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Abstract This work is an attempt to improve the Bayesian

neural network (BNN) for studying photoneutron yield

cross sections as a function of the charge number Z, mass

number A, and incident energy e. The BNN was improved

in terms of three aspects: numerical parameters, input

layer, and network structure. First, by minimizing the

deviations between the predictions and data, the numerical

parameters, including the hidden layer number, hidden

node number, and activation function, were selected. It was

found that the BNN with three hidden layers, 10 hidden

nodes, and sigmoid activation function provided the

smallest deviations. Second, based on known knowledge,

such as the isospin dependence and shape effect, the

optimal ground-state properties were selected as input

neurons. Third, the Lorentzian function was applied to map

the hidden nodes to the output cross sections, and the

empirical formula of the Lorentzian parameters was

applied to link some of the input nodes to the output cross

sections. It was found that the last two aspects improved

the predictions and avoided overfitting, especially for the

axially deformed nucleus.

Keywords Bayesian neural network � Photoneutron cross

sections � Giant dipole resonance

1 Introduction

Neural networks are powerful tools for making predic-

tions after training using data and have made possible

exciting achievements in nuclear physics in the past few

years [1–6]. The earliest work on neural networks in

nuclear physics dates back to 1993, when the phe-

nomenological approach to many-body systems based on

multilayer feedforward neural networks was introduced to

learn the systematics of atomic masses and nuclear spins

and parities [7]. Thereafter, various types of neural net-

works have been applied to study nuclear mass systematics

[8, 9], b-decay systematics [10], and binding energy [11].

Recently, with the help of physical ideas, neural net-

works have been improved and their potential capability

has been realized. The known physics were explicitly

embedded based on the Bayesian neural network (BNN),

which results in a novel method for accurately predicting

b-decay half-lives [12]. The input data are preprocessed,

correlations among the input data are included, and the

problem of multiple solutions can be reduced, yielding

more stable extrapolated results [13]. The combination of

the three-parameter formula and the BNN results in a novel

approach for describing the charge radii of the nuclei [14].

In addition, the physical law is revealed by neural net-

works. For example, a feed-forward neural network model

was trained to calculate nuclear charge radii, and the
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correlation between the symmetry energy and charge radii

of Ca isotopes was suggested [15]. The convolutional

neural network algorithm was applied to determine the

impact parameters in heavy ion collisions using con-

strained molecular-dynamics model simulations [16]. To

date, neural networks have been widely applied for signal

identification [17–19], data restoration [20, 21], and

regression analysis [5] and have been broadly used in

nuclear physics.

In studies where the nuclear masses and nuclear charge

radii were studied, Utama et al. claimed that the physics in

the initial prediction can be included using physics-moti-

vated models and that the BNN can be used to fine-tune

these models by modeling the residuals [22, 23]. Based on

this residual-approach, the predictions of several physics-

motivated models in nuclear physics have been improved

using neural networks. For example, the BNN approach

was employed to improve the nuclear mass predictions of

various physics models [24] and the fission yield prediction

using the TALYS model [2]. To study the isotopic cross

sections in proton-induced spallation reactions, the BNN

predictions obtained by learning the experimental data and

the residuals of the SPACS parametrization were compared

[25]. It was shown that the latter are better, which indicates

the significance of the robust physics-motivated model

when using a neural network.

A neural network is a type of numerical algorithm. In

cases where a physics-motivated model is not available,

attempts have been made to provide physics guidance in

neural networks. A multitask neural network was applied to

learn the experimental data of the giant dipole resonance

parameters directly, and the predictions were better than

those calculated by the Goldhaber–Teller model [26]. In a

study for determining the impact parameters of heavy-ion

collisions using convolutional neural networks, no initial

predictions were made [16]. In addition to the physics-

motivated model, physics guidance in neural networks has

also been provided from the input layer [27] or by an

empirical formula [14]. In this study, an attempt is made to

improve the BNN for studying photoneutron yield cross

sections, where both the improvements from the input layer

and by the empirical formula are considered.

Photonuclear reactions were first observed more than 60

years ago [28]. Their cross section data are important to

analyze the radiation transport, study the nuclear waste

transmutation [29], and calculate the nucleosynthesis

[30, 31]. The underlying mechanisms in photonuclear

reactions are significant in fundamental nuclear physics

[32, 33]. More than 27000 data of rxn were collected in the

EXFOR database [34] for nuclei from 6Li to 239Pu at

incident energies above the neutron separation energy.

New facilities have been developed to measure additional

data [35, 36]. A large dataset makes machine learning

possible and advisable.

This study focuses on the improvement of the BNN to

study photoneutron yield cross sections. The remainder of

this paper is organized as follows. In Sect. 2, the model is

described. In Sect. 3, both the results and discussions are

presented. Finally, a summary is presented in Sect. 4.

2 Model

The fundamentals of the BNN approach were estab-

lished in the last century [37]. It is now a commonly used

method for pattern recognition and numerical regression.

The latter is the case in the present study. In the normal

BNN algorithm, a neural network with hidden layers is

built for mapping from the input layer X to the output layer

Y.

YðX; hÞ ¼ aþ
XNh

j¼1

bjf cj þ
Xl

i¼1

djiXi

 !
; ð1Þ

where h ¼ fa; bj; cj; djig are parameters in the neural net-

work, fa; cjg are biases, and fbj; djig are weights. The

activation function f can be set as a sigmoid, tanh, or

softplus type.

sigmoidðtÞ ¼ 1

1þ expðtÞ ;

tanhðtÞ ¼ expðtÞ � expð�tÞ
expðtÞ þ expð�tÞ ;

softplusðtÞ ¼ logð1þ expðtÞÞ:

ð2Þ

With the activation function, nonlinearity between the

input and output is realized.

The parameters in Eq. (1) are determined by learning

dataset D, which displays the outputs Y for given inputs X,

D ¼ fXðnÞ; Y ðnÞgNd
n¼1; ð3Þ

where Nd is the sample size of the available data. The

Bayesian theorem, which deduces the posterior knowledge

from the prior case using the likelihood function, is applied

to solve this regression problem. Specifically, the prior

distribution PðhÞ of the parameters h is assumed, and its

posterior distribution PðhjDÞ for a given dataset D is

expressed as

PðhjDÞ ¼ PðDjhÞPðhÞR
PðDjhÞPðhÞdh ; ð4Þ

where PðDjhÞ is the likelihood of D given h.
With the posterior distribution of the parameters h, the

expected value of the output Ŷ� for the known inputs X� is
expressed as the integration

123

135 Page 2 of 9 Y.-Y. Li et al.



Ŷ� ¼
Z

YðX�; hÞPðhjDÞdh; ð5Þ

Monte Carlo techniques are applied to calculate the

above integration.

Ŷ� ¼ MCSPðhjDÞ YðX�; hÞ½ �

� 1

Ns

XNs

k

YðX�; hðkÞÞ;
ð6Þ

where MCSPðhjDÞ denotes the Monte Carlo sampling drawn

from the posterior distributions PðhjDÞ and hðkÞ

(k ¼ 1; 2; . . .;Ns) is the kth sample drawn from the poste-

rior distribution PðhjDÞ with total sample number Ns. The

accuracy of Eq. (6) to evaluate Eq. (5) is expressed as

Y� ¼ Ŷ� � 1:96
Sffiffiffiffiffiffi
Ns

p ; ð7Þ

where S is the standard deviation of the samples

YðX�; hðkÞÞ. The difference between the integration and

Monte Carlo calculations can be reduced by increasing the

number of samples Ns.

The analytic computation of the posterior distribution

PðhjDÞ is intractable owing to the high dimensionality of

the parameters. In the BNN approach, variation inference is

applied to obtain an approximation of PðhjDÞ. The varia-

tion inference attempts to find a j such that qðhjjÞ is the

minimum distance from PðhjDÞ measured by the (KL)

divergence:

h ¼ argmin KL ½qðhjjÞjjPðhjDÞ�

¼ argminEqðhjjÞ ln
qðhjjÞ
PðhjDÞ

� �

¼ argminEqðhjjÞ ln
qðhjjÞPðDÞ
PðDjhÞPðhÞ

� �

¼ argmin
X

k

�
ln qðhðkÞjjÞ � lnPðhðkÞÞ

� lnPðDjhðkÞÞ
�
:

ð8Þ

The traditional method of solving the regression prob-

lem in physics is based on an empirical formula with

parameters, where an appropriate formula can avoid both

misconvergence and overfitting. Similarly, when applying

a BNN in physics, it is important to select the appropriate

input nodes for a specific output. In this study, the output is

the photoneutron yield cross section rxn. More than 27,000

data of rxn were collected in the EXFOR [34] for nuclei

from 6Li to 239Pu at incident energies above the neutron

separation energy. The minimum input nodes of the BNN

to study rxn are the charge number Z of the target, mass

number A of the target, and energy e of the incident c

particle. The BNN in this case is abbreviated as BNN-ZAE

and illustrated in Fig. 1a.

The BNN is a numerical algorithm. In physics, the BNN

is used to learn the residuals of the physics-motivated

model and then fine-tune the model. Thus, the main physics

information is included in the initial prediction by the

physics-motivated model. In our previous work [27], we

illustrated a new method to provide physical guidance in

the BNN from the input layer without initial prediction by

the physics-motivated model. This method is applied in this

work to select the optimal ground-state properties as neu-

rons of the input layer in the BNN to predict the pho-

toneutron yield cross sections rxn. Details of the method

are provided in Ref. [27]. In brief, various combinations of

ground-state properties are considered as the input nodes in

the BNN, and the optimal combination is selected

according to the smallest deviation between the data and

the prediction. The optimal input nodes are as follows:

X ¼ fSn;Qb;B;A;b2; eg; ð9Þ

where Sn is the neutron separation energy, Qb is the b�

decay energy, B is the binding energy per nucleon, A is the

mass number, b2 is the quadrupole deformation parameter,

and e is the incident photon energy. In this case, the BNN is

abbreviated as BNN-OPT and illustrated in Fig. 1b. It is

worth noting that the charge number Z is not input in the

Fig. 1 (Color online) a Bayesian neural network BNN-ZAE with

input nodes of charge number Z, mass number A, and incident energy

e. b Bayesian neural network BNN-OPT with optimal input nodes

including mass number A, incident energy e, and other ground-state

properties. c Lorentzian function-based Bayesian neural network

LBNN where the Lorentzian shape of the photoneutron cross sections

and the empirical formula of the Lorentzian parameters are

considered
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BNN-OPT model. Only the experimental data of the pho-

toneutron yield cross section for stable nuclei are available.

For stable nuclei, the correlation between the charge

number Z and the mass number A is very strong (see Fig. 1

in Ref. [27]). After mass number A has been used, the

additional Z is not conducive to reducing the deviation

between the data and the prediction by the BNN-OPT

model.

We will further prove that the BNN can be improved by

considering known knowledge of physics. The photoneu-

tron yield cross sections rxn as a function of incident

energy can be characterized by a Lorentzian shape with

two components. The Lorentzian parameters are peak

energy Ei, width Ci, and strength si.

rxn ¼
X

i¼1;2

2

p

rTRKsie2Ci

½e2 � E2
i �
2 þ ðeCiÞ2

; ð10Þ

The subscripts i ¼ 1 and 2 denote the two components.

rTRK expresses the cross section in terms of the Thomas–

Reiche–Kuhn sum rule. The Lorentzian function is applied

before mapping the hidden nodes to the output cross sec-

tions, as shown in Fig. 1c. Except for the Lorentzian shape,

the known knowledge includes the empirical formula of the

Lorentzian parameters:

E1 ¼ H1A
�1=3 � H2b2;

E2 ¼ H1A
�1=3 þ H2b2;

C1 ¼ H3 � H4b2;

C2 ¼ H3 þ H4b2;

s1 ¼ H5 � H6b2;

s2 ¼ H5 þ H6b2;

ð11Þ

where Hi (i = 1, ..., 6) are empirical parameters. These

empirical formulas are also considered in the BNN. The

algorithm then becomes a Lorentzian function-based BNN

(LBNN). As shown in Fig. 1c, the (black) solid lines show

that all inputs nodes are used to calculate the empirical

parameters H1, H2, H3, H4, H5, and H6. Then, the empirical

parameters, together with the input nodes A and b2, are
used to calculate the Lorentzian parameters E1, E2, C1, C2,

s1, and s2 according to Eq. (11). As can be observed, the

Lorentzian parameters depend not only on A and b2 but

also on other input nodes. However, the dependence on A

and b2 is known and physical, as shown in Eq. (11),

whereas the dependence on all the input nodes is unknown

and numerical. These were fitted during the training pro-

cess. We use two types of lines, solid and dashed, to dis-

tinguish between the physical and numerical dependences.

Energy is one of the input nodes, but is not used to cal-

culate the hidden layer. This is because the dependence of

the energy on the output (cross section) is known as the

Lorentzian shape. In the BNN-ZAE and BNN-OPT mod-

els, the dependence on energy of the output (cross section)

is a black box. In the LBNN model, some dependencies on

the inputs of the outputs are known. We say that parts of

the black box are open.

3 Results and discussions

There are three types of BNN in this work: BNN-ZAE,

BNN-OPT, and LBNN. In the latter two, physics guidance

is provided by improving the input nodes and considering

the Lorentzian shape. In contrast, BNN-ZAE is a numerical

algorithm without any physical improvement. In the fol-

lowing section, we evaluate these three models by com-

paring their predictions. The root-mean-square (RMS)

deviations between the predictions and data were calcu-

lated as

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nd

XNd

n¼1

log rðnÞp � log rðnÞ
d

� �2
vuut ; ð12Þ

where rp is the predicted cross section and rd is the cor-

responding data. Log-scaling was used because the values

of rd are in the region from 10�3 to 10 b, which is across

four orders of magnitude.

The RMS deviations as a function of the iteration step

were applied to test the convergence of the predictions. The

cases for the BNN-ZAE predictions with one, two, and

three hidden layers and 10 nodes for each hidden layer are

shown in Fig. 2a. From the figure, we can observe that all

the RMS deviations converge quickly in 1000 iteration

steps. The final RMS deviations were 0.226, 0.219, and

0.214 for the cases of one, two, and three hidden layers,

respectively. This indicates that more hidden layers help

reproduce the training data; however, the effect is weak.

The effect of the number of hidden nodes was also tested

by setting one hidden layer to 10, 30, and 100 nodes. The

RMS deviations are compared in Fig. 2b. It was shown that

the rate of convergence was slower for a larger number of

hidden nodes. The iteration steps required to decrease the

RMS deviations to a value less than 0.25 are 1000 for the

cases of 10 and 30 hidden nodes, but 2000 steps are needed

for 100 hidden nodes. The RMS deviations at 4000 itera-

tion steps are 0.226, 0.229, and 0.235 for 10, 30, and 100

nodes, respectively. The RMS deviations are similar for 10

and 30 hidden nodes, but they are larger for 100 hidden

nodes. The role of the activation function was tested by

setting a hidden layer with 30 hidden nodes using the

sigmoid, tanh, or softplus activation function, as shown in

Eq. (2). The RMS deviations are compared in Fig. 2c. The

sigmoid activation function was shown to be the best. In

the following calculations, three hidden layers with 30
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hidden nodes for each layer and a sigmoid activation

function were applied.

The RMS deviations as a function of the iteration step

for the three types of BNNs are shown in Fig. 3a. It is

shown that the rates of convergence are similar for all the

cases, and 4000 iteration steps are sufficient for the cal-

culations. The RMS deviations at 4000 iteration steps are

0.198 for the BNN-OPT model and 0.206 for the LBNN

model, which are smaller than that of 0.214 for BNN-ZAE.

Figure 2a, b shows that a change in the numerical param-

eters (number of hidden layers and hidden nodes) does not

improve the neural network. Here, it is indicated that the

key to improving the neural network for physics is the

consideration of the known knowledge of observables. For

instance, several effects of the photoneutron reaction, such

as isospin dependence and shape effect, have been found

[3, 38, 39], which indicate that the cross sections of the

photoneutron reaction depend on the ground-state proper-

ties of the nuclei. Another known knowledge of pho-

toneutron cross sections is their Lorentzian shape. The data

of the ground-state properties are applied to the input layer

of the BNN-OPT model, whereas the Lorentzian shape is

considered in the LBNN model. These two aspects are

responsible for the smaller RMS deviations compared to

those provided by the BNN-ZAE algorithm.

To compare the errors of the predictions by the three

neural networks, the distributions of the differences

between the predictions and training data log rp � log rd
are shown in Fig. 3b. A value 1 of log rp � log rd means

that the predicted cross section is 10 times larger than the

experimental data, whereas a value of -1 indicates that it is

10 times smaller. These cases hardly ever occur. The

sample size for absðlog rp � log rdÞ[ 1 is less than 0.1%

of the total sample size. For most samples, the values of

log rp � log rd are in the region from - 0.1 to 0.1, which

means that the prediction agrees with the data in 1.26

times. Specifically, these samples comprise 48.0%, 57.1%,

and 61.6% of BNN-ZAE, BNN-OPT, and LBNN samples,

respectively. The percentage of LBNN was the largest.

Furthermore, the distribution of log rp � log rd provided

by the LBNN was more symmetrical than that of the oth-

ers. Considering these aspects, the LBNN model is superior

to the BNN-OPT model.

We further evaluated the three types of BNNs by com-

paring their predictions of photoneutron yield cross sec-

tions for spherical nuclei 92Zr, 112Sn, and 206Pb. The cross

sections as a function of the incident energy are shown in

Fig. 4. In general, for spherical nuclei, only one main

component of the Lorentzian shape is displayed in the

excitation function of the photoneutron reaction. The

experimental cross sections as a function of the incident

energy e for nuclei 92Zr, 112Sn, and 206Pb display this sit-

uation. The position and value of the Lorentzian peak were

reproduced well by the LBNN model. In contrast, the peak

position for nucleus 92Zr and the peak value for nucleus
112Sn were underestimated by both the BNN-ZAE and

BNN-OPT models.

The data were abundant for these three nuclei. Some

experimental errors, including statistical and systematic

errors, are shown as error bars in the figure. The error of the

data was applied to train the BNN. More specifically, the

Fig. 2 (Color online) Root-mean-square (RMS) deviations between

data and the BNN-ZAE predictions as a function of the iteration step.

The insets show the RMS deviations at the iteration step 4000.

a Comparison of the RMS deviations for 1, 2, and 3 hidden layers.

b Comparison of the RMS deviations for 1 hidden layer with 10, 30,

and 100 hidden nodes. c Comparison of the RMS deviations for 1

hidden layer with 30 hidden nodes but different activation functions

Fig. 3 (Color online) Comparison of the prediction errors for three

types of Bayesian neural networks (as shown in Fig. 1). a The RMS

deviations as a function of the iteration step. The inset shows the RMS

deviations at the iteration step 4000. b Distributions of the differences

between predictions and training data log rp � logrd
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data were re-sampled with a number inversely proportional

to the experimental errors. This means that the data with

small errors are resampled with a large number for training,

while those with large errors are applied only a few times.

After 4000 iteration steps, 100 samples are applied to

calculate the standard deviations and uncertainties of the

predictions, which are shown as shadows in the figure. In

the energy region with data, the uncertainties of the pre-

dictions by the BNN-ZAE and BNN-OPT models are

small, but there should be large uncertainties in the

extrapolations. Because the Lorentzian function is applied

to the neural network, the predictions and their uncertain-

ties are both constrained by the Lorentzian shape. The

uncertainties of the predictions by the LBNN model were

the same for interpolations and extrapolations in logarith-

mic coordinates. Furthermore, the uncertainties are small

because the data for these three nuclei are abundant. The

uncertainties shown in Fig. 4 originate from the Monte

Carlo techniques. The Lorentzian function applied in the

LBNN model is only an approximate expression for the

photoneutron yield cross sections. A threshold exists for

the photoneutron yield cross sections at e ¼ Sn, where Sn
is the neutron separation energy. The Lorentzian shape is

the most important known knowledge of photoneutron

yield cross sections, but it does not consider the threshold.

The experimental data near the threshold were against this

formula. Thus, predictions by the LBNN model below the

threshold are meaningless.

For the axially deformed nucleus, the photoneutron

yield cross sections as a function of incident energy display

two main Lorentzian shapes. The difference between the

two Lorentzian peaks has been found to be positively

associated with the deformation parameter b2 using the

time-dependent Hartree–Fock model [40]. The data for

deformed nuclei 31P, 75As, and 165Ho are shown in Fig. 5.

The quadrupole deformation parameters b2 are �0:22,

�0:24, and 0.28, respectively. The data clearly show two

peaks for 165Ho, but faintly for 75As. The abundant data but

large errors for 31P make it difficult to distinguish the two

peaks. However, the wide peak does not contradict the two

main Lorentzian shapes because they may be too close to

be distinguished.

The curves and shadows show the predictions with

confidence intervals using neural networks. The BNN-ZAE

model reproduces the overall trend for the data of 31P and
75As and slightly overestimates the cross sections of 31P in

the most energy region. However, it neglects the two

obvious peaks for 165Ho and predicts the cross sections

with only one peak. At energy e ¼ 14 MeV, where the data

are approximately 0.25 b, the BNN-ZAE model grossly

overestimates the cross section. This process is illustrated

in Fig. 3. The BNN-OPT model provides a smaller RMS

Fig. 4 (Color online) Photoneutron yield cross sections for spherical

nuclei 92Zr, 112Sn, and 206Pb as a function of the incident energy. The

circles with error bars show the experimental data taken from the

EXFOR database. The curves with shadows show the predictions of

the three types of Bayesian neural networks (as shown in Fig. 1)
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deviation than the BNN-ZAE model. This point is reiter-

ated by comparing the predictions of the BNN-OPT and

BNN-ZAE models. However, the confidence intervals

provided by the BNN-OPT model were wider than those

provided by the BNN-ZAE model. When extrapolating the

cross section to the low-energy region, e\10 MeV for 31P

and 75As, overfitting by the BNN-OPT model is shown.

The confidence intervals show an increasing cross section

with decreasing energy, which was not observed in the

experiment.

The LBNN model reproduced the data better than the

other two models did. Two Lorentzian shapes related to the

quadrupole deformation parameters b2 were considered in

the LBNN model, as shown in Fig. 1c, hence the predic-

tions show two peaks for deformed nuclei. It cannot be

denied that the LBNN model underestimates the cross

section of 31P at e ¼ 21:5 MeV, where the calculations

show a valley between two Lorentzian peaks, but the data

display a weak peak. The weak peak may reveal a sub-

structure beyond the main Lorentzian shapes, which can

also be observed in the data of 206Pb near e ¼ 25 MeV.

However, its origin has not been explained by the physics-

motivated model, and hence, it has not been considered in

the neural network. The improvement from BNN-OPT to

LBNN supports the idea that the substructure beyond the

main Lorentzian shapes can be considered in the neural

network after its properties have been revealed.

4 Conclusion

In conclusion, the photoneutron yield cross sections as a

function of the charge number Z, mass number A, and

incident energy e were studied using the BNN, and the

model is abbreviated as BNN-ZAE. The numerical

parameters of the neural network were varied to test the

model. The influence of the activation function on the

prediction was determined. The sigmoid activation func-

tion was the best for realizing nonlinearity between the

input and output, and hence, it provided the smallest

deviations between predictions and data. However, the

predictions of the BNN-ZAE model could not be improved

by increasing the number of hidden layers from 1 to 3 and

the number of hidden nodes from 10 to 100.

In the method proposed in Ref. [27], physics guidance is

provided in BNNs from the input layer. Several effects of

the photoneutron reaction, such as the isospin dependence

and shape effect, have been observed [3, 38, 39], which

indicate that the cross sections of the photoneutron reaction

depend on the ground-state properties of the nuclei. Based

on this knowledge, the optimal ground-state properties

were selected as input neurons, resulting in the BNN-OPT

model. It was shown that the deviations between the pre-

dictions of the BNN-OPT model and the data were smaller

than those of the BNN-ZAE model.

The BNN was further improved by the Lorentzian shape

of the photoneutron yield cross sections. The Lorentzian

Fig. 5 (Color online) Same as Fig. 4 but for the deformed nuclei 31P, 75As, and 165Ho. The quadrupole deformation parameters b2 of those nuclei
are shown
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function was applied to map the hidden nodes to the output

cross sections, and the empirical formula of the Lorentzian

parameters was applied to link the input nodes to the output

cross sections. This new algorithm is called Lorentzian

function-based BNN (LBNN). We evaluated the BNN-

ZAE, BNN-OPT, and LBNN models by comparing their

predictions of the photoneutron yield cross sections for the

spherical nuclei 92Zr, 112Sn, and 206Pb, as well as the

deformed nuclei 31P, 75As, and 165Ho. Generally, for

spherical nuclei, only one main component of the Lor-

entzian shape exists. All three models reproduced the main

trend of the data, but the predictions of the LBNN model

were the best. For an axially deformed nucleus, the pho-

toneutron yield cross sections displayed two main Lor-

entzian shapes. Only the LBNN model reproduced two

peaks of the cross sections in the deformed nuclei 31P,
75As, and 165Ho. This is because two Lorentzian shapes

related to quadrupole deformation parameters b2 are con-

sidered in the LBNN model.
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