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Abstract In biological systems, conformational transfor-

mations of nucleic acids play critical roles in genetic reg-

ulation. However, it remains a tricky task to design and

optimize specific labeling strategies to track these changes.

In this study, we exploited an intercalating fluorescent dye,

GelRed, to characterize different DNA structures. We

studied the correlation between fluorescence intensity and

DNA structural properties. We showed that single-stranded

DNAs with predicted self-folded secondary structures

show much stronger fluorescence than those without such

structures. For double-stranded DNAs, we observed that

fluorescence intensity is positively correlated to their GC

content. We also demonstrated that GelRed can be used to

monitor DNA conformational changes upon temperature

variations in real time. Based on these findings, we con-

cluded that the fluorescence intensity of a GelRed-stained

DNA structure has a good correlation with its thermosta-

bility in the form of a change in Gibbs free energy.
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1 Introduction

In living organisms, conformational transformation of

nucleic acids, especially genomic DNA, plays a vital role

in genetic regulation and, thus, in biological functions such

as growth and reproduction [1–6]. In the realm of DNA

nanotechnology, a variety of nanodevices/nanomachines

empowered by DNA conformational transformations have

also been developed, showing great promise in smart

theranostic applications [7–16]. Therefore, it is funda-

mentally important to develop methods for real-time

monitoring of DNA conformational changes. In recent

years, much progress has been made to develop fluores-

cence/luminescence platforms specifically responsive to

structural alterations [17–23]. For example, dual-labeling

strategies based on Förster fluorescence resonance energy

transfer (FRET) have been widely exploited [24–27].

Because the FRET effect is highly sensitive to the spatial

distance between labeled sites, one can obtain real-time

information about conformational changes by monitoring

the fluorescence variations resulting from FRET [28–30].

However, it remains a tricky task to choose proper sites on

target structures for FRET labeling; thus, case-by-case
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optimization is often required to ensure the effectiveness of

FRET responses [31].

On the other hand, fluorescent intercalating dyes, which

emit fluorescence when intercalated into double helices of

nucleic acids, provide a general and label-free way to

characterize nucleic acid structures. For example, ethidium

bromide (EtBr), a classic intercalating dye, has been rou-

tinely used in nucleic acid analysis applications, such as

imaging of electrophoresis, assay of DNA damage in cells,

and studies on interactions between DNA and drugs

[32–36]. More recently, it has been used in detecting DNA

mutations with the aid of graphene oxide [37] and in

monitoring dynamic structural changes of DNA nanos-

tructures [38]. Nevertheless, EtBr has been proven to be

mutagenic by Ames tests [39] and is, thus, potentially

harmful to its users and the environment.

GelRed is an updated version of EtBr. A GelRed

molecule is composed of two EtBr molecules conjugated

with a linker [40]. It shows higher sensitivity in nucleic

acid characterization, while exhibiting much less genetic

toxicity compared to EtBr. Thus, as a substitute to EtBr,

GelRed has been widely used in qualitative and semi-

quantitative analyses of nucleic acids [41–44]. However, as

far as we know, there have been few studies on tracking

conformational changes of DNA structures using GelRed.

Here, we used GelRed to characterize different DNA

structures, including single-strand (ss-) DNAs with or

without self-folded secondary structures and double-strand

(ds-) DNA with different base compositions. We analyzed

the fluorescence intensity from these GelRed-stained DNA

structures. We also monitored the fluorescence dynamics of

a DNA structure upon cyclic temperature variations. We

found that the florescence intensity of a GelRed-stained

DNA structure has a good correlation with its predicted

Gibbs free energy, which can be utilized in studying DNA

conformational changes.

2 Materials and methods

2.1 Materials

GelRed was purchased from Biotium. All ssDNAs were

purchased from Sangon Biotech (Shanghai, China). Tris,

EDTA-2Na�2H2O, and Mg(CH3COOH)2�4H2O were all

purchased from Sinopharm Chemical Reagent Company

(Beijing, China). The 20-bp DNA marker was purchased

from Takara (Kusatsu, Japan).

2.2 Preparation and UV quantification DNA

structures

The dsDNAs in this study were obtained by annealing

complementary ssDNAs of equimolar amounts (1 lM) in

1 9 TAE buffer, which were then heated to 95 �C and

slowly cooled to 25 �C in 5.5 h. All the ssDNA was

quantified using a UV–visible Spectrophotometer (Agilent

Cary 100 Bio, Palo Alto, USA) with a dilution ratio of 100

in the 1 9 TAE buffer [40 mM Tris, 2 mM EDTA-

2Na�2H2O, and 12.5 mM Mg(CH3COOH)2�4H2O]; then,

the molar concentration was calculated using the formula

C = (A260 - A330)/(e 9 M) 9 D, where C is the molar

concentration of ssDNA; A260 and A330 are the absorbance

of DNA at the wavelength of 260 nm and 330 nm,

respectively; e is the extinction coefficient of DNA; M is

the molecular weight of the ssDNA; and D is the dilution

ratio.

2.3 Fluorescence spectroscopy of GelRed-stained

DNA

GelRed was diluted with 1 9 TAE buffer to a working

solution of 20 9. Then, 90 lL of DNA structures of dif-

ferent concentrations was mixed with 10 lL 20 9 GelRed

working solution. The fluorescence was read immediately

using a multi-mode microplate reader (Bio-Tek Synergy

MX H1, USA) and fluorospectrophotometer (Edinburgh

FS920, Livingston, Britain) with the excitation wavelength

of 303 nm and the emission wavelength of 600 nm.

For temperature-dependent fluorescence dynamic anal-

ysis, the fluorescence intensity of the GelRed-stained DNA

samples was monitored at 600 nm with the excitation

wavelength at 520 nm using a real-time PCR instrument

(StepOnePlus, Life Technologies, Singapore). The samples

were held at 10 �C for 10 min and then heated to 95 �C at a

heating rate of 1 �C/min. The melting temperature (Tm)

values of the complexes were calculated by obtaining the

main peak value from derivative melting curves, which are

the first derivatives of the original fluorescence diagram.

2.4 Gel electrophoresis analysis

Different volumes (3 lL, 2 lL, 1 lL, 0.5 lL, 0.25 lL,
and 0.1 lL) of a 20-bp DNA marker (100 lg/mL) were

separately loaded in a 10% polyacrylamide gel (with TAE

buffer) and stained with 1 9 GelRed in 1 9 TAE buffer

for 20 min. Electrophoresis was carried out in 1 9 TAE

buffer under 120 V for 1 h.
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3 Results and discussion

3.1 Dyeing mechanism of GelRed

Figure 1a shows the chemical structures of EtBr and

GelRed, respectively [40]. GelRed can be regarded as a

dimeric EtBr (with Br- replaced by I-) connected by a

hydrocarbon linkage, which has been proven to be a bis-

intercalator [23, 40, 41, 45]. The schematic in Fig. 1b

illustrates the possible manner of its intercalation into a

DNA double helix.

3.2 Fluorescence quantification of dsDNA

First, we tested the capability of GelRed to quantify

DNA structures. Here we used the 20-bp DNA ladder as

the sample, which can be regarded as a mixture of dsDNAs

of varying lengths (ranging from 20 to 500 bp). We con-

ducted electrophoresis with a gel loaded with different

quantities of the sample. The resulting image (Fig. 2a)

shows that along with the decline of DNA quantity (from

left to right, 300 ng, 200 ng, 100 ng, 50 ng, 25 ng, and

12.5 ng), the fluorescence intensity dropped correspond-

ingly. We quantified the band intensity from the gel image

(Fig. 2b) and found that it linearly correlated to the quan-

tity of DNA (Fig. 2c). The linear regression function is

y = 141.5x - 10.9 (R2 = 0.995), where y is the fluores-

cence intensity (arbitrary unit, or a.u.) obtained from the

gel bands and x is the quantity of DNA. These results

indicate that the amount of dsDNA structures can be well

quantified by measuring their GelRed fluorescence

intensity.

3.3 Discrimination of different DNA structures

with GelRed

We investigated the fluorescence variations among dif-

ferent DNA structures. We designed two ssDNAs with the

same length (20 nt) but of different sequences. According

to the predictions from NUPACK, one of them can form a

self-folded secondary structure (referred to as stem-loop

ssDNA, with predicted Gibbs free energy change DG =

- 3.83 kcal/mol, under 25 �C) and the other cannot (re-

ferred to as linear ssDNA). The fluorescence spectroscopic

measurements (Fig. 3a) showed that the GelRed-stained

stem-loop ssDNA showed * 4.8-fold stronger fluores-

cence compared to the linear one of equal concentration.

Meanwhile, the dsDNA of equal length and molar con-

centration showed much stronger fluorescence compared to

both ssDNAs (* 3.4-fold stronger than that of the stem-

loop ssDNA and * 16.3-fold stronger than that of the

linear ssDNA). Considering these results and the mecha-

nism of GelRed staining, we can deduce that DNA struc-

tures with more paired bases can be intercalated with more

GelRed molecules, thus showing stronger fluorescence.

Here, the fully complementary dsDNA has 20 paired bases,

the stem-loop ssDNA has 3 paired bases according to the

prediction, and the linear ssDNA has no paired bases; their

fluorescence intensities indeed matched this relationship.

Therefore, for different DNA structures of equal molar

concentration, GelRed can be used as an indicator for the

extent of base paring in DNA intramolecular self-folding or

intermolecular hybridization.

We then asked whether GelRed has a bias for the base

pair compositions of dsDNAs. We synthesized four

dsDNAs (ds1–4) that were 20 bp but had different GC

contents (0%, 15%, 30%, and 50%, respectively, as listed

in Fig. 3b). As we know, a G-C base pair comprises three

hydrogen bonds and is thus more thermostable than an A-T

base pair with two hydrogen bonds. The fluorescence

measurements (Fig. 3b) revealed that the dsDNAs with

higher GC content showed higher GelRed fluorescence

intensity. The dsDNA with a GC content of 50% (ds4) gave

a * threefold higher fluorescence intensity compared to

that without a G–C base (ds1). We hypothesize that this is

because high GC content leads to a more

Fig. 1 a Chemical structure of EtBr (left) and GelRed (right). b Schematics of the intercalation of GelRed into the DNA double helix (Color

online)
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thermostable double-helix structure, and thus benefits the

intercalation of GelRed molecules. Based on the above

results, we can conclude that the fluorescence intensity of a

GelRed-stained DNA structure has a correlation to the

thermostability of its secondary structure (including

ssDNA self-folding or dsDNA base paring). This

Fig. 2 a Polyacrylamide gel electrophoresis of 20-bp DNA marker

(from left to right, 300 ng, 200 ng, 100 ng, 50 ng, 25 ng, and 12.5 ng,

respectively, loaded in a 10% polyacrylamide TAE gel and stained

with 1 9 GelRed in 1 9 TAE buffer for 20 min). b Fluorescence

intensities quantified from the 20-bp bands of different quantities.

c Linear regression of fluorescence intensity versus the quantity of the

20-bp DNA

Fig. 3 Fluorescence spectrograms of GelRed-stained a stem-loop ssDNA; b dsDNAs. Concentration, 1 lM. Tables (right panel): the sequences

and DG (predicted by NUPACK) of the DNA structures (Color online)
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thermostability can be quantified in the form of Gibbs free

energy change (DG) from the linear ssDNAs to the

resulting secondary structures or dsDNAs. In our study,

DNA structures with more negative DG (more ther-

mostable) indeed showed stronger GelRed fluorescence,

which supported this hypothesis. We further analyzed the

fluorescence of the component ssDNAs of the four

dsDNAs that have different sequences (no predicted sec-

ondary structures, predicted DG = 0). Based on the results

(Fig. S1 in Supporting Information), they all showed neg-

ligible fluorescence regardless of their sequence, suggest-

ing that the fluorescence intensity is indeed determined by

paired bases (thermostability), rather than by different

DNA sequences.

Next, we compared the fluorescence resulting from EtBr

and GelRed staining. According to the results (Fig. S2 in

Supporting Information), the GelRed-stained ds4 structure

exhibited * 14-fold stronger fluorescence compared to

linear ssDNAs, while the EtBr-stained ds4 structure

showed only * 7-fold fluorescence enhancement, indi-

cating that GelRed leads to higher resolution in discrimi-

nating different DNA structures. Moreover, considering

that EtBr has proven to be mutagenic in Ames tests,

GelRed would be a good alternative.

To test the stability and selectivity of GelRed toward

DNA in physiological environments, we incubated DNA

structures with GelRed in cell culture media minimum

essential medium (MEM) containing 10% (v/v) fetal

bovine serum (FBS). By comparing their fluorescence

spectra (Fig. S3 in Supporting Information), we found the

correlation between GelRed fluorescence intensity and

DNA structures was not severely interfered with, suggest-

ing the potential of GelRed to deal with real biological

samples.

3.4 Real-time monitoring of DNA conformational

transformations

Having established the correlation between structural

thermostability and GelRed fluorescence, we further

demonstrated the use of GelRed in real-time monitoring of

DNA conformational changes upon cyclic temperature

variations. Here, we treated the GelRed-stained DNA

structures with controlled temperature changes and recor-

ded the temperature-dependent dynamics of the fluores-

cence intensity using a real-time quantitative thermocycler.

As the temperature rose, the dsDNA structure (ds4) and the

stem-loop ssDNA structure were expected to transform into

linear strands (Fig. 4a). The observation (Fig. 4b) showed

Fig. 4 a Schematic of

temperature-dependent

conformational transformation

of the dsDNA (ds3) and the

stem-loop ssDNA.

b Temperature-dependent

GelRed fluorescence dynamics

of ds3 and the stem-loop

ssDNA. c Derivative melting

curves indicating melting

temperatures (Tm) of ds3 and

the stem-loop ssDNA (Color

online)
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that, along with the rising temperature, the fluorescence

intensity of both structures decreased. When the tempera-

ture passed a certain point, the fluorescence dropped more

steeply, suggesting the melting of the secondary structures.

Therefore, by derivation, we obtained the melting curves

(Fig. 4c) of both structures. The main peaks of the melting

curves indicated that the measured melting temperature

(Tm) of ds3 is * 69 �C, while the Tm of the stem-loop

ssDNA structure is * 41 �C. The results were close to

those measured using SYBR Green I (71 �C and 42 �C,
respectively, see Table S1 in Supporting Information),

another widely used intercalating dye for quantitative

thermostability analysis of nucleic acids [46]. These results

indicate that GelRed fluorescence can sensitively respond

to the conformational changes of DNA structures in a real-

time and label-free manner, which shows promise for

biological research and DNA nanotechnology.

4 Conclusion

In this study, we used an intercalating dye, GelRed, to

characterize different DNA structures, including ssDNAs

with or without secondary structures and dsDNAs with

different base compositions. We showed that GelRed can

help discriminate these structures in a quantitative manner.

We found that the fluorescence intensity of a GelRed-

stained DNA structure is positively correlated to the ther-

mostability (or Gibbs free energy change) of its secondary

structure. More thermostable secondary structures (e.g.,

ssDNAs with stem-loop structures or dsDNAs with higher

GC contents) lead to stronger fluorescence intensities. We

also demonstrated that by using GelRed, the dynamics of

DNA conformational changes can be monitored in real

time. In future studies, we will further explore the use of

GelRed in investigating other important nucleic acid

structures (e.g., chromatin or G-quadruplex) [47]. We also

envision that the combination of GelRed with advanced

characterizing technologies (e.g., temperature-gradient

circular dichroism analysis [48] or high-resolution melting

techniques [49]) may help facilitate studies on more com-

plex nucleic acid structures.
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