detector description with GDML, the detector

construction in Geant4 and ROOT for a specific experi-

ment can be automatically completed with the GDML–

Geant4 and GDML–ROOT interfaces [8, 9], respectively.

In this way, detector geometry consistency between the

Geant4-based simulation, ROOT-based reconstruction,

event display, and data analysis is automatically

guaranteed.

A similar idea can also be implemented in the 3D

detector modeling of Unity. HEP experiments usually

already have a detailed detector description in some for-

mats, such as GDML. If a novel method for GDML–Unity

conversion can be realized, and given that it is a universal

technique, all the current and future HEP experiments can

benefit, making it possible the easy development of

applications for detector visualization, event display, and

outreach.

3.2 Detector data conversion from GDML to Unity

In the industry market, there are tens of popular 3D file

formats; however, none of them are commonly supported

in both HEP software and Unity. Therefore, we must find a

data flow path that starts from GDML and ends in Unity

with minimum steps of conversion.

FreeCAD [46] is a general-purpose parametric 3D CAD

and modeling software. It is free and open-source, and

users can extend its functionality. Because FreeCAD sup-

ports the import of geometry in constructive solid geometry

(CSG) format [47], an interface between GDML and

FreeCAD was developed by Keith Sloan et al. [48] to

import the GDML-format detector description. Meanwhile,

FreeCAD allows to export the modeling in several types of

widespread 3D formats, including STEP [49], BREP [50],

and VRML [51].

Among these formats, STEP was adopted for further

geometry transformation. Although STEP is still not a

format that can be directly read by Unity, it can be trans-

formed into the Filmbox (FBX) format [52] with Pixyz

Studio software [53]. Pixyz Studio is a CAD data prepa-

ration and optimization software that supports more than

35 3D file formats. It provides tessellation algorithms,

enabling the transformation of CAD data from industry-

leading solutions into lightweight, optimized meshes such

as FBX, which is a 3D mesh format supported by Unity. It

is noteworthy that Pixyz joined Unity so that Unity can

provide plugins to import and transform heavy and com-

plex 3D CAD data, such as HEP detectors, into optimized

meshes for real-time 3D engines.

The full chain of data flow is shown in Fig. 3. The

original HEP detector description in the GDML format

usually consists of the following parts: the material list,

position and rotation list, shape list, detector component

(physical node) list, and hierarchy of the whole detector

tree. The GDML detector description is first imported into

FreeCAD using the GDML–FreeCAD interface and then

exported into the STEP format. Pixzy reads in the STEP

format data and transforms it into the FBX format, which

can be read directly by Unity retaining the detector unit

association information.

Using the data flow chain described above, we provide a

method to transform the GDML detector description into

Unity with automated 3D detector construction. The

method was realized using the GDML–FreeCAD interface,

FreeCAD, and Pixyz software. The correctness of the

123

142 Page 4 of 10 K.-X. Huang et al.

detector geometry conversion in each step was validated by

visualization and comparison at the shape and detector

levels. With the 3D detector modeling successfully con-

structed in Unity with automation, further application

development based on Unity is achievable.

3.3 Integrity in Unity 3D modeling

For a specific HEP detector with a GDML description,

to realize a complete 3D model of the detector in Unity,

additional work is necessary in addition to the automatic

geometry transformation method introduced above.

First, in the GDML–FreeCAD interface [48], not all

solid shapes that are currently defined in Geant4 or ROOT

are fully supported. The current interface only supports

approximately 10 types of shapes, which are mostly basic

CSG shapes, such as boxes, cones, cylinders, ellipsoids,

and tubes. More than 30 types of specific shapes are pro-

vided in Geant4 but are not commonly used. For a specific

HEP detector description with the GDML format, if some

of the special shapes used are not available in the interface,

users may request to develop the corresponding shape

transformation in the GDML–FreeCAD interface, so that

the full detector transformation can be supported.

For example, Arb8 is an arbitrary trapezoid defined by

eight vertices standing on two parallel planes perpendicular

to the Z-axis. The Arb8 shape exists in GDML, ROOT, and

FreeCAD. In the GDML–FreeCAD interface, the conver-

sion interface is updated with Arb8 shape support, and the

code example is shown in Fig. 4. The same Arb8 shape

with the GDML description and its visualization in ROOT

and FreeCAD are also compared in Fig. 5.

Second, in the description of an HEP detector, it is

important to maintain the association between the detector

unit and its unique identifier in the event data model. Such

association information is essential for controlling the

visualization properties of the detector unit in further

application development in Unity, such as event displays.

Usually, identifier information is stored in the name of each

node in GDML. As long as the node name remains

unchanged during the entire chain of conversion, the

identifier can be extracted later in Unity from the unit’s

name to retrieve the mapping of the unit and its corre-

sponding identifier in the offline software. This makes it

possible to control the visual effects of a geometry unit

with its identifier in event data. Hence, in the transforma-

tion of the detector geometry from GDML to Unity, it is

Fig. 3 Detector data flow from GDML to Unity Fig. 4 Code example for conversion of the Arb8 shape in the

GDML–FreeCAD interface [48]

Fig. 5 (Color online) Visualization of the Arb8 shape in ROOT (left)

and FreeCAD (right)

123

Method for detector description transformation... Page 5 of 10 142

critical to retain the name of each detector unit to retain

association information.

Third, although basic information such as density and

makeup of materials can be transformed from GDML,

Unity provides richer visualization properties such as

material color, texture, transparency, and reflection, which

allow users to have the freedom to render the detector

geometry with more powerful visualization effects.

With the above supplementary information provided, 3D

detector modeling has been successfully constructed in

Unity and has been qualified for further development.

4 Application in BESIII

4.1 BESIII detector description and visualization

BESIII is a spectrometer operating at the Beijing Elec-

tron Positron Collider II (BEPCII). The BESIII detector

records symmetric eþe� collisions provided by the BEPCII

storage ring [54], which operates in the center-of-mass

energy range of 2.0–4.7 GeV [55]. The cylindrical core of

the BESIII detector covers 93% of the full solid angle and

consists of a helium-based multilayer drift cham-

ber (MDC), a plastic scintillator time-of-flight sys-

tem (TOF), and a CsI(Tl) electromagnetic

calorimeter (EMC), which are all enclosed in a supercon-

ducting solenoidal magnet providing a 1.0 T magnetic

field. The solenoid is supported by an octagonal flux-return

yoke with resistive plate counter muon identification

modules interleaved with steel (MUC).

The detector description in the BESIII offline software is

provided in GDML format. Each of the four subdetectors,

MDC, TOF, EMC, and MUC, has a corresponding GDML

file to describe it. A general GDML file provides a

description of common materials and other passive detector

components, such as the beam pipe and superconducting

solenoid. All applications in BESIII offline software,

including simulation, reconstruction, event display, cali-

bration, and analysis, use GDML files as the single source

of detector information.

BESIII Visualization (BesVis), an event display tool

based on ROOT, was developed to visualize the detector

and analyze physics events, as shown in Fig. 6. It has

played an important role in BESIII’s offline software

development and physics analysis since 2005.

4.2 Conversion of the BESIII geometry to Unity

Based on the method introduced by Sect. 3, it is possible

to perform a format conversion of the BESIII detectors

description from GDML to Unity. The detector data con-

version process comprised the following steps:

First, the GDML description of each subdetector was

imported into FreeCAD with the GDML–FreeCAD inter-

face. Because the original interface only supports the basic

CSG shapes, BESIII has used some complicated shapes,

such as Twistedtubs, IrregBox, and Boolean shapes. We

updated the interface to allow correct conversion of all the

shapes being used in the GDML detector description of

BESIII.

Second, after importing into FreeCAD, the BESIII

detector data were exported in the STEP format. Then, the

STEP files were converted to FBX files using the format

conversion function provided by Pixyz Studio. As an

example, the visualization of the BESIII TOF subdetector

in FreeCAD and Pixyz is shown in Fig. 7.

Third, the FBX files were directly imported into Unity.

For the BESIII detector, four sub-detector FBX files

(MDC, TOF, EMC, and MUC) and one general FBX file

describe the beam pipe and superconducting solenoid. The

subdetectors were verified in Geant4 and ROOT to guar-

antee no space overlaps between each other, so the sub-

detectors could be directly combined to form the whole

BESIII detector. Finally, 3D modeling of the BESIII

detector was successfully performed in Unity after a set of

automated steps.

Fig. 6 (Color online) Visualization of the BESIII detector and a real

data event in BesVis

123

142 Page 6 of 10 K.-X. Huang et al.

4.3 Display of the BESIII detector in Unity

Although at this stage the BESIII detector has been

automatically built in Unity, it is still not well displayed in

the scene. Because GDML does not save visualization

attributes, all the detector units are still set with the default

visualization attributes in Unity. The only object that users

can see in the scene is a box, which is the top world volume

in the definition of the GDML detector description.

A set of scripts must be developed to set the color,

transparency, reflectivity, and texture of the material for the

detector units. The top world volume and virtual mother

volumes need to be set invisible to allow the inner detector

units to appear. Another advantage of automatic conversion

is that the name of each detector unit is maintained during

the process of transformation so that the scripts can set the

visualization attributes according to the name of each

detector unit.

Figure 8 shows the display of the four BESIII subde-

tectors in Unity. The corresponding display parameters of

the materials were updated to obtain a better display effect.

The display attributes in Unity were set to be consistent

with those in BesVis, but with more vivid and richer

visualization effects than those supported by ROOT. The

full BESIII detector in Unity is shown in Fig. 9.

5 Further development of applications

Once the detector geometry and its visualization attri-

butes are constructed in Unity, various applications can be

further developed. The characteristics of Unity, including

fantastic visual effects, multi-platform support, and

VR [42] or AR [43] device integration, make it convenient

for developing event display tools, detector status moni-

toring software, and VR/AR applications for scientific

research and education.

5.1 Event display tool

Event displays are convenient tools for offline software

tuning and physical analysis in HEP experiments. In

Sect. 2.3, the application of Unity for event displays in

ATLAS and JUNO was introduced. However, for both

Fig. 7 (Color online) Visualization of the BESIII TOF sub-detector

in FreeCAD (left) and Pixyz (right)

Fig. 8 (Color online) Visualization of the BESIII sub-detectors in

Unity, a MDC, b TOF, c EMC, and d MUC

Fig. 9 (Color online) Display of the full BESIII detector in Unity.

From inside to outside: MDC, TOF, EMC and MUC

123

Method for detector description transformation... Page 7 of 10 142

programs, the detectors were manually constructed inde-

pendently in Unity, which required a large amount of

developers’ work.

Using the automatic geometry transformation method,

the BESIII detector was constructed in Unity. Compared

with the geometry construction in the BESIII offline soft-

ware and its ROOT-based event display, which is com-

posed of more than 5000 lines of code, this method avoids

the repetitive coding work required in a different software.

To develop an event display tool based on Unity, the event

data information is obtained and the fired detector units are

associated with their identifiers, which can be decoded

from the name of each detector unit.

Once the association relationship is constructed, a set of

scripts can be developed in Unity to control the different

visual effects of the fired and unfired detector units. The

basic functions of the event display tool can then be real-

ized. Figure 10 shows a prototype of the BESII event

display tool under development in Unity, and its rendering

effects.

5.2 Detector and data monitoring

With the detector constructed in Unity, not only the

offline event display but also the online monitoring soft-

ware can be developed to help monitor the operation status

of the experiment and the quality of the real-time data

collected by the detector.

Detector units with abnormal operational statuses, such

as dead or hot channels, can be distinctly displayed, which

will help shift operators diagnose potential detector

problems.

Owing to the multi-platform support of Unity, a moni-

toring project can be easily deployed on different platforms

and devices. In addition to the traditional Windows and

Linux operating systems, the monitoring project can also

be built into apps on mobile platforms, such as Android and

iOS, so that users can conveniently monitor the status of an

experiment remotely from their mobile phones or pads.

5.3 Virtual reality applications

In the roadmap for HEP software and computing R&D

for the 2020s [2], an application based on VR is an

important development direction [1]. VR simulates the

physical presence of a user in a virtual environment. By

presenting the emitting particles and their interactions with

the detector, it can provide a new method with immersive

experience for physicists to tune the offline simulation and

reconstruction software. They can also perform physics

analysis for rare events, as if the users were personally in

the scene of the running detector. Some creative produc-

tions have started in the HEP community, such as

ATLASrift [56] and BelleII VR [44].

With the method for automatic detector construction in

Unity and the extensible support of VR devices from Unity,

VR applications for nuclear and HEP experiments can also

be conveniently developed. Because most of the nuclear or

HEP experiments are not accessible during data collection

because of safety or security requirements, our method has

another advantage, allowing the general public to explore

the detector with an immersive experience and watch

nuclear or HEP collisions in a realistic environment. It will

be of great benefit to let the general public have a basic

idea and understanding of the type of scientific research

that the nuclear physics and HEP communities are doing.

5.4 Interdisciplinary applications

In addition to its applications in nuclear physics or HEP

experiments, this method could also have wide applications

in applied nuclear science, techniques, and industry.

For example, in nuclear power plant (NPP) monitoring,

this method can be used to monitor the emitting neutrons or

neutrinos and then reconstruct the distribution of the inner

active fission area to monitor the operation status of the

NPP.

In the field of nuclear medical imaging, the human body

is more or less like a nuclear particle source or detector, but

with dynamic geometry. Because our detector modeling

method is automatic, it can rapidly construct and visualize

the human body, allowing observation of its status after

interaction with nuclear particles in real time or semi-real

time. Other potential interdisciplinary applications include

muon tomography, X-ray inspection, and fusion

diagnosis [57–60].

Fig. 10 (Color online) Prototype of a new BESIII event display tool

in Unity and its rendering effects

123

142 Page 8 of 10 K.-X. Huang et al.

6 Summary

Detector description and visualization are essential

techniques in software development for next-generation

HEP experiments. Unity is a popular and versatile multi-

media creation platform that provides impressive visual

effects, multiple platform support, and extensibility to VR

and AR applications. For large-scale scientific projects,

building a complicated detector with up to millions of

components in Unity while keeping them consistent with

the geometry in the offline data processing software is very

difficult and requires significant work for software

developers.

A method for automatic detector data transformation

from GDML to Unity is presented, which can construct 3D

modeling of detectors in Unity for further applications. The

method has been realized in the BESIII detector with

hundreds of thousands of components and can be used in

future experiments such as CEPC. In addition to HEP

experiments, the method also has great potential for mul-

tiple interdisciplinary applications, education, and

outreach.

Author Contributions All authors contributed to the study concep-

tion and design. Material preparation, data collection and analysis

were performed by Kai-Xuan Huang, Zhi-Jun Li, Zhen Qian,

Jiang Zhu and Hao-Yuan Li. The first draft of the manuscript was

written by Kai-Xuan Huang, Yu-Mei Zhang, Sheng-Sen Sun and

Zheng-Yun You, and all authors commented on previous versions of

the manuscript. All authors read and approved the final manuscript.

References

1. M. Bellis, R.M. Bianchi, S. Binet et al., Hep software foundation

community white paper working group—visualization. (2018).

https://doi.org/10.48550/ARXIV.1811.10309

2. J. Albrecht, A.A. Alves Jr., G. Amadio et al., A roadmap for HEP

software and computing R&D for the 2020s. Comput. Softw. Big

Sci. 3, 7 (2019). https://doi.org/10.1007/s41781-018-0018-8

3. T.A. Collaboration, The ATLAS experiment at the CERN large

hadron collider. JINST 3, S08003 (2008). https://doi.org/10.1088/
1748-0221/3/08/s08003

4. T.C. Collaboration, The CMS experiment at the CERN LHC.

JINST 3, S08004 (2008). https://doi.org/10.1088/1748-0221/3/

08/s08004

5. L. Evans, The large hadron collider. New J. Phys. 9, 335 (2007).

https://doi.org/10.1088/1367-2630/9/9/335

6. R. Chytracek, J. Mccormick, W. Pokorski et al., Geometry

description markup language for physics simulation and analysis

applications. IEEE Trans. Nucl. Sci. 53, 2892–2896 (2006).

https://doi.org/10.1109/TNS.2006.881062

7. M. Frank, F. Gaede, C. Grefe et al., DD4hep: a detector

description toolkit for high energy physics experiments. J. Phys:

Conf. Ser. 513, 022010 (2014). https://doi.org/10.1088/1742-

6596/513/2/022010

8. Y.T. Liang, B. Zhu, Z.Y. You et al., A uniform geometry

description for simulation, reconstruction and visualization in the

BESIII experiment. Nucl. Instrum. Meth. A 603, 325–327 (2009).
https://doi.org/10.1016/j.nima.2009.02.036

9. Z.Y. You, Y.T. Liang, Y.J. Mao, A method for detector

description exchange among ROOT GEANT4 and GEANT3.

Chin. Phys. C 32, 572–575 (2008). https://doi.org/10.1088/1674-

1137/32/7/012

10. R. Brun, A. Gheata, M. Gheata, The ROOT geometry package.

Nucl. Instrum. Meth. A 502, 676–680 (2003). https://doi.org/10.

1016/S0168-9002(03)00541-2

11. M. Tadel, Overview of EVE - the event visualization environ-

ment of ROOT. J. Phys: Conf. Ser. 219, 042055 (2010). https://

doi.org/10.1088/1742-6596/219/4/042055

12. T.A. Collaboration, ALICE: physics performance report, volume

I. J. Phys. G: Nucl. Part. Phys. 30, 1517–1763 (2004). https://doi.

org/10.1088/0954-3899/30/11/001

13. M. Ablikim, Z. An, J. Bai et al., Design and construction of the

BESIII detector. Nucl. Instrum. Meth. A 614, 345–399 (2010).

https://doi.org/10.1016/j.nima.2009.12.050

14. Z. You, K. Li, Y. Zhang et al., A ROOT based event display

software for JUNO. J. Instrum. 13, T02002 (2018). https://doi.

org/10.1088/1748-0221/13/02/t02002

15. S. Zhang, J.S. Li, Y.J. Su et al., A method for sharing dynamic

geometry information in studies on liquid-based detectors. Nucl.

Sci. Tech. 32, 21 (2021). https://doi.org/10.1007/s41365-021-

00852-8

16. W. Goldstone, Unity game development essentials, (Packt Pub-
lishing Ltd, 2009)

17. T. Abe, I. Adachi, K. Adamczyk et al., BELLE II technical design

report. (2010). https://doi.org/10.48550/ARXIV.1011.0352

18. J. Zhu, Z. You, Y. Zhang et al., A method of detector and event

visualization with unity in JUNO. J. Instrum. 14, T01007 (2019).

https://doi.org/10.1088/1748-0221/14/01/t01007

19. S. Agostinelli, J. Allison, K. Amako et al., Geant4- a simulation

toolkit. Nucl. Instrum. Meth. A 506, 250–303 (2003). https://doi.
org/10.1016/S0168-9002(03)01368-8

20. T. Bray, J. Paoli, C. Sperberg-McQueen, Extensible markup

language (xml) 1.0., http://www.w3.org/XML/1998/06/xmlspec-

report-19980910.htm

21. K. Adcox, S. Adler, M. Aizama et al., PHENIX detector over-

view. Nucl. Instrum. Meth. A 499, 469–479 (2003). https://doi.

org/10.1016/S0168-9002(02)01950-2

22. T.L. Collaboration, The LHCb detector at the LHC. J. Instrum. 3,
S08005 (2008). https://doi.org/10.1088/1748-0221/3/08/s08005

23. A. Trisovic, LHCb event display. https://inspirehep.net/literature/

1920683

24. L. Pescatore, Status of outreach activities at LHCb. PoS 2018,

277 (2019). https://doi.org/10.22323/1.340.0277

25. G. Ranucci et al., Status and prospects of the JUNO experiment.

J. Phys: Conf. Ser. 888, 012022 (2017). https://doi.org/10.1088/

1742-6596/888/1/012022

26. Z. Qian, V. Belavin, V. Bokov et al., Vertex and energy recon-

struction in JUNO with machine learning methods. Nucl. Instrum.

Meth. A 1010, 165527 (2021). https://doi.org/10.1016/j.nima.

2021.165527

27. Z.Y. Li, Y.M. Zhang, G.F. Cao et al., Event vertex and time

reconstruction in large-volume liquid scintillator detectors. Nucl.

Sci. Tech. 32, 49 (2021). https://doi.org/10.1007/s41365-021-

00885-z

28. Z.Y. Li, Z. Qian, J.H. He et al., Improving the machine learning

based vertex reconstruction for large liquid scintillator detectors

with multiple types of PMTs. Nucl. Sci. Tech. 33, 93 (2022).

https://doi.org/10.1007/s41365-022-01078-y

29. T.C.S. Group, CEPC conceptual design report: Volume 2 -

Physics and Detector. (2018). https://doi.org/10.48550/ARXIV.

1811.10545arXiv:1811.10545

123

Method for detector description transformation... Page 9 of 10 142

https://doi.org/10.48550/ARXIV.1811.10309
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1088/1367-2630/9/9/335
https://doi.org/10.1109/TNS.2006.881062
https://doi.org/10.1088/1742-6596/513/2/022010
https://doi.org/10.1088/1742-6596/513/2/022010
https://doi.org/10.1016/j.nima.2009.02.036
https://doi.org/10.1088/1674-1137/32/7/012
https://doi.org/10.1088/1674-1137/32/7/012
https://doi.org/10.1016/S0168-9002(03)00541-2
https://doi.org/10.1016/S0168-9002(03)00541-2
https://doi.org/10.1088/1742-6596/219/4/042055
https://doi.org/10.1088/1742-6596/219/4/042055
https://doi.org/10.1088/0954-3899/30/11/001
https://doi.org/10.1088/0954-3899/30/11/001
https://doi.org/10.1016/j.nima.2009.12.050
https://doi.org/10.1088/1748-0221/13/02/t02002
https://doi.org/10.1088/1748-0221/13/02/t02002
https://doi.org/10.1007/s41365-021-00852-8
https://doi.org/10.1007/s41365-021-00852-8
https://doi.org/10.48550/ARXIV.1011.0352
https://doi.org/10.1088/1748-0221/14/01/t01007
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
http://www.w3.org/XML/1998/06/xmlspec-report-19980910.htm
http://www.w3.org/XML/1998/06/xmlspec-report-19980910.htm
https://doi.org/10.1016/S0168-9002(02)01950-2
https://doi.org/10.1016/S0168-9002(02)01950-2
https://doi.org/10.1088/1748-0221/3/08/s08005
https://inspirehep.net/literature/1920683
https://inspirehep.net/literature/1920683
https://doi.org/10.22323/1.340.0277
https://doi.org/10.1088/1742-6596/888/1/012022
https://doi.org/10.1088/1742-6596/888/1/012022
https://doi.org/10.1016/j.nima.2021.165527
https://doi.org/10.1016/j.nima.2021.165527
https://doi.org/10.1007/s41365-021-00885-z
https://doi.org/10.1007/s41365-021-00885-z
https://doi.org/10.1007/s41365-022-01078-y
https://doi.org/10.48550/ARXIV.1811.10545
http://arxiv.org/abs/1811.10545

30. T. Behnke, J.E. Bran, B. Foster et al., The international linear

collider technical design report - volume 1: executive summary.

(2013). https://doi.org/10.48550/ARXIV.1306.6327

31. T.F. Collaboration, FCC physics opportunities: future circular

collider conceptual design report volume 1. Eur. Phys. J. C 79,

474 (2019) https://doi.org/10.1140/epjc/s10052-019-6904-3

32. Q. Luo, D. Xu, Progress on preliminary conceptual study of

hiepa, a super tau-charm factory in china. In: Proceedings 9th
international particle accelerator conference (IPAC’18), Van-
couver, BC, Canada, April 29-May 4, 2018, pp. 422–424. https://
doi.org/10.18429/JACoW-IPAC2018-MOPML013

33. R.W. Kennard, L.A. Stone, Computer aided design of experi-

ments. Technometrics 11, 137–148 (1969). https://doi.org/10.

1080/00401706.1969.10490666

34. L. Bartoszek, E. Barnes, J. Miller et al., Mu2e technical design

report. (2015). https://doi.org/10.48550/ARXIV.1501.05241

35. G. Taylor, Visualizing the ATLAS inner detector with Atlantis.

Nucl. Instrum. Meth. A 549, 183–187 (2005). https://doi.org/10.

1016/j.nima.2005.04.049

36. N. Konstantinidis, Z. Maxa, P. Klok et al., The Atlantis event

visualisation program for the ATLAS experiment. https://cds.

cern.ch/record/865603/files/p361.pdf

37. T. Kittelmann, V. Tsulaia, J. Boudreau et al., The virtual point 1

event display for the ATLAS experiment. J. Phys: Conf. Ser. 219,
032012 (2010). https://doi.org/10.1088/1742-6596/219/3/032012

38. D. Kovalskyi, M. Tadel, A. Mrak-Tadel et al., Fireworks: a

physics event display for CMS. J. Phys: Conf. Ser. 219, 032014
(2010). https://doi.org/10.1088/1742-6596/219/3/032014

39. T. Sakuma, T. McCauley, Detector and event visualization with

SketchUp at the CMS experiment. J. Phys: Conf. Ser. 513,
022032 (2014). https://doi.org/10.1088/1742-6596/513/2/022032

40. J. Pequenao, US-DOE, ATLAS multimedia educational lab for

interactive analysis. (2008). https://doi.org/10.11578/dc.

20210416.15

41. Camelia webpage. https://pdgusers.lbl.gov/*pequenao/camelia

42. J. Zheng, K. Chan, I. Gibson, Virtual reality. IEEE Potent. 17,
20–23 (1998). https://doi.org/10.1109/45.666641

43. J. Carmigniani, B. Furht, Augmented Reality: An Overview
(Springer, New York, 2011), pp.3–46

44. Z. Duer, L. Piilonen, G. Glasson, Belle2VR: a virtual-reality

visualization of subatomic particle physics in the BELLE II

experiment. IEEE Comput. Graph. Appl. 38, 33–43 (2018).

https://doi.org/10.1109/MCG.2018.032421652

45. CERN TEV visualization framework webpage., https://gitlab.

cern.ch/CERNMediaLab/

46. FreeCAD webpage., https://www.freecadweb.org

47. D.H. Laidlaw, W.B. Trumbore, J.F. Hughes, Constructive solid

geometry for polyhedral objects. SIGGRAPH Comput. Graph.

20, 161–170 (1986). https://doi.org/10.1145/15886.15904

48. KeithSloan, et al., FreeCAD GDML workbench., https://github.

com/KeithSloan/GDML (2022)

49. S. Kemmerer, STEP: The grand experience. (1999). https://doi.

org/10.6028/NIST.SP.939

50. I. Stroud, Boundary Representation Modelling Techniques
(Springer, Cham, 2006)

51. R. Carey, The virtual reality modeling language explained. IEEE

Multimed. 5, 84–93 (1998). https://doi.org/10.1109/93.713310

52. FBX webpage. https://www.autodesk.com/products/fbx/overview

53. Pixyz studio software., https://www.pixyz-software.com/studio

54. C. Yu, Y. Zhang, Q. Qin et al., BEPCII performance and beam

dynamics studies on luminosity. In: Proceedings of International
Particle Accelerator Conference (IPAC’16), Busan, Korea, May
8-13, 2016, pp. 1014–1018. https://doi.org/10.18429/JACoW-

IPAC2016-TUYA01

55. M. Ablikim, M. Achasov, P. Adlarson et al., Future physics

programme of BESIII. Chin. Phys. C 44, 040001 (2020). https://

doi.org/10.1088/1674-1137/44/4/040001

56. I. Vukotic, E. Moyse, R.M. Bianchi, Atlasrift - a virtual reality

application. (2015). arXiv:1511.00047

57. D. Carbone, D. Gibert, J. Marteau et al., An experiment of muon

radiography at Mt Etna (Italy). Geophys. J. Int. 196, 633–643
(2013). https://doi.org/10.1093/gji/ggt403

58. K. Morishima, M. Kuno, N. Akira et al., Discovery of a big void

in Khufu’s Pyramid by observation of cosmic-ray muons. Nature

552, 386–390 (2017). https://doi.org/10.1038/nature24647

59. Y.P. Chen, R. Han, Z.W. Li et al., Imaging internal density

structure of the Laoheishan volcanic cone with cosmic ray muon

radiography. Nucl. Sci. Tech. 33, 88 (2022). https://doi.org/10.

1007/s41365-022-01072-4

60. C.F. Yang, Y.B. Huang, J.L. Xu et al., Reconstruction of a muon

bundle in the JUNO central detector. Nucl. Sci. Tech. 33, 59
(2022). https://doi.org/10.1007/s41365-022-01049-3

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

123

142 Page 10 of 10 K.-X. Huang et al.

https://doi.org/10.48550/ARXIV.1306.6327
https://doi.org/10.1140/epjc/s10052-019-6904-3
https://doi.org/10.18429/JACoW-IPAC2018-MOPML013
https://doi.org/10.18429/JACoW-IPAC2018-MOPML013
https://doi.org/10.1080/00401706.1969.10490666
https://doi.org/10.1080/00401706.1969.10490666
https://doi.org/10.48550/ARXIV.1501.05241
https://doi.org/10.1016/j.nima.2005.04.049
https://doi.org/10.1016/j.nima.2005.04.049
https://cds.cern.ch/record/865603/files/p361.pdf
https://cds.cern.ch/record/865603/files/p361.pdf
https://doi.org/10.1088/1742-6596/219/3/032012
https://doi.org/10.1088/1742-6596/219/3/032014
https://doi.org/10.1088/1742-6596/513/2/022032
https://doi.org/10.11578/dc.20210416.15
https://doi.org/10.11578/dc.20210416.15
https://pdgusers.lbl.gov/%7epequenao/camelia
https://doi.org/10.1109/45.666641
https://doi.org/10.1109/MCG.2018.032421652
https://gitlab.cern.ch/CERNMediaLab/
https://gitlab.cern.ch/CERNMediaLab/
https://www.freecadweb.org
https://doi.org/10.1145/15886.15904
https://github.com/KeithSloan/GDML
https://github.com/KeithSloan/GDML
https://doi.org/10.6028/NIST.SP.939
https://doi.org/10.6028/NIST.SP.939
https://doi.org/10.1109/93.713310
https://www.autodesk.com/products/fbx/overview
https://www.pixyz-software.com/studio
https://doi.org/10.18429/JACoW-IPAC2016-TUYA01
https://doi.org/10.18429/JACoW-IPAC2016-TUYA01
https://doi.org/10.1088/1674-1137/44/4/040001
https://doi.org/10.1088/1674-1137/44/4/040001
http://arxiv.org/abs/1511.00047
https://doi.org/10.1093/gji/ggt403
https://doi.org/10.1038/nature24647
https://doi.org/10.1007/s41365-022-01072-4
https://doi.org/10.1007/s41365-022-01072-4
https://doi.org/10.1007/s41365-022-01049-3

	Method for detector description transformation to Unity and application in BESIII
	Abstract
	Introduction
	Detector geometry and visualization
	Detector description in HEP software
	Visualization of detector and events
	3D modeling and visualization in Unity

	Methodologies
	Automatic detector geometry transformation
	Detector data conversion from GDML to Unity
	Integrity in Unity 3D modeling

	Application in BESIII
	BESIII detector description and visualization
	Conversion of the BESIII geometry to Unity
	Display of the BESIII detector in Unity

	Further development of applications
	Event display tool
	Detector and data monitoring
	Virtual reality applications
	Interdisciplinary applications

	Summary
	Author Contributions
	References

