

Activation cross sections for reactions induced by 14 MeV neutrons on natural copper

Jing-Jie $\mathrm{Ma}^{1,2}\cdot\mathrm{Feng}\text{-}\mathrm{Qun}\ \mathrm{Zhou}^1\cdot\mathrm{Xiao}\text{-}\mathrm{Jun}\ \mathrm{Sun}^1\cdot\mathrm{Xiao}\text{-}\mathrm{Peng}\ \mathrm{Zhang}^1\cdot\mathrm{Shu}\text{-}\mathrm{Qing}\ \mathrm{Yuan}^1$

Received: 14 April 2018/Revised: 20 May 2018/Accepted: 16 June 2018/Published online: 8 September 2018 © Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2018

Abstract The cross sections for the ${}^{63}Cu(n,\alpha){}^{60(m+g)}Co, {}^{65}Cu(n,2n){}^{64}Cu, and$ ${}^{65}Cu(n,p){}^{65}Ni$ reactions have been studied in the neutron energy range of 13.5-14.8 MeV using the activation technique. The neutron beams were produced via the ${}^{3}H(d,n)^{4}He$ reaction. The neutron energies of different directions in the measurements were determined beforehand by the method of cross 90 Zr(n.2n) $^{89m+g}$ Zr for the section ratios and 93 Nb(n,2n)^{92m}Nb reactions. The results in the present work were discussed and compared with measurement results found in the literatures.

Keywords Copper \cdot Activation \cdot Neutron \cdot Cross section \cdot Nuclear reaction

1 Introduction

The copper and its alloys are widely used in the electronic industry, atomic energy industry, aerospace industry, etc. The accurate and reliable nuclear reaction cross-section data around 14 MeV neutrons on copper are necessary data for nuclear reactor design, radiation shielding

Shu-Qing Yuan ysq@pdsu.edu.cn calculation, and other nuclear engineering calculations. Because in the operation of a future fusion reactor, the 14 MeV neutron from deuterium and tritium fusion reaction not only causes very serious dislocated damage in structural materials of the fusion reactor such as the first wall and cladding shell, but also participates in nuclear transformed reactions with them, which make the material form cavities or bubbles. This causes its properties become worse, they shortening not only the service life of the fusion reactor material, but also impacting to the safe operation of the reactor. In addition, the experimental cross-section data around 14 MeV neutrons can well reveal the interactional mechanism between incident particle and target nucleus, and deepen the understanding of nuclear force and nuclear structure. The cross sections of the 63 Cu(n, α) ${}^{60m+g}$ Co, 65 Cu(n,2n) 64 Cu, and 65 Cu(n,p) 65 Ni reactions around 14 MeV have been obtained by many investigators who can be found in experimental nuclear reaction data (EXFOR) [1], but most of them were obtained before 1980 and there were large discrepancies in those data. Furthermore, there were also discrepancies in the results of different investigators obtained after 1980. Thus it is necessary to make further precision measurements for the cross sections of the copper isotopes around 14 MeV neutrons. In the present work, the cross sections for the 63 Cu(n, α)^{60(m+g)}Co, 65 Cu(n,2n)⁶⁴Cu, and 65 Cu(n,p)⁶⁵Ni reactions have been studied in the neutron energy range of 13.5-14.8 MeV using the activation technique. The obtained results in present work are discussed and compared with the previous works.

This work was supported by the National Natural Science Foundation of China (Nos. 11575090 and 11605099) and the Young Key Teachers Training Porgram of He'nan Higher Education in China (No. 2015GGJS-258).

¹ School of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China

² Henan Quality Polytechnic, Pingdingshan 467000, China

2 Experimental

Nuclear reaction cross-section values were measured by activation and identification of the radioactive products. The details have been described in many publications [2–5]. Here we give only some salient features relevant to the present measurements.

The natural copper foils of 99.99% purity and 2 mm thickness were made into circular samples with a diameter of 2.0 cm. Each of them was sandwiched between two disks of thin niobium (purity better than 99.99% and 1 mm thickness) of the same diameter, and was then wrapped in 1 mm thick cadmium foil (purity better than 99.95%) to avoid the effect of the ${}^{63}Cu(n,\gamma){}^{64}Cu$ reaction induced by thermal neutron to the ${}^{65}Cu(n,2n){}^{64}Cu$ reaction.

The irradiation of the samples was carried out at the K-400 Neutron Generator at the Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics. Neutrons in the 14 MeV region with a yield of about 5×10^{10} n/s, were produced by the ³H(d,n)⁴He reaction with a deuteron beam energy of 255 keV and a beam current of 350 µA. The solid tritium-titanium (T-Ti) target used in the generator was about 2.19 mg/cm² thick. The neutron flux was monitored by the accompanying α -particles during the irradiation so that corrections could be made for small variations in the yield. The groups of samples were placed at 0° , 45° , 90° , and 135° angles relative to the deuteron beam direction and the distances of samples from the T-Ti target were about 3-5 cm. The neutron energies in the measurements were determined beforehand by the method of cross section ratios for the ${}^{90}Zr(n,2n)^{89m+g}Zr$ and 93 Nb(n,2n) 92m Nb reactions [6].

The activated samples were studied for their γ -activities by using a well-calibrated GEM-60P coaxial high-purity germanium (HPGe) detector, of which the crystal diameter is 70.1 mm, the crystal length is 72.3 mm, the relative efficiency is 68%, and the energy resolution is 1.69 keV FWHM at 1.33 MeV for ⁶⁰Co. The efficiency of the detector was pre-calibrated using various standard γ sources. Activities of decay γ -rays from the product radionuclides were recorded 9 cm away from the detector.

The decay characteristics of the product radionuclides and the natural abundance of the target isotopes are summarized in Table 1 [7]. But the abundance of ⁹³Nb came

from Firestone et al. [8] because no abundance is given in literature [7].

3 Results and discussion

The cross sections were calculated using the equation proposed by Kong et al. [9].

The cross sections of the ${}^{63}Cu(n,\alpha){}^{60(m+g)}Co, {}^{65}Cu(n,2n){}^{64}Cu,$ and ⁶⁵Cu(n,p)⁶⁵Ni reactions were obtained relative to those of the ${}^{93}Nb(n.2n)^{92m}Nb$ reaction. The cross section values of the monitor reaction 93 Nb(n,2n) 92m Nb were 457.9 ± 6.8 , 459.8 ± 6.8 , 459.8 ± 6.8 and 459.7 ± 5.0 mb at neutron energies of 13.5, 14.1, 14.4 and 14.8 MeV, respectively [10]. Our results obtained in this work are summarized in Tables 2, 3, and 4 and plotted in Figs. 1, 2, and 3. The cross sections of the ${}^{63}Cu(n,\alpha){}^{60m+g}Co, {}^{65}Cu(n,2n){}^{64}Cu, \text{ and } {}^{65}Cu(n,p){}^{65}Ni \text{ reactions}$ around 14 MeV neutrons have been obtained by about 20, more than 40, and 30 laboratories, respectively [1]. The previous measurements for which only the results published after 1980 are selected are also summarized in Tables 2, 3, and 4 and plotted in Figs. 1, 2, and 3 for comparison.

In this work, corrections were made for the fluctuation of the neutron flux during the irradiation, γ -ray self-absorption in the sample, the sample geometry. The main uncertainties in our work come from the counting statistics (0.3-2.8%), the standard cross sections uncertainties (1.1-1.5%), detector efficiency (2%), the weight of samples (0.1%), the sample geometry (1%), the self-absorption of the γ -ray (1.0%), and the fluctuation of the neutron flux (1%), and so on.

For the 63 Cu(n, α) ${}^{60(m+g)}$ Co reaction, it can be seen from Table 2 and Fig. 1 that the results in the present work decrease with increasing neutron energy around 14 MeV. Our results are in excellent agreement with the values of Semkova et al. [12], Meadows et al. [13], Ikeda et al. [14], Konno et al. [15], Csikai et al. [16], and Greenwood [19] within the experimental uncertainties at the neutron energy range of 13.5-14.8 MeV, and with the values of Filatenkov [11] at the neutron energies 13.5 MeV and 14.1 MeV. The results of Lu et al. [17] are in agreement, within the experimental uncertainties, with those of Wang et al. [18], and these values are 20-25% higher than the other results. The possible reasons of a large difference between the

Table 1 Reactions and associated decay data of	Reaction	Abundance of target isotope (%)	Half-life of product	E_{γ} (keV)	$I_{\gamma}~(\%)$
activation products	63 Cu(n, α) $^{60(m+g)}$ Co	69.15	1925.28 d	1332.492	99.9826
	⁶⁵ Cu(n,2n) ⁶⁴ Cu	30.85	12.701 h	1345.77	0.475
	⁶⁵ Cu(n,p) ⁶⁵ Ni	30.85	2.51719 h	1481.84	23.59
	93 Nb(n,2n) 92m Nb	100^{a}	10.15 d	934.44	99.15

^aWe used the value given by Firestone et al. [8]

Table 2 Summary of the cross section for the Image: Section for the cross	Reaction	This work		Literature values		
63 Cu(n, α) $^{60(m+g)}$ Co reaction around 14 MeV neutrons		$\overline{E_n}$ (MeV)	σ (mb)	$\overline{E_n}$ (MeV)	σ (mb)	References
	63 Cu(n, α) $^{60(m+g)}$ Co	13.5 ± 0.2	44.8 ± 2.2	13.47	47.6 ± 2.6	[11]
		14.1 ± 0.2	43.9 ± 2.4	13.64	45.9 ± 1.5	[11]
		14.4 ± 0.2	41.4 ± 2.1	13.88	45.9 ± 2.5	[11]
		14.8 ± 0.2	38.4 ± 1.9	14.05	45.7 ± 1.3	[11]
				14.28	45.9 ± 1.3	[11]
				14.44	46.1 ± 1.6	[11]
				14.63	43.3 ± 1.4	[11]
				14.86	42.8 ± 1.2	[11]
				13.35	45.07 ± 2.16	[12]
				14.7	41.6 ± 2.3	[13]
				14.5	43.8 ± 2.5	[14]
				14.8	40.4 ± 2.3	[14]
				13.32	46 ± 2.6	[15]
				13.56	45.6 ± 2.5	[15]
				13.75	45.8 ± 2.5	[15]
				13.98	45.1 ± 2.4	[15]
				14.22	43.3 ± 2.4	[15]
				14.42	41.8 ± 2.3	[15]
				14.66	41.1 ± 2.2	[15]
				14.91	39.8 ± 2.2	[15]
				14.5	45 ± 2	[16]
				14.09	50.2 ± 1.9	[17]
				14.58	49 ± 1.7	[17]
				14.8	46.6 ± 1.7	[17]
				13.64	58.3 ± 3.1	[18]
				13.79	56.3 ± 2.4	[18]
				14.03	53.4 ± 2	[18]
				14.33	50.8 ± 1.9	[18]
				14.6	48.4 ± 1.7	[18]
				14.8	47.4 ± 1.7	[18]
				14.5	41.2	[<mark>19</mark>]
				14.65	40.4	[19]
				14.8	38.4	[19]
				14.85	38.8	[19]
				14.9	40.1	[19]

results in Fig. 1 are due to the differences in experimental methods, equipments, monitor reactions, nuclear parameters, and datum processing methods.

The ⁶⁵Cu(n,2n)⁶⁴Cu reaction cross-section values were presented in Table 3 and Fig. 2. It shows that the results in the present work increase with increasing neutron energy around 14 MeV. Our results are in excellent agreement with values of Mannhart and Schmidt [20], Harun et al. [22], Ikeda et al. [26], Meadows et al. [27], and Ghanbari and Robertson [28] within the experimental uncertainties at the neutron energy range of 13.5–14.8 MeV, and with the values of Filatenkov [11], Hafiz [21], Ikeda et al. [23] and

Csikai [30] at some experimental energy point. The results of Filatenkov [11] are in agreement, within the experimental uncertainties, with those of Hafiz [21], Molla et al. [24], Winkler and Ryves [29] and Csikai [30] at the neutron energy range of 14.1–14.8 MeV, and these values are higher than the other results.

For the 65 Cu(n,p) 65 Ni reaction, it can be seen from Table 4 and Fig. 3 that the cross section values in the present work decrease with increasing neutron energy around 14 MeV and our results are in agreement with those of Mannhart and Schmidt [20], Harun et al. [22], Ercan et al. [25], Ikeda et al. [26], Meadows et al. [27], Uwamino

Table 3 Summary of the cross section for the ${}^{65}Cu(n,2n){}^{64}Cu$ reaction around 14 MeV neutrons

$\overline{E_n}$ (MeV) σ (unb) Reference 60 Cun, 20) 60 Cu 13.5 + 0.2 781 + 3.3 13.5 h 8.84 + 4.9 111 14.1 + 0.2 850 ± 36 13.74 865 ± 37 111 14.4 ± 0.2 850 ± 36 13.96 921 ± 62 111 14.4 ± 0.2 850 ± 36 13.96 921 ± 62 111 14.4 ± 0.2 850 ± 36 13.96 921 ± 62 111 14.4 ± 0.2 850 ± 36 13.96 921 ± 62 111 13.55 785.5 ± 28.8 (20) 13.31 807.6 ± 30.2 121 13.395 785.5 ± 28.8 (20) 13.331 807.6 ± 33.7 120 13.3967 84.6 ± 32.9 (20) 13.36 820 ± 20 121 14.327 90.92 ± 42.6 (20) 14 826 ± 62.4 (21) 14.437 91.43 ± 62.9 (21) 14.437 91.43 ± 62.9 (21) 14.457 91.43 ± 62.9 (21) 14.437 91.43 ± 62.9 (21) 14	Reaction	This work		Literature values			
6*Cun,20*Cu 13.5 ± 0.2 781 ± 33 13.56 834 ± 49 [11] 14.1 ± 0.2 854 ± 136 13.74 865 ± 37 [11] 14.4 ± 0.2 859 ± 36 13.96 921 ± 62 [11] 14.4 ± 0.2 858 ± 37 [14] 965 ± 37 [11] 14.8 ± 0.2 898 ± 37 [14] 965 ± 37 [11] 14.78 907 ± 50 [11] [13.59] [13.59] [13.59] 13.395 75.35 ± 28.8 [20] [21] [23] [23] [20] 13.697 846 ± 12.9 [20] [23] [23] [24] [21] 14.37 903 ± 67.9 [21] [44] 826 ± 62.4 [21] 14.33 913.5 ± 68.2 [21] [44] 820.41 ± 103.66 [22] 14.409 973.3 ± 67.9 [21] [44] 820.41 ± 103.66 [22] 14.409 973.4 ± 62.9 [21] [44] 820.41 ± 103.66 [22] 13.6 800 ± 10 [23] <		$E_{\rm n}~({\rm MeV})$	σ (mb)	$\overline{E_{\rm n}~({\rm MeV})}$	σ (mb)	References	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁶⁵ Cu(n,2n) ⁶⁴ Cu	13.5 ± 0.2	781 ± 33	13.56	834 ± 49	[11]	
$\begin{array}{ c c c c c c c } 14.4 \pm 0.2 & 830 \pm 36 & 13.96 & 92.1 \pm 62 & [11]\\ 14.8 \pm 0.2 & 898 \pm 37 & 14.19 & 865 \pm 37 & [11]\\ 14.42 & 948 \pm 43 & [11]\\ 14.42 & 948 \pm 43 & [11]\\ 14.42 & 948 \pm 43 & [11]\\ 13.395 & 785.3 \pm 28.8 & [20]\\ 13.395 & 785.3 \pm 28.8 & [20]\\ 13.396 & 836 \pm 37.3 & [20]\\ 13.996 & 82.5 \pm 34.7 & [20]\\ 13.997 & 846 \pm 32.9 & [20]\\ 14.327 & 902.2 \pm 42.6 & [20]\\ 14.327 & 902.2 \pm 42.6 & [21]\\ 14.31 & 013.5 \pm 64.8 & [21]\\ 14.37 & 914.8 \pm 62.9 & [21]\\ 14.69 & 979.3 \pm 67.9 & [21]\\ 14.7 & 90.0 \pm 63.2 & [21]\\ 13.8 & 820.4 \pm 10.366 & [22]\\ 13.4 & 700 \pm 10 & [23]\\ 13.8 & 820.4 \pm 10 & [23]\\ 13.8 & 820.4 \pm 10 & [23]\\ 14.4 & 840 \pm 10 & [23]\\ 14.4 & 920 \pm 10 & [23]\\ 15.9 & 960 \pm 20 & [23]\\ 15.9 & 960 \pm 20 & [23]\\ 15.9 & 960 \pm 20 & [23]\\ 14.4 & 920 \pm 10 & [23]\\ 15.9 & 960 \pm 20 & [23]\\ 15.9 & 960 \pm 20 & [23]\\ 14.4 & 920 \pm 10 & [24]\\ 14.4 & 920 \pm 10 & [24]\\ 14.4 & 920 \pm 10 & [24]\\ 14.4 & 920 \pm 10 & [26]\\ 14.4 & 920 \pm 1$		14.1 ± 0.2	842 ± 36	13.74	865 ± 37	[11]	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		14.4 ± 0.2	850 ± 36	13.96	921 ± 62	[11]	
$\begin{vmatrix} 4.42 & 948 \pm 43 & [11] \\ 14.61 & 900 \pm 38 & [11] \\ 14.78 & 907 \pm 50 & [11] \\ 13.395 & 785.3 \pm 28.8 & [20] \\ 13.531 & 807.6 \pm 33.2 & [20] \\ 13.590 & 823.6 \pm 34.7 & [21] \\ 13.967 & 846 \pm 32.9 & [20] \\ 13.967 & 846 \pm 32.9 & [21] \\ 14.327 & 909.2 \pm 42.6 & [21] \\ 14.31 & 913.5 \pm 64.8 & [21] \\ 14.37 & 914.8 \pm 62.9 & [21] \\ 14.57 & 914.8 \pm 62.9 & [21] \\ 14.69 & 979.3 \pm 67.9 & [21] \\ 14.69 & 979.3 \pm 67.9 & [21] \\ 14.7 & 90.7 \pm 63.2 & [21] \\ 14.8 & 850.41 \pm 103.66 & [22] \\ 13.4 & 700 \pm 10 & [23] \\ 13.6 & 800 \pm 20 & [23] \\ 13.8 & 820 \pm 10 & [23] \\ 14.4 & 840 \pm 10 & [23] \\ 14.4 & 840 \pm 10 & [23] \\ 14.4 & 840 \pm 10 & [23] \\ 14.4 & 920 \pm 10 & [23] \\ 15 & 960 \pm 20 & [24] \\ 14.7 & 1006 \pm 63 & [24] \\ 14.7 & 902 \pm 58 & [26] \\ 14.94 & 980 \pm 55 & [26] \\ 14.94 & 980 \pm 55 & [26] \\ 14.94 & 970 \pm 56 & [28] \\ 13.98 & 839 \pm 54 & [26] \\ 14.48 & 970 \pm 56 & [28] \\ 13.69 & 823 \pm 42.06 & [27] \\ 14.88 & 970 \pm 56 & [28] \\ 13.50 & 823 \pm 42.06 & [27] \\ 14.82 & 971 \pm 56 & [28] \\ 14.82 & 971 \pm 56 & [28] \\ 14.82 & 971 \pm 56 & [28] \\ 14.82 & 970 \pm 56 & [28] \\ 14.82 & 971 \pm 51.1 & [29] \\ 14.82$		14.8 ± 0.2	898 ± 37	14.19	865 ± 37	[11]	
14.61 900 ± 38 $[11]$ 14.78 967 ± 50 $[11]$ 13.395 783.3 ± 28.8 $20]$ 13.531 807.6 ± 33.2 $20]$ 13.699 823.6 ± 34.7 $20]$ 13.997 86.4 ± 52.9 $20]$ 13.984 836.8 ± 37.3 $20]$ 14.32 909.2 ± 42.6 $20]$ 14.431 913.5 ± 64.8 $21]$ 14.57 914.8 ± 62.9 $21]$ 14.69 979.3 ± 67.9 $21]$ 14.69 979.3 ± 67.9 $21]$ 14.71 960.7 ± 63.2 $22]$ 13.8 820.4 ± 103.66 $22]$ 13.4 760 ± 10 $23]$ 13.8 820.4 ± 10 $23]$ 14.4 840 ± 10 $23]$ 14.4 840 ± 10 $23]$ 14.4 920 ± 10 $23]$ 14.7 920 ± 10 $23]$ 15.7 960 ± 20 $23]$ 13.9 922 ± 50 $24]$ 14.7 906 ± 20 $23]$ 13.9 922 ± 50 $24]$ 14.7 1006 ± 63 $24]$ 14.7 906 ± 22 $26]$ 13.33 751 ± 49 $26]$ 13.53 899 ± 54 $26]$ 13.53 899 ± 54 $26]$ 14.67 <td< td=""><td></td><td></td><td></td><td>14.42</td><td>948 ± 43</td><td>[11]</td></td<>				14.42	948 ± 43	[11]	
$\begin{vmatrix} 4.78 & 967 \pm 50 & [11]\\ 13.395 & 785.3 \pm 28.8 & [20]\\ 13.391 & 807.6 \pm 33.2 & [20]\\ 13.699 & 823.6 \pm 34.7 & [20]\\ 13.984 & 83.6 \pm 37.3 & [20]\\ 14.327 & 999.2 \pm 42.6 & [20]\\ 14 & 826.6 \pm 32.9 & [21]\\ 14.31 & 913.5 \pm 64.8 & [21]\\ 14.31 & 913.5 \pm 64.8 & [21]\\ 14.69 & 979.3 \pm 67.9 & [21]\\ 14.69 & 979.3 \pm 67.9 & [21]\\ 14.69 & 979.3 \pm 67.9 & [21]\\ 14.71 & 960.7 \pm 63.2 & [21]\\ 14.8 & 850.41 \pm 103.66 & [22]\\ 13.4 & 760 \pm 10 & [23]\\ 13.6 & 800 \pm 20 & [23]\\ 13.6 & 800 \pm 20 & [23]\\ 14.8 & 850.41 \pm 103.66 & [22]\\ 13.4 & 760 \pm 10 & [23]\\ 14.2 & 870 \pm 10 & [23]\\ 14.2 & 870 \pm 10 & [23]\\ 14.2 & 870 \pm 10 & [23]\\ 14.4 & 920 \pm 10 & [23]\\ 14.1 & 920 \pm 10 & [23]\\ 15 & 960 \pm 20 & [23]\\ 15 & 960 \pm 20 & [23]\\ 15 & 960 \pm 20 & [23]\\ 13.9 & 922 \pm 50 & [24]\\ 14.51 & 1001 \pm 47 & [24]\\ 14.6 & 971 \pm 200 & [25]\\ 13.33 & 751 \pm 49 & [26]\\ 13.57 & 803 \pm 52 & [26]\\ 13.98 & 839 \pm 54 & [26]\\ 13.98 & 839 \pm 54 & [26]\\ 14.43 & 885 \pm 57 & [26]\\ 14.44 & 902 \pm 16 & [27]\\ 14.47 & 902 \pm 58 & [26]\\ 14.48 & 970 \pm 56 & [28]\\ 13.69 & 82.4 \pm 20.6 & [27]\\ 14.47 & 970 \pm 56 & [28]\\ 13.57 & 840 \pm 50 & [37]\\ 14.47 & 971 \pm 54 & [37]\\ 14.47 & 971 \pm 56 & [38]\\ 14.58 & 970 \pm 56 &$				14.61	900 ± 38	[11]	
$\begin{vmatrix} 13.95 & 785.3 \pm 28.8 & [20] \\ 13.531 & 80.6 \pm 33.2 & [20] \\ 13.54 & 80.6 \pm 33.2 & [20] \\ 13.967 & 846 \pm 32.9 & [20] \\ 13.967 & 846 \pm 32.9 & [20] \\ 13.967 & 846 \pm 32.9 & [20] \\ 14.327 & 90.2 \pm 42.6 & [20] \\ 14 & 82.6 \pm 62.4 & [21] \\ 14.57 & 914.8 \pm 62.9 & [21] \\ 14.57 & 914.8 \pm 62.9 & [21] \\ 14.69 & 979.3 \pm 67.9 & [21] \\ 14.69 & 979.3 \pm 67.9 & [21] \\ 14.71 & 96.0 \pm 64.8 & [22] \\ 13.4 & 760 \pm 10 & [23] \\ 13.4 & 760 \pm 10 & [23] \\ 13.8 & 820 \pm 10 & [23] \\ 13.8 & 820 \pm 10 & [23] \\ 14.4 & 840 \pm 10 & [23] \\ 14.4 & 840 \pm 10 & [23] \\ 14.4 & 840 \pm 10 & [23] \\ 14.4 & 920 \pm 10 & [23] \\ 14.4 & 920 \pm 10 & [23] \\ 14.7 & 920 \pm 10 & [23] \\ 14.9 & 902 \pm 52 & [24] \\ 14.1 & 929 \pm 52 & [24] \\ 14.1 & 929 \pm 52 & [24] \\ 14.1 & 929 \pm 52 & [24] \\ 14.51 & 1001 \pm 47 & [24] \\ 14.51 & 1001 \pm 47 & [24] \\ 14.51 & 1006 \pm 63 & [24] \\ 14.6 & 971 \pm 200 & [25] \\ 13.37 & 803 \pm 52 & [26] \\ 13.75 & 809 \pm 52 & [26] \\ 13.75 & 809 \pm 52 & [26] \\ 13.75 & 809 \pm 52 & [26] \\ 13.98 & 833 \pm 54 & [26] \\ 14.43 & 885 \pm 57 & [26] \\ 14.43 & 885 \pm 57 & [26] \\ 14.44 & 970 \pm 56 & [26] \\ 14.47 & 902 \pm 58 & [26] \\ 14.47 & 902 \pm 46 & [27] \\ 14.47 & 904 \pm 46 & [27] \\ 14.47 & 904 \pm 46 & [27] \\ 14.48 & 970 \pm 56 & [28] \\ 13.69 & 823 \pm 20.6 & [29] \\ 14.482 & 961 \pm 14.4 & [29] \\ 14.48$				14.78	967 ± 50	[11]	
13.51 807.6 ± 33.2 (20) 13.690 823.6 ± 34.7 (20) 13.967 846 ± 32.9 (20) 13.984 836.8 ± 37.3 (20) 14.327 902.2 ± 42.6 (21) 14.327 902.2 ± 42.6 (21) 14.31 913.5 ± 64.8 (21) 14.57 914.8 ± 62.9 (21) 14.69 979.3 ± 67.9 (21) 14.71 900.7 ± 63.2 (21) 14.71 900.7 ± 63.2 (22) 13.4 760 ± 10 (23) 13.6 800 ± 20 (23) 13.8 820 ± 10 (23) 13.8 820 ± 10 (23) 14.7 920 ± 52 (24) 14.7 920 ± 52 (24) 14.7 1001 ± 47 (24) 14.6 971 ± 200 (25) 13.57 803 ± 52 (26) 13.57 803 ± 52 (26) 13.98 833 ± 54 (26) 14.43 985 ± 57 (26) 14.43 985 ± 57 (26) 14.473 931.8 ± 13.1 (29) 14.473 931.8 ± 13.1 (29) 14.473 931.8 ± 13.1 (29) 14.473 931.8 ± 13.1 <				13.395	785.3 ± 28.8	[20]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				13.531	807.6 ± 33.2	[20]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				13.699	823.6 ± 34.7	[20]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				13.967	846 ± 32.9	[20]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				13.984	836.8 ± 37.3	[20]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				14.327	909.2 ± 42.6	[20]	
14.31913.5 \pm 64.8[21]14.57914.8 \pm 62.9[21]14.69979.3 \pm 67.9[21]14.71960.7 \pm 63.2[21]14.8850.41 \pm 103.66[22]13.4760 \pm 10[23]13.6800 \pm 20[23]13.8820 \pm 10[23]14.4870 \pm 10[23]14.2870 \pm 10[23]14.4920 \pm 10[23]14.7920 \pm 10[23]14.7920 \pm 10[23]15960 \pm 20[23]15960 \pm 20[23]14.7922 \pm 50[24]14.1929 \pm 52[24]14.1929 \pm 52[24]14.1929 \pm 52[24]14.511001 \pm 47[24]14.6971 \pm 200[25]13.33751 \pm 49[26]13.57809 \pm 52[26]13.57809 \pm 52[26]13.57809 \pm 52[26]14.43885 \pm 57[26]14.43885 \pm 57[26]14.43885 \pm 57[26]14.43924 \pm 46[27]14.8970 \pm 56[28]15.692823 \pm 20.6[29]14.822961 \pm 14.4[29]14.822961 \pm 14.4[29]14.822961 \pm 14.4[29]14.822961 \pm 14.4[29]13.57840 \pm 50[30]13.57840 \pm 50<				14	826 ± 62.4	[21]	
14.57 914.8 ± 62.9 $[21]$ 14.69 979.3 ± 67.9 $[21]$ 14.71 960.7 ± 63.2 $[2]$ 13.4 760 ± 10 $[23]$ 13.4 760 ± 10 $[23]$ 13.6 800 ± 20 $[23]$ 13.8 820 ± 10 $[23]$ 14 840 ± 10 $[23]$ 14.2 870 ± 10 $[23]$ 14.4 840 ± 10 $[23]$ 14.7 920 ± 10 $[23]$ 14.7 920 ± 10 $[23]$ 15.960 ± 20 $[23]$ 15.960 ± 20 $[23]$ 15.960 ± 20 $[23]$ 14.7 920 ± 10 $[23]$ 14.7 920 ± 10 $[23]$ 15.960 ± 20 $[23]$ 13.9 922 ± 50 $[24]$ 14.1 929 ± 52 $[24]$ 14.1 1001 ± 47 $[24]$ 14.51 1001 ± 47 $[24]$ 14.6 971 ± 200 $[25]$ 13.357 809 ± 52 $[26]$ 13.57 809 ± 52 $[26]$ 13.98 839 ± 54 $[26]$ 14.43 885 ± 57 $[26]$ 14.43 885 ± 57 $[26]$ 14.47 902 ± 58 $[26]$ 14.47 902 ± 56 $[28]$ 14.473 931.8 ± 13.1 $[29]$ 14.473 931.8 ± 13.1 $[29]$ 14.473				14.31	913.5 ± 64.8	[21]	
14.69979.3 \pm 67.9[21]14.71960.7 \pm 63.2[21]14.8850.41 \pm 103.66[22]13.4760 \pm 10[23]13.6800 \pm 20[23]13.8820 \pm 10[23]14.4840 \pm 10[23]14.2870 \pm 10[23]14.4920 \pm 10[23]14.7920 \pm 10[23]14.7920 \pm 10[23]15960 \pm 20[23]13.9922 \pm 50[24]14.1929 \pm 52[24]14.1929 \pm 52[24]14.1929 \pm 52[24]14.11001 \pm 47[24]14.511001 \pm 47[24]14.65971 \pm 200[25]13.33751 \pm 49[26]13.57803 \pm 52[26]13.57809 \pm 52[26]13.43885 \pm 57[26]14.43885 \pm 57[26]14.43885 \pm 57[26]14.67902 \pm 58[26]14.63970 \pm 56[28]13.692823.4 \pm 20.6[29]14.473931.8 \pm 13.1[29]14.473931.8 \pm 13.1[29]14.82970 \pm 56[26]14.473931.8 \pm 13.1[29]14.82961 \pm 14.4[29]13.5840 \pm 50[30]13.5840 \pm 50[30]13.5840 \pm 50[30]13.5840 \pm 50<				14.57	914.8 ± 62.9	[21]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				14.69	979.3 ± 67.9	[21]	
14.8 850.41 ± 103.66 $[22]$ 13.4 760 ± 10 $[23]$ 13.6 800 ± 20 $[23]$ 13.6 800 ± 10 $[23]$ 13.4 840 ± 10 $[23]$ 14 840 ± 10 $[23]$ 14.2 870 ± 10 $[23]$ 14.4 920 ± 10 $[23]$ 14.7 920 ± 10 $[23]$ 15 960 ± 20 $[23]$ 15 960 ± 20 $[23]$ 13.9 922 ± 50 $[24]$ 14.1 929 ± 52 $[24]$ 14.51 1001 ± 47 $[24]$ 14.6 971 ± 200 $[25]$ 13.33 751 ± 49 $[26]$ 13.33 751 ± 49 $[26]$ 13.75 803 ± 52 $[26]$ 14.43 885 ± 57 $[26]$ 14.47 924 ± 46 $[27]$ 14.8 970 ± 56 $[28]$ 13.692 823.4 ± 20.6 $[29]$ 14.473 931.8 ± 13.1 $[29]$ 14.822 961 ± 14.4 $[29]$ 14.473 931.8 ± 13.1 $[29]$ 14.473 931.8 ± 13.1 $[29]$ 14.473 931.8 ± 13.1 $[29]$ 14.473 931.8 ± 13.4 $[29]$ </td <td></td> <td></td> <td></td> <td>14.71</td> <td>960.7 ± 63.2</td> <td>[21]</td>				14.71	960.7 ± 63.2	[21]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				14.8	850.41 ± 103.66	[22]	
13.6 800 ± 20 [23]13.8 820 ± 10 [23]14 840 ± 10 [23]14.2 870 ± 10 [23]14.4 920 ± 10 [23]14.7 920 ± 10 [23]15 960 ± 20 [23]13.9 922 ± 50 [24]14.51 1001 ± 47 [24]14.51 1001 ± 47 [24]14.51 1001 ± 47 [24]14.6 971 ± 200 [25]13.33 751 ± 49 [26]13.57 803 ± 52 [26]13.57 809 ± 52 [26]13.57 809 ± 52 [26]13.98 839 ± 54 [26]14.43 885 ± 57 [26]14.45 905 ± 52 [26]13.99 922 ± 56 [26]13.57 809 ± 52 [26]13.69 839 ± 54 [26]14.43 885 ± 57 [26]14.47 924 ± 46 [27]14.8 970 ± 56 [28]13.692 82.3 ± 20.6 [29]14.473 931.8 ± 13.1 [29]14.822 961 ± 14.4 [29]14.822 961 ± 14.4 [29]14.822 961 ± 14.4 [29]13.55 840 ± 50 [30]13.77 862 ± 52 [30]				13.4	760 ± 10	[23]	
13.8 820 ± 10 [23]14 840 ± 10 [23]14.2 870 ± 10 [23]14.4 920 ± 10 [23]14.7 920 ± 10 [23]15 960 ± 20 [23]13.9 922 ± 50 [24]14.1 929 ± 52 [24]14.51 1001 ± 47 [24]14.71 1006 ± 63 [24]14.6 971 ± 200 [25]13.33 751 ± 49 [26]13.57 803 ± 52 [26]13.75 809 ± 52 [26]13.98 839 ± 54 [26]14.43 885 ± 57 [26]14.43 885 ± 57 [26]14.47 924 ± 46 [27]14.8 970 ± 56 [28]13.692 8234 ± 20.6 [29]14.473 931.8 ± 13.1 [29]14.822 961 ± 14.4 [29]13.5 840 ± 50 [30]13.77 862 ± 52 [30]				13.6	800 ± 20	[23]	
14 840 ± 10 [23]14.2 870 ± 10 [23]14.4 920 ± 10 [23]14.7 920 ± 10 [23]15 960 ± 20 [23]13.9 922 ± 50 [24]14.1 929 ± 52 [24]14.51 1001 ± 47 [24]14.71 1006 ± 63 [24]14.6 971 ± 200 [25]13.33 751 ± 49 [26]13.57 803 ± 52 [26]13.57 803 ± 52 [26]13.58 839 ± 54 [26]14.43 885 ± 57 [26]14.67 902 ± 58 [26]14.63 971 ± 20.6 [26]14.74 924 ± 46 [27]14.8 970 ± 56 [28]13.692 823.4 ± 20.6 [29]14.822 961 ± 14.4 [29]13.5 840 ± 50 [30]13.77 862 ± 52 [30]				13.8	820 ± 10	[23]	
14.2 870 ± 10 $[23]$ 14.4 920 ± 10 $[23]$ 14.7 920 ± 10 $[23]$ 15 960 ± 20 $[23]$ 13.9 922 ± 50 $[24]$ 14.1 929 ± 52 $[24]$ 14.51 1001 ± 47 $[24]$ 14.51 1001 ± 47 $[24]$ 14.6 971 ± 200 $[25]$ 13.33 751 ± 49 $[26]$ 13.57 803 ± 52 $[26]$ 13.75 809 ± 52 $[26]$ 13.98 839 ± 54 $[26]$ 14.43 885 ± 57 $[26]$ 14.67 902 ± 58 $[26]$ 14.74 924 ± 46 $[27]$ 14.88 970 ± 56 $[28]$ 13.692 823.4 ± 20.6 $[29]$ 14.473 931.8 ± 13.1 $[29]$ 14.822 961 ± 14.4 $[29]$ 13.5 840 ± 50 $[30]$ 13.77 862 ± 52 $[30]$				14	840 ± 10	[23]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				14.2	870 ± 10	[23]	
				14.4	920 ± 10	[23]	
15 960 ± 20 $[23]$ 13.9 922 ± 50 $[24]$ 14.1 929 ± 52 $[24]$ 14.51 1001 ± 47 $[24]$ 14.51 1001 ± 47 $[24]$ 14.71 1006 ± 63 $[24]$ 14.6 971 ± 200 $[25]$ 13.33 751 ± 49 $[26]$ 13.57 803 ± 52 $[26]$ 13.75 809 ± 52 $[26]$ 13.98 839 ± 54 $[26]$ 14.22 872 ± 56 $[26]$ 14.43 885 ± 57 $[26]$ 14.47 902 ± 58 $[26]$ 14.59 961 ± 62 $[26]$ 14.74 924 ± 46 $[27]$ 14.8 970 ± 56 $[28]$ 13.692 823.4 ± 20.6 $[29]$ 14.822 961 ± 14.4 $[29]$ 13.5 840 ± 50 $[30]$ 13.77 862 ± 52 $[30]$				14.7	920 ± 10	[23]	
13.9 922 ± 50 $[24]$ 14.1 929 ± 52 $[24]$ 14.51 1001 ± 47 $[24]$ 14.51 1001 ± 47 $[24]$ 14.71 1006 ± 63 $[24]$ 14.6 971 ± 200 $[25]$ 13.33 751 ± 49 $[26]$ 13.57 803 ± 52 $[26]$ 13.75 809 ± 52 $[26]$ 13.98 839 ± 54 $[26]$ 14.22 872 ± 56 $[26]$ 14.43 885 ± 57 $[26]$ 14.43 885 ± 57 $[26]$ 14.47 902 ± 58 $[26]$ 14.474 924 ± 46 $[27]$ 14.8 970 ± 56 $[28]$ 13.692 823.4 ± 20.6 $[29]$ 14.473 931.8 ± 13.1 $[29]$ 14.822 961 ± 14.4 $[29]$ 13.5 840 ± 50 $[30]$ 13.77 862 ± 52 $[30]$				15	960 ± 20	[23]	
14.1 929 ± 52 $[24]$ 14.51 1001 ± 47 $[24]$ 14.71 1006 ± 63 $[24]$ 14.6 971 ± 200 $[25]$ 13.33 751 ± 49 $[26]$ 13.57 803 ± 52 $[26]$ 13.75 809 ± 52 $[26]$ 13.98 839 ± 54 $[26]$ 14.42 872 ± 56 $[26]$ 14.43 885 ± 57 $[26]$ 14.43 885 ± 57 $[26]$ 14.67 902 ± 58 $[26]$ 14.74 924 ± 46 $[27]$ 14.8 970 ± 56 $[28]$ 13.692 823.4 ± 20.6 $[29]$ 14.473 931.8 ± 13.1 $[29]$ 14.822 961 ± 14.4 $[29]$ 13.5 840 ± 50 $[30]$ 13.77 862 ± 52 $[30]$				13.9	922 ± 50	[24]	
14.51 1001 ± 47 $[24]$ 14.71 1006 ± 63 $[24]$ 14.6 971 ± 200 $[25]$ 13.33 751 ± 49 $[26]$ 13.57 803 ± 52 $[26]$ 13.75 809 ± 52 $[26]$ 13.98 839 ± 54 $[26]$ 14.22 872 ± 56 $[26]$ 14.43 885 ± 57 $[26]$ 14.67 902 ± 58 $[26]$ 14.94 961 ± 62 $[26]$ 14.74 924 ± 46 $[27]$ 14.8 970 ± 56 $[28]$ 13.692 823.4 ± 20.6 $[29]$ 14.473 931.8 ± 13.1 $[29]$ 14.822 961 ± 14.4 $[29]$ 13.5 840 ± 50 $[30]$ 13.77 862 ± 52 $[30]$				14.1	929 ± 52	[24]	
14.71 1006 ± 63 $[24]$ 14.6 971 ± 200 $[25]$ 13.33 751 ± 49 $[26]$ 13.57 803 ± 52 $[26]$ 13.75 809 ± 52 $[26]$ 13.98 839 ± 54 $[26]$ 14.22 872 ± 56 $[26]$ 14.43 885 ± 57 $[26]$ 14.43 885 ± 57 $[26]$ 14.67 902 ± 58 $[26]$ 14.94 961 ± 62 $[26]$ 14.74 924 ± 46 $[27]$ 14.8 970 ± 56 $[28]$ 13.692 823.4 ± 20.6 $[29]$ 14.473 931.8 ± 13.1 $[29]$ 14.822 961 ± 14.4 $[29]$ 13.5 840 ± 50 $[30]$ 13.77 862 ± 52 $[30]$				14.51	1001 ± 47	[24]	
14.6 971 ± 200 $[25]$ 13.33 751 ± 49 $[26]$ 13.57 803 ± 52 $[26]$ 13.75 809 ± 52 $[26]$ 13.98 839 ± 54 $[26]$ 14.22 872 ± 56 $[26]$ 14.43 885 ± 57 $[26]$ 14.67 902 ± 58 $[26]$ 14.94 961 ± 62 $[26]$ 14.74 924 ± 46 $[27]$ 14.8 970 ± 56 $[28]$ 13.692 823.4 ± 20.6 $[29]$ 14.473 931.8 ± 13.1 $[29]$ 14.822 961 ± 14.4 $[29]$ 13.5 840 ± 50 $[30]$ 13.77 862 ± 52 $[30]$				14.71	1006 ± 63	[24]	
13.33 751 ± 49 [26] 13.57 803 ± 52 [26] 13.75 809 ± 52 [26] 13.98 839 ± 54 [26] 14.22 872 ± 56 [26] 14.43 885 ± 57 [26] 14.67 902 ± 58 [26] 14.94 961 ± 62 [26] 14.74 924 ± 46 [27] 14.8 970 ± 56 [28] 13.692 823.4 ± 20.6 [29] 14.473 931.8 ± 13.1 [29] 14.822 961 ± 14.4 [29] 13.5 840 ± 50 [30] 13.77 862 ± 52 [30]				14.6	971 ± 200	[25]	
13.57 803 ± 52 [26] 13.75 809 ± 52 [26] 13.98 839 ± 54 [26] 14.22 872 ± 56 [26] 14.43 885 ± 57 [26] 14.67 902 ± 58 [26] 14.94 961 ± 62 [26] 14.74 924 ± 46 [27] 14.8 970 ± 56 [28] 13.692 823.4 ± 20.6 [29] 14.473 931.8 ± 13.1 [29] 14.822 961 ± 14.4 [29] 13.5 840 ± 50 [30] 13.77 862 ± 52 [30]				13.33	751 ± 49	[26]	
13.75 809 ± 52 $[26]$ 13.98 839 ± 54 $[26]$ 14.22 872 ± 56 $[26]$ 14.43 885 ± 57 $[26]$ 14.67 902 ± 58 $[26]$ 14.94 961 ± 62 $[26]$ 14.74 924 ± 46 $[27]$ 14.8 970 ± 56 $[28]$ 13.692 823.4 ± 20.6 $[29]$ 14.473 931.8 ± 13.1 $[29]$ 14.822 961 ± 14.4 $[29]$ 13.5 840 ± 50 $[30]$ 13.77 862 ± 52 $[30]$				13.57	803 ± 52	[26]	
13.98 839 ± 54 [26] 14.22 872 ± 56 [26] 14.43 885 ± 57 [26] 14.43 885 ± 57 [26] 14.67 902 ± 58 [26] 14.94 961 ± 62 [26] 14.74 924 ± 46 [27] 14.8 970 ± 56 [28] 13.692 823.4 ± 20.6 [29] 14.473 931.8 ± 13.1 [29] 14.822 961 ± 14.4 [29] 13.5 840 ± 50 [30] 13.77 862 ± 52 [30]				13.75	809 ± 52	[26]	
14.22 872 ± 56 $[26]$ 14.43 885 ± 57 $[26]$ 14.67 902 ± 58 $[26]$ 14.94 961 ± 62 $[26]$ 14.74 924 ± 46 $[27]$ 14.8 970 ± 56 $[28]$ 13.692 823.4 ± 20.6 $[29]$ 14.473 931.8 ± 13.1 $[29]$ 14.822 961 ± 14.4 $[29]$ 13.5 840 ± 50 $[30]$ 13.77 862 ± 52 $[30]$				13.98	839 ± 54	[26]	
14.43 885 ± 57 [26] 14.67 902 ± 58 [26] 14.94 961 ± 62 [26] 14.74 924 ± 46 [27] 14.8 970 ± 56 [28] 13.692 823.4 ± 20.6 [29] 14.473 931.8 ± 13.1 [29] 14.822 961 ± 14.4 [29] 13.5 840 ± 50 [30] 13.77 862 ± 52 [30]				14.22	872 ± 56	[26]	
14.67 902 ± 58 [26] 14.94 961 ± 62 [26] 14.74 924 ± 46 [27] 14.8 970 ± 56 [28] 13.692 823.4 ± 20.6 [29] 14.473 931.8 ± 13.1 [29] 14.822 961 ± 14.4 [29] 13.5 840 ± 50 [30] 13.77 862 ± 52 [30]				14.43	885 ± 57	[26]	
14.94 961 ± 62 $[26]$ 14.74 924 ± 46 $[27]$ 14.8 970 ± 56 $[28]$ 13.692 823.4 ± 20.6 $[29]$ 14.473 931.8 ± 13.1 $[29]$ 14.822 961 ± 14.4 $[29]$ 13.5 840 ± 50 $[30]$ 13.77 862 ± 52 $[30]$				14.67	902 ± 58	[26]	
14.74 924 ± 46 [27] 14.8 970 ± 56 [28] 13.692 823.4 ± 20.6 [29] 14.473 931.8 ± 13.1 [29] 14.822 961 ± 14.4 [29] 13.5 840 ± 50 [30] 13.77 862 ± 52 [30]				14.94	961 ± 62	[26]	
14.8 970 ± 56 [28] 13.692 823.4 ± 20.6 [29] 14.473 931.8 ± 13.1 [29] 14.822 961 ± 14.4 [29] 13.5 840 ± 50 [30] 13.77 862 ± 52 [30]				14.74	924 ± 46	[27]	
13.692 823.4 ± 20.6 [29]14.473 931.8 ± 13.1 [29]14.822 961 ± 14.4 [29]13.5 840 ± 50 [30]13.77 862 ± 52 [30]				14.8	970 ± 56	[28]	
14.473 931.8 ± 13.1 $[29]$ 14.822 961 ± 14.4 $[29]$ 13.5 840 ± 50 $[30]$ 13.77 862 ± 52 $[30]$				13.692	823.4 ± 20.6	[29]	
14.822 961 ± 14.4 $[29]$ 13.5 840 ± 50 $[30]$ 13.77 862 ± 52 $[30]$				14.473	931.8 ± 13.1	[29]	
13.5 840 ± 50 [30]13.77 862 ± 52 [30]				14.822	961 ± 14.4	[29]	
13.77 862 ± 52 [30]				13.5	840 ± 50	[30]	
				13.77	862 ± 52	[30]	

Table 3 continued						
Reaction	This work		Literature values			
	$E_{\rm n}~({\rm MeV})$	σ (mb)	$\overline{E_{\rm n}~({\rm MeV})}$	σ (mb)	References	
			14.1	905 ± 54	[30]	
			14.39	955 ± 57	[30]	
			14.66	975 ± 59	[30]	
			14.78	980 ± 59	[30]	

Table 4 Summary of the crosssection for the ${}^{65}Cu(n, p){}^{65}Ni$ reaction around 14 MeV	Reaction	This work		Literature values		
		$E_{\rm n}~({\rm MeV})$	σ (mb)	$E_{\rm n}~({\rm MeV})$	σ (mb)	References
neutrons	⁶⁵ Cu(n, p) ⁶⁵ Ni	13.5 ± 0.2	19.9 ± 1.0	13.56	22.4 ± 0.7	[11]
		14.1 ± 0.2	19.8 ± 0.9	13.74	20.4 ± 1.3	[11]
		14.4 ± 0.2	18.9 ± 0.7	13.96	21.6 ± 0.9	[11]
		14.8 ± 0.2	18.4 ± 0.8	14.19	20.5 ± 1.2	[11]
				14.42	20.4 ± 0.7	[11]
				14.61	21.5 ± 0.6	[11]
				14.78	20.7 ± 0.9	[11]
				13.395	20.48 ± 0.93	[20]
				13.967	20.66 ± 0.82	[20]
				14.8	18.83 ± 1.7	[22]
				13.9	22.4 ± 2.3	[24]
				14.1	22.7 ± 2.3	[24]
				14.51	22.5 ± 2.3	[24]
				14.71	22.7 ± 2.3	[24]
				14.6	14 ± 5	[25]
				13.34	17.4 ± 1.4	[26]
				13.57	20.2 ± 1.8	[26]
				13.76	17.7 ± 1.8	[26]
				13.99	17.7 ± 1.5	[26]
				14.23	21 ± 1.6	[26]
				14.43	19.4 ± 1.8	[26]
				14.67	20.1 ± 1.7	[26]
				14.93	18.8 ± 1.5	[26]
				14.74	19.16 ± 0.88	[27]
				13.5	17 ± 9.7	[31]
				14.5	24.01 ± 13	[31]
				14.7	20 ± 1	[32]
				14.8	21 ± 2	[33]

et al. [31], Pepelnik et al. [32], and Gupta et al. [33] within the experimental uncertainties at the neutron energy range of 13.5–14.8 MeV, and with the values of Filatenkov [11], and Molla et al. [24] at some experimental energy points.

4 Conclusion

We have measured the cross sections for the ${}^{63}Cu(n,\alpha){}^{60(m+g)}Co, {}^{65}Cu(n,2n){}^{64}Cu$ and ${}^{65}Cu(n,p){}^{65}Ni$ reactions at neutron energies of 13.5–14.8 MeV. In our experiment, the new T-Ti target and natural high-purity copper foils were used, the samples were wrapped in thin cadmium foil during the irradiation so the influence of the (n,γ) reactions of thermal neutrons was reduced.

Fig. 1 (Color online) Cross section of the $^{63}\text{Cu}(n,\alpha)^{60(m+g)}\text{Co}$ reaction

Fig. 2 (Color online) Cross section of the ${}^{65}Cu(n, 2n){}^{64}Cu$ reaction

Fig. 3 (Color online) Cross section of the ⁶⁵Cu(n, p)⁶⁵Ni reaction

Furthermore, while the measured cross sections were calculated the most recent and accurate nuclear data so far were adopted. All these mentioned above make the measured results reliable and credible. The new data measured in this work are useful for further strengthening the database and giving new evaluations of the 14 MeV neutron cross sections.

Acknowledgements We thank the crew of the K-400 Neutron Generator at Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics for performing irradiation work.

References

- Experimental Nuclear Reaction Data (EXFOR), Database Version of 2017-09-04, Nuclear Data Services. https://www-nds.iaea. org/
- M.M. Rahman, S.M. Qaim, Excitation functions of some neutron threshold reactions on isotopes of molybdenum. Nucl. Phys. A 435, 43–53 (1985). https://doi.org/10.1016/0375-9474(85)90301-
- M. Bostan, S.M. Qaim, Excitation functions of threshold reactions on Sc⁴⁵ and Mn⁵⁵ induced by 6 to 13 MeV neutrons. Phys. Rev. C 49, 266–271 (1994). https://doi.org/10.1103/physrevc.49. 266
- F. Cserpák, S. Sudár, J. Csika et al., Excitation functions and isomeric cross section ratios of the Cu63(n,α)60Com, g, Cu65(n,α)62Com, g, and Ni60(n, p)60Com, g processes from 6 to 15 MeV. Phys. Rev. C 49, 1525–1533 (1994). https://doi.org/10. 1103/physrevc.49.1525
- C.D. Nesaraja, S. Sudár, S.M. Qaim, Cross sections for the formation of 69Znm, g and 71Znm, g in neutron induced reactions near their thresholds: effect of reaction channel on the isomeric cross-section ratio. Phys. Rev. C 68, 024603 (2003). https://doi. org/10.1103/physrevc.68.024603
- V.E. Levis, K.J. Zieba, A transfer standard for d + T neutron fluence and energy. Nucl. Instrum. Methods 174, 141–144 (1980). https://doi.org/10.1016/0029-554X(80)90422-X
- NuDat 2.6 (selected evaluated nuclear structure data), Decay Radiation database version of 2017-5-18, IAEA Nuclear Data Services. https://www-nds.iaea.org/
- 8. R.B. Firestone, V.S. Shirley, *Table of Isotopes* (Wiley, New York, 1996)
- X.Z. Kong, R. Wang, Y.C. Wang et al., Cross sections for 13.5–14.7 MeV neutron induced reactions on palladium isotopes. Appl. Radiat. Isot. 50, 361–364 (1999). https://doi.org/10.1016/ s0969-8043(97)10144-0
- M. Wagner, H. Vonach, A. Pavlik et al., Evaluation of cross sections for 14 important neutron-dosimetry reactions. Phys. Daten Phys. Data 13–5, 183 (1990)
- A.A. Filatenkov, Neutron activation cross sections measured at KRI in neutron energy region 13.4–14.9 MeV. USSR report to the INDC. No. 0460, Austria (2016). https://www-nds.iaea.org/ publications/indc/indc-ccp-0460-rev.pdf
- V. Semkova, A.J.M. Plompen, D.L. Smith, Measurement of the ⁵⁸Ni(n,t)⁵⁶Co, ⁵⁹Co(n,p)⁵⁹Fe, and ⁶³Cu(n,α)⁶⁰Co Reaction Cross Sections from 14 to 20 MeV. In *Conference on Nuclear Data for Science and Technology, AIP Conference Proceedings* **769**, 1019 (2005). https://doi.org/10.1063/1.1945179
- J.W. Meadows, D.L. Smith, L.R. Greenwood et al., Measurement of fast-neutron activation cross sections for copper, europium, hafnium, iron, nickel, silver, terbium and titanium at 10.0 and 14.7 MeV and for the Be(d, n) thick-target spectrum. Ann. Nucl. Energy 23, 877–899 (1996). https://doi.org/10.1016/0306-4549(95)00068-2

- Y. Ikeda, C. Konno, A. Kumar, et al., Summary of activation cross sections measurements at FNS. In *Conference IAEA Nuclear Data Section report to the INDC*. 19–23 June, 1995. INDC(NDS)-342, 19–28.(1996). http://www-nds.iaea.org/pub lications/indc/indc-nds-0342/
- C. Konno, Y. Ikeda, K. Oishi, et al., Activation Cross section measurements at neutron energy from 13.3 to 14.9 MeV. Japan Atomic Energy Agency (JAERI) Reports 1329 (1993). http:// www-nds.iaea.org/EXFOR/22637.005
- J. Csikai, C.M. Buczko, R. Pepelnik et al., Activation crosssections related to nuclear heating of high Tc superconductors. Ann. Nucl. Energy 18, 1–4 (1991). https://doi.org/10.1016/0306-4549(91)90030-2
- H.L. Lu, W.R. Zhao, W.X. Yu, et al., Activation cross section of ⁶³Cu (n,alpha) ⁶⁰Co reaction. Chin. J. Nucl. Phys. **12**, 373 (1990). http://www-nds.iaea.org/EXFOR/31407.002
- Y.C. Wang, J.Q. Yuan, Z.L. Ren, et al., The cross section measurement for the ⁶³Cu (n,a) ⁶⁰Co reaction. HEP & NP. 14,919 (1990). http://www-nds.iaea.org/EXFOR/32576.002
- L.R. Greenwood, Recent research in neutron dosimetry and damage analysis for materials irradiations. In *Conference American Society of Testing and Materials Reports* 956, 743 (1987). http://www-nds.iaea.org/EXFOR/12977.016
- W. Mannhart, D. Schmidt, Measurement of neutron activation cross sections in the energy range from 8 MeV to 15 MeV. Rept: Phys. Techn. Bundesanst., Neutronenphysik Reports 53 (2007). http://www-nds.iaea.org/EXFOR/22976.027
- 21. M.A. Hafiz, Measurement of excitation functions of the reactions ⁵⁸Ni(n,2n) ⁵⁷Ni and ⁶⁵Cu(n,2n)⁶⁴Cu in the neutron energy range 13.90-14.71 MeV. Indian J. Pure Appl. Phys. **45**, 425 (2007). http://www-nds.iaea.org/EXFOR/31598.003
- 22. A.K.M. Harun, M.U. Khandaker, M.N. Islam et al., Measurement of cross sections for the reactions ⁶⁵Cu(n,alpha)^{62g}Co, ⁶⁵Cu(n,p)⁶⁵Ni, ⁶⁵Cu(n,2n)⁶⁴Cu, ⁵⁸Ni(n,2n)⁵⁷Ni and ⁵⁸N(n, p)^{58m+g}Co at 14.8 MeV neutron energy. Indian J. Phys. **80**, 737 (2006). http://www-nds.iaea.org/EXFOR/31600.006
- 23. Y. Ikeda, D.L. Smith, Y. Uno et al., New Measurement of activation cross section for the ⁶³Cu (n,2n) ⁶² Cu and ⁶⁴Cu (n,2n) ⁶³Cu reactions at energy range of 13.3 to 14.9 MeV. In *Conference on Nuclear Data for Science and Technology*, 2,944 (1994). http://www-nds.iaea.org/EXFOR/22547.004

- 24. N.I. Molla, R.U. Miah, S. Basunia et al., Cross sections of (n,p), (n,a) and (n,2n) processes on scandium, vanadium, cobalt, copper and zinc isotope in the energy range 13.57–14.71 MeV. In *Conference on Nuclear Data for Science and Technology*. 2,938 (1994). http://www-nds.iaea.org/EXFOR/31449.009
- A. Ercan, M.N. Erduran, M. Subasi et al., 14.6 MeV neutron induced reaction cross section measurements. Nucl. Data Sci. Technol. (1992). https://doi.org/10.1007/978-3-642-58113-7_110
- Y. Ikeda, C. Konno, K. Oishi, et al., Activation cross section measurements for fusion reactor structural materials at neutron energy from 13.3 to 15.0 MeV using FNS facility. JAERI Reports 1312 (1988). http://www-nds.iaea.org/EXFOR/22089.050
- J.W. Meadows, D.L. Smith, M.M. Bretscher et al., Measurement of 14.7 MeV neutron-activation cross sections for fusion. Ann. Nucl. Energy 14, 489–497 (1987). https://doi.org/10.1016/0306-4549(87)90066-1
- F. Ghanbari, J.C. Robertson, The ⁶³Cu(n,2n)⁶²Cu and ⁶⁵Cu(n,2n)⁶⁴Cu cross sections at 14.8 MeV. Ann. Nucl. Energy 13, 301–306 (1986). https://doi.org/10.1016/0306-4549(86)90085-x
- 29. G. Winkler, T.B. Ryves, Precise measurement of cross sections for the reaction ⁶⁵Cu(n,2n)⁶⁴Cu in the 14 MeV region and simultaneous reevaluation of some important cross sections at 14.70 MeV. Ann. Nucl. Energy **10**, 601–606 (1983). https://doi. org/10.1016/0306-4549(83)90063-4
- 30. J. Csikai, Study of excitation functions around 14 MeV neutron energy. In *Nuclear Data for Science and Technology*, pp. 414–417 (1983). https://doi.org/10.1007/978-94-009-7099-1_ 89
- Y. Uwamino, H. Sugita, Y. Kondo et al., Measurement of neutron activation cross sections of energy up to 40 MeV using semimonoenergetic p-Be neutrons. Nucl. Sci. Eng. 111, 391–403 (1992). https://doi.org/10.13182/nse111-391
- R. Pepelnik, B. Anders, B.M. Bahal, et al., 14 MeV neutron activation cross sections. Rept: Ges.Kernen.-Verwertung, Schiffbau and Schiffahrt E86, 29 (1986). http://www-nds.iaea. org/EXFOR/21999.015
- J.P. Gupta, H.D. Bhardwaj, R. Prasad, Pre-equilibrium emission effect in (n,p) reaction cross section at 14.8 MeV. Pramana 24, 637–642 (1985). https://doi.org/10.1007/BF02846733