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Abstract In this paper, we study how pixel size influences

energy resolution for a proposed pixelated detector—a high

sensitivity, low cost, and real-time radon monitor based on

a Topmetal-II� time projection chamber (TPC). This

monitor was designed to improve spatial resolution for

detecting radon alpha particles using Topmetal-II� sensors

assembled by a 0.35 lm CMOS integrated circuit process.

Owing to concerns that small pixel size might have the side

effect of worsening energy resolution due to lower signal-

to-noise ratio, a Geant4-based simulation was used to

investigate the dependence of energy resolution on pixel

sizes ranging from 60 to 600 lm. A non-monotonic trend in

this region shows the combined effect of pixel size and

threshold on pixels, analyzed by introducing an empirical

expression. Pixel noise contributes 50 keV full-width at

half-maximum energy resolution for 400 lm pixel size at

1–4r threshold that is comparable to the energy resolution

caused by energy fluctuations in the TPC ionization pro-

cess (� 20 keV). The total energy resolution after com-

bining both factors is estimated to be 54 keV for a pixel

size of 400 lm at 1–4r threshold. The analysis presented in

this paper would help choosing suitable pixel size for

future pixelated detectors.

Keywords Geant4 � Energy resolution � Pixel size � Radon
monitor � Topmetal

1 Introduction

222Rn is a well-known air carcinogen. When radon gas is

inhaled, alpha particles emitted by 222Rn and its progenies

will interact with biological tissue in the lungs leading to

DNA damage. It is reported by the World Health Organi-

zation (WHO) that long-term lung cancer risk rises by

about 20% per 100 Bq=m3 in indoor radon exposure [1].

WHO proposed a reference level of 100 Bq=m3 to mini-

mize the health hazards due to indoor radon exposure,

while 200 Bq=m3 is advocated in many countries as an

action level [1]. Indoor radon gas can be released naturally

from soil adjacent to the foundation, construction materi-

als, and tap water when it is supplied from groundwater in

radium-bearing aquifers [2]. A long enough 3.8-day half-

life (compared with its short-lived progenies) and the

unreactive chemical property of noble gases enables 222Rn

to easily transmit and concentrate in enclosed spaces, and

even be inhaled into the human body [3]. To ensure a safe

living environment, it is essential to monitor 222Rn con-

centration during and after constructions. It is then neces-

sary to develop an inexpensive, portable, and real-time

radon monitor for household and construction supervision.

Radon detectors are categorized according to the time

resolutions required for their sampling and analysis
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including integrating, grab-sampling, and continuous [4].

Integrating radon detectors (such as SSNTD) only provide

monthly or annually averaged radon concentrations, while

grab-sampling radon detectors (such as the ‘‘Lucas Cells’’)

take several hours to reach radioactive equilibrium between
222Rn and its progenies for the desired accuracy. Con-

versely, continuous radon detectors can be used to obtain
222Rn concentrations in real time. Commercial products

including RAD7 (DURRIDGE, USA), Radon Scout

(SARAD GmbH, Germany), and CRM (BARC, India)

have sensitivities less than 2 CPH=ðBq=m3Þ [4]. Recent

developments in continuous detectors have focused on

obtaining very high sensitivities at relatively low costs via

semiconductor schemes [5, 6]. Novel detection approaches

such as radioluminescence light have also been proposed

but their sensitivities are less than those of commercial

products [7].

CMOS-based radon detectors that are also promising in

cost reduction while retaining high sensitivity have bene-

fited from standard low-cost CMOS foundry processes with

high spatial resolution. A bunch of CMOS-based detectors

[8–11] have been developed and have shown competitive

performances. In these designs, 222Rn or its progenies are

collected either passively, or actively using aerosol and

electrostatic concentrators, and they are detected by their

emitting alpha particles. Time projection chambers (TPCs)

have been applied to further improve spatial resolution by

making time slices for building up 3D images. Companies

include XIA have used this technique to achieve a sensi-

tivity of several alphas=m2=day for solid materials using

pixel sensors of 12 mm on edge [12].

Recently, a pixel sensor called Topmetal-II� has been

developed in the Pixel Lab at Central China Normal

University [13]. This sensor was assembled by the standard

0.35 lm CMOS integrated circuit process with pixel noise

lower than 15 e�. This low noise property enables the

sensor to reduce its pixel size to take full advantage of the

spatial resolution of micro pixels.

Instead of relying on the assumption of equilibrium

between 222Rn and its progenies, the designed Topmetal-

II� TPC radon monitor distinguishes alpha particles from

different radioactive elements by combining high-precision

3D imaging with satisfactory energy resolution. Owing to

its high sensitivity, it might be able to determine 222Rn

concentrations by only counting alpha particles from 222Rn

to achieve the required precision. As it does not count

alpha particles from radioactive progenies of 222Rn, it is not

necessary to wait for hours for radioactive equilibrium to

be reached; thus, it could achieve speedy responsiveness.

This provides additional robustness under weather condi-

tions where radioactive equilibrium cannot be reached,

such as under atmospheric turbulence or relatively high

humidity [4]. It has been reported that precipitation most

likely removes 218Po, 214Pb, 214Bi, but not 222Rn [4].

However, while spatial resolution can be increased using

smaller pixels, it might also affect the energy resolution.

Therefore, we want to use a Geant4-based [14] simu-

lation method to explore the extent to which changing the

pixel size can affect the energy resolution of Topmetal-II�

TPC radon detectors. In addition, a non-monotonic trend of

energy resolution at small pixel-sized regions is analyzed

in detail.

2 Alpha-detecting Topmetal-II� TPC

Figure 1 is a schematic of radon alpha-detecting Top-

metal-II� TPC. The 20� 20� 20 cm3 cubic volume

contains an air sample, with Topmetal-II� pixel sensor

arrays placed on the bottom plane. A unique character of

Topmetal-II� sensors is that its top material is a metal

(topmetal) exposed to air, which can serve as an electrode

in electric field generation. Another advantage is that the

Topmetal-II� sensor is charge sensitive. It can detect both

positive and negative charges without requiring free elec-

trons to induce a gas avalanche gain. This is favorable for

radon detection, because most of the free electrons created

by radon alpha particles will be captured by electronegative

molecules in the air during their drift when the drift dis-

tance is greater than the mean free path of the electron [15].

An air supplier is placed on the inlet to provide clean air to

the volume. Potentials of - 2 kV and 0 V are applied to the

top plane and topmetal to create an upward uniform electric

field of 100 V/cm in between. Within the volume, 222Rn

decays to 218Po, emitting alpha particles with an energy of

5489 keV. The emitted alpha particles then interact with air

molecules to produce ionization electrons, most of which

will be attached to electronegative molecules (such as

oxygen molecules) during their drift. These negative ions

are collected by charge sensitive Topmetal-II� pixel sensor

arrays, from which their charge signals are transferred into

detectable pulse signals. To simplify our simulation, the

Fig. 1 Schematic of radon alpha-detecting Topmetal-II� TPC
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more accurate ‘‘ion drift’’ model is replaced by an ‘‘elec-

tron drift’’ model. To make this conversion, we need to

adjust the sampling rate for the corresponding drift veloc-

ity, because ion drift velocity is smaller than electron drift

velocity by three to four orders of magnitude [16]. Details

for this conversion process will be described in Sect. 3.

Figure 2 is an example of a Topmetal-II� pixel sensor

array simulation signal on the bottom charge receiving

plane (x-y plane). The size of each pixel is 100 lm on

edge, and a 2r threshold is applied individually to each

pixel. Here, r is defined as the electronic noise on a

pixel, which is about 15 e� taken from the test result of

Topmetal-II� pixel sensor in [13]. In this paper, the pixel

size is characterized by the length of the side of the

square pixel. The right color bar shows the signal

intensity scale in millivolts. Though the signal in our

simulation is in unit of energy (kiloelectronvolt), a

charge conversion gain measured in [13] makes it pos-

sible to convert energy to voltage. The average minimum

ionization energy in the air is 0.0337 keV, i.e., 1 keV

energy deposition in the air ionizes about 30 e�. Since
the Topmetal-II� charge conversion gain is 32:8 e�=mV

[13], the conversion between kiloelectronvolt and milli-

volt is almost 1:1.

In Fig. 2, an alpha particle of 5489 keV energy is shot

from the center parallel to the x-y plane along the x axis. It

can be seen that the length of this ionization track is

approximately 45 mm. To ensure that the full ionization

track leaves the volume, an inner space of 45 mm=2 ¼
22:5 mm close to the boundary is eliminated for the rough

estimation of sensitivity. This produces a central effective

detection volume of about 3.72 L. If a counting efficiency

of 100% can be achieved in this 3.72-L central detection

volume, it will produce a maximum sensitivity of

� 13:4 CPH=ðBq=m3Þ (3:72 L ¼ 0:00372
m�3 � 3600 s

h
� s�1

Bq ¼
13:4 CPH=ðBq=m3ÞÞ:

This large prototype has been used here to ensure

enough data points within a short measurement time. The

size of the volume might be reduced to improve portability

when we achieve a satisfactory sensitivity. The space

between the central detection volume and the boundary can

also detect alpha particles, but with less accuracy as most

of the particles are cut off by the boundary.

3 Simulation process

First, a Geant4-based package generates 5489 keV alpha

particles inside the volume. Geant4 is a Monte Carlo

framework for the simulation of particle passage through

matter. To speed up the analysis, the cut-off energy is

chosen to be greater than the minimum energy required to

produce an electron–ion pair in the air (W value), and this

change does not have much effect on the shape and length

of the ionization tracks produced by alpha particles. This is

because the density of the ionized electrons is sufficiently

high, thereby enabling ionized electrons clustering in series

to represent the curves of the tracks. After creating a track,

each ionization cluster is divided by the W value to obtain

the real number of ionized electrons. For simplicity, the

ionized electrons are assumed to be spread uniformly

inside each cluster.

Assuming that the diffusion of ionized electrons inside

the TPC follows a 3D diffusion equation, the expected

radius of an electron cluster after diffusion is

r ¼ r0 þ
ffiffiffiffiffiffiffiffi

6Dt
p

; ð1Þ

where r0 is the initial radius of the cluster, D is electron

diffusion coefficient, and t is the electron drift time. The

electron drift time is calculated as the total drift distance

divided by the drift velocity.

The electron diffusion coefficient D and electron drift

velocity can be simulated using the Magboltz package [17].

The air parameters are set up as a gas mixture containing

78:08% of N2, 20:95% of O2, 0:93% of Ar, and 0:04% of

CO2. Under a vertical electric field of 100 V/cm, room

temperature (20 �C), and standard pressure (760.0 Torr), D

was found to be 47890:0 mm2=s while the electron drift

velocity was 4573000.0 mm/s. The sampling rate of the

TPC was set to 457300 Hz to give a spatial resolution of 1

mm in the direction perpendicular to the receiving plane (z-

direction). Such spatial resolution setting has been proved

to be feasible in the recognition of drifting alpha signals

from the experiment for detecting 241Am by Topmetal-II�

TPC in [13]. A sampling rate of 0:6636 ms � 1 ms was

used in that experiment, with an ion drift velocity of
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Fig. 2 Simulation signal above 2r threshold (original signal �2r) on
Topmetal-II� pixel sensor array for a single event (event_2) with

100 lm pixel size. The bottom left panel is an enlarged plot of the

signal (Color figure online)
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several mm/ms [16]; therefore, the corresponding spatial

resolution in the z-direction was about 1 mm.

To create signals similar to those expected from real

pixel sensors, a 2D grid was coded on the bottom plane,

with the size of each grid cell equal to that of a pixel. For

simplicity, we assumed that there were no gaps between

the sensors and thus the whole 20� 20 cm2 bottom plane

was sensitive to charges. Each electron was collected by

the corresponding pixel right under its spatial position

after diffusion. Gaussian noise with a mean value of 0 and

standard deviation r ¼ 15 e� was added onto each cell to

simulate electronic noise in the Topmetal-II� pixel sensor.

It was assumed that the energy of each electron is the

same when it reaches the bottom plane as when it was

created, neglecting the recombination and decomposition

of ions and electrons during the drifting process. The

effect of recombination and decomposition may not be

negligible for a real detector, but in this paper, we only

focus on the dependence of energy resolution on pixel

parameters such as size and threshold; therefore, the total

energy of the electrons was taken to be the same after the

diffusion as before. The fluctuation caused by the ion-

ization process will be counted as an independent factor

later in calculating the total energy resolution of the

pixelated detector.

The output signal of each pixel at each sampling time is

the original charge signal (O Signaln) minus the threshold

(T) placed on each pixel.

O Signaln ¼ Noisen þ eventEnergyn; ð2Þ

Signaln ¼
O Signaln � T; O Signaln [ T

0; Otherwise

�

; ð3Þ

where n runs along the corresponding ionization track. A

hit is then defined as a nonzero Signaln. We assume that a

track finding algorithm can be performed to separate tracks

with 100% efficiency. There are two main reasons for this

assumption. First, as we force the threshold on each pixel

to be[ 1r and less than the possible maximum signal on

the pixel, statistically, this causes � 84:2% of noises be

ruled out in areas that do not receive any external charge.

Second, the TPC time resolution provides 3D imaging of

an event, and thus, it further suppresses the noise. In par-

ticular, the detector will not mix the track of alpha from
222Rn with alpha from 222Rn’s direct short-lived progeny,
218Po (half-life 3.05 min), because the time of drifting the

farthest negative ions to the charge receiving plane is

200 mm 	 several mm=ms\0:2 s, which is much smaller

than 3.05 min.

To calculate the energy resolution, 2000 radon alpha

events are generated from the center of the detector volume

with the particle energy for each alpha equal to the 222Rn-

emitting alpha energy (5489 keV). The orientation of the

2000 tracks is all parallel to the bottom pixel plane,

because we want to maximize the number of hits so that the

fluctuation of the total signal will be most significant to

enable a good estimation of the energy resolution. After

applying Gaussian noise and energy threshold to each pixel

signal at each sampling time, the total signal (totalSignal)

is calculated by summing up signals of the same event

(Signaln). Figure 3 shows that a sample of 2000 events is

large enough to give a Gaussian-like shape to the distri-

bution of the totalSignal. A least square fit of the Gaussian

distribution is performed on the energy spectrum (Fig. 3

red curve), while the full width at half maximum (FWHM)

of the Gaussian distribution was used to characterize the

energy resolution. Meanwhile, for comparison and quality

control, we also calculated the sum of signals without

noises and threshold (eventEnergy), the sum of noises

without threshold (noiseSum), and the total signal that

deviated from the true energy of an event (lossEnergy) for

each event. The distribution of eventEnergy is a delta-

function mounted at 5489 keV as expected. In all these

plots, the totalSignal shifts to a smaller value relative to the

eventEnergy, and the degree of deviation is calculated as

lossEnergy.

totalSignal ¼
X

n

Signaln; ð4Þ

eventEnergy ¼
X

n

eventEnergyn; ð5Þ

noiseSum ¼
X

n

Noisen; ð6Þ

lossEnergy ¼
X

n

ðeventEnergyn � SignalnÞ; ð7Þ

where n ¼ 1. . . is the number of hits of one event.

Figure 3 shows the distributions for the above quantities

for different pixel sizes at 2r threshold, as well as Gaussian

fitting on the distribution of totalSignal.

cFig. 3 Distribution of total signal (totalSignal), total signal without

noises and threshold (eventEnergy), sum of noises without threshold

(noiseSum), and total signals that deviated from actual energy of an

event (lossEnergy) for 2000 events, with a 2r threshold, of pixel size

60 lm, 80 lm, 100 lm, 120 lm, 140 lm, 160 lm, 200 lm, and

400 lm. Gaussian fitting on the total signal is indicated by the red

curve over totalSignal. The fitting parameters as well as the statistical

parameters are listed in the box at the top right corner of each graph

(Color figure online)
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4 Simulation results

4.1 Energy resolution versus pixel size

The correlation between the energy resolution and pixel

size is shown in Fig. 4 (red squares, left axis scale). The

threshold is fixed at a typical value of 2r. Given that r is an

intrinsic property of a pixel that depends on the standard

foundry process and material, we assumed that r is inde-

pendent of the pixel size. The energy resolution shows a

general decreasing trend in FWHM for very large pixel

sizes, in addition to a non-monotonic behavior at small

pixel-sized regions due to two counterproductive effects.

Energy resolution is expected to be better for larger pixels,

because larger pixels receive stronger signals, leading to an

increase in the signal-to-noise ratio. Conversely, since a

signal is recorded only if it is larger than the threshold,

signals generated by larger pixels have higher probabilities

of passing the threshold, thus increasing the statistical

uncertainty and worsening the energy resolution. However,

for pixel sizes that are large enough ([ 200 lm in this

case), almost all signals are strong enough to pass the

threshold, leading to variations due to the second reason to

be much less effective. Therefore, the correlation retrieves

a monotonic decreasing trend at large pixel sizes.

The variations in energy resolution due to the second

reason can be illustrated by plotting the number of hits, i.e.,

the number of pixels that contain signals larger than the

threshold, with the pixel size (blue dots, right axis scale). In

addition, to describe this correlation, an empirical expres-

sion is introduced for the number of hits per event

n ¼ n0 þ
A

x2
; ð8Þ

where A is the total area that outputs nonzero signals, x

represents the pixel size, and n0 is a constant due to noise

fluctuations. A increases as pixel size increases, because

larger pixels receive stronger signals that is favorable to

enable the signals to pass the threshold. Thus, A can be

expressed as A ¼ A0 þ AS, where A0 is a constant at the

point where the increase starts. AS ¼ AL=ð1þ e�kðx�x0ÞÞ is
a raising logistic function with a limit value of AL, central

point of x0, and steepness of k. The limit AL is due to the

limited total sensing area on the charge-sensing plane for a

given event. Figure 4 shows that this expression fits well

with the simulation result for the number of hits with a

pixel size.

In addition, we carefully analyzed the effect of changing

pixel size on lossEnergy, because the mean of lossEnergy

will be used to calibrate totalSignal. As shown in Fig. 5,

the lossEnergy decreases as the pixel size increases. This is

because each pixel that has a signal will also contribute a

‘‘threshold’’ value that reduces the total energy. For a given

event, the total area that will be hit by the ionization

charges is fixed, and therefore, when the pixel size

increases, the number of pixels hit by the ionization char-

ges will decrease, causing less ‘‘threshold’’ contribution

and lossEnergy to approach 0. This is the main effect when

noise does not play a significant role in a signal. However,

when the pixel size is less than 100 lm, single pixel signals

are significantly small; therefore, noise will significantly

affect them. This is because decreasing pixel sizes implies

that more pixels and noises will be added. These

noises partially compensate the energy cut-off from

thresholds, resulting in a decrease in lossEnergy when pixel

size decreases in the small pixel-sized region (\100 lm in

this case). The turning point in Figs. 4 and 5 shows that for

a 2r threshold, a pixel size around 100�200 lm is a

boundary about whether noise becomes a dominated factor

in deforming the normal trend. In addition, we plot a

Gaussian sigma of noiseSum, where noiseSum is the sum of

0 0.1 0.2 0.3 0.4 0.5 0.6
pixel size / mm

0

20

40

60

80

100

120

140

en
er

gy
 re

so
lu

tio
n 

(F
W

H
M

) /
 k

eV

 / ndf 2χ  86.46 / 24
0n  12.01± 174.6 
LA  2.655± 148.6 

k  0.5614±  29.8 
0x  0.001166± 0.1803 
0A  0.2483±  2.98 

 / ndf 2χ  86.46 / 24
0n  12.01± 174.6 
LA  2.655± 148.6 

k  0.5614±  29.8 
0x  0.001166± 0.1803 
0A  0.2483±  2.98 

0

500

1000

1500

2000

2500

3000

nu
m

be
r o

f h
its

 p
er

 e
ve

nt

energy resolution (FWHM)

number of hits per event

Energy Resolution vs. Pixel Size

Fig. 4 Energy resolution with pixel size (red squares) and number of

hits per event with pixel size (blue dots), at 2r threshold. The blue

line represents the fitting line for the number of hits per event (Color

figure online)

0 0.1 0.2 0.3 0.4 0.5 0.6
pixel size / mm

0

20

40

60

80

100

120

140

si
gm

a 
of

 n
oi

se
S

um
 / 

th
re

sh
ol

d

0

500

1000

1500

2000

2500

3000

3500

4000
m

ea
n 

of
 lo

ss
E

ne
rg

y 
/ t

hr
es

ho
ld

sigma of noiseSum

mean of lossEnergy

Fig. 5 Mean of lossEnergy (red squares) and sigma of noiseSum

(blue dots) changing with pixel size, at 2r threshold (Color

figure online)

123

16 Page 6 of 9 M.-Y. Huang et al.



original Gaussian noises of all pixels without going through

threshold cuts. Since more pixels cause higher statistical

fluctuations, the Gaussian sigma for noiseSum is inversely

proportional to the pixel size.

4.2 Energy resolution versus threshold on pixel

The relationship between energy resolution with the

threshold on a pixel is shown in Fig. 6. Four typical pixel

sizes of 80 lm, 100 lm, 200 lm, and 400 lm were

examined. For pixel sizes of 80 lm and 100 lm, the

energy resolutions were significantly better at higher

thresholds; while for pixel sizes of 200 lm and 400 lm,

the energy resolutions nearly remained unchanged at all

thresholds. This is because while the pixel size is small,

noise on the pixel plays a major role in worsening the

energy resolution and increasing energy threshold can

reduce the noise. Another discovery is that there are several

intersecting points between lines, meaning that for the

same threshold and the same energy resolution, there exists

more than one choice of pixel size. Thresholds lower than

1r (the shaded area in Fig. 6) are excluded in our consid-

eration to ensure the effectiveness of the track finding

algorithm. Data points whose thresholds are too high also

have to be carefully excluded, otherwise the detector has a

potential risk of losing a signal. The maximum valid

threshold for each pixel size is roughly estimated using the

maximum signal recorded at 2r threshold. For example, in

Fig. 2, the maximum signal for 100 lm with a 2r threshold

(labeled ‘‘max signal’’) is observed at about 0.69 keV.

Therefore, the maximum signal before going through

the 2r threshold is 0:69 keVþ 1:011 keV (energy of 2r ¼
2� 15 electrons� 0:0337 keV per electron ¼ 1:011 keV),

which is 3:3r. Similarly, for 80 lm, the maximum signal

on a pixel is � 2:8r. Since the common threshold for all

pixels must be lower than the maximum signal of the pixel,

the maximum valid threshold for 80 lm and 100 lm is

2:8r and 3:3r, respectively. Taking this into consideration,

the last four data points for 80 lm and the last three data

points for 100 lm in Fig. 6 should be excluded from our

consideration. Using the same method of analysis for

200 lm and 400 lm, the maximum pixel signal is greater

than 7:5r, so all data points for 200 lm and 400 lm in

Fig. 6 are valid. Figure 7 shows how the maximum signal-

to-noise ratio for a pixel varies with pixel size for 10

events, before any threshold cut is applied. Some maxi-

mum signals are kicked to higher values owing to uneven

energy distribution on the signal receiving plane and the

competitive effect among neighboring pixels.

Among the valid data points (solid points in Fig. 6), we

see that noise on the Topmetal-II� pixel contributes an

energy resolution of about 50 keV FWHM for a pixel size

of 400 lm at 1�4r threshold. This contribution of energy

resolution due to pixel noise is comparable to the energy

resolution generated by energy fluctuations in the ioniza-

tion process (� 20 keV). Combining both of them as

independent factors, the total energy resolution is

� 54 keV.

5 Comparison with experiment for alpha detection
of 241Am

241Am emits alpha particles with an energy of 5486 keV

that is comparable to the radon alpha energy of 5489 keV,

and therefore, the simulation result for 222Rn alpha parti-

cles should not deviate too much from the experimental

alpha detection for 241Am. Gao et al. [18] show an

experiment for detecting alpha particles emitted by 241Am

using Topmetal-II� TPC with a pixel size of 83 lm. The

work shown in the paper at the current stage did not sum up

the energy of each alpha track on pixels, but we can
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estimate the maximum signal from the detection graph

(Fig. 14 in [18]) that is around 4 mV. In Fig. 7, the max-

imum signal for a pixel size of about 83 lm is 2 to 5r.
Since 1r is 15 � 0:0337 keV ¼ 0:5055 keV �
0:5055 mV (the conversion between kiloelectronvolts and

millivolts is almost 1:1 from analysis in Sect. 2), the

maximum signal for radon alpha is 1 to 2.5 mV that is close

to the maximum signal from the above experiment for
241Am alpha. This deviation is largely due to the differ-

ences in the experimental setup in [18]. In this experiment,

alpha particles travel through a small hole in the upper

plane; therefore, most of them will go out almost perpen-

dicular to the bottom charge-sensing plane. Even if the

longest alpha track is chosen, it still has a very large

inclination that will deposit more energy compared to the

parallel track in the simulation.

6 Summary and outlook

We studied how pixel size influences energy resolutions

for Topmetal-II� pixelated radon detector when the pixel

size is relatively small, using a simulation method based on

Geant4. A non-monotonic behavior in energy resolution

with pixel size was observed. By fitting the variation of the

number of hits with pixel size using an empirical expres-

sion that we introduced previously, it can be shown that

this phenomenon is due to the combined effect of pixel size

and threshold.

The contribution of pixel noise to energy resolution for a

pixel size of 400 lm at 1�4r threshold is about 50 keV

FWHM that is comparable to the energy resolution caused

by energy fluctuations in the ionization process

(� 20 keV). Treating these two factors that influence

energy resolution as independent to each other, the final

combining energy resolution is � 54 keV. This energy

resolution is satisfactory for distinguishing 222Rn-alpha

particles from alpha particles from other radioactive con-

taminators in the environment, such as alpha particles of

5305 keV from 210Po (half-life 138.4 day) and alpha par-

ticles of 5686 keV from 224Ra (half-life 3.7 day), consid-

ering both 238U and 232Th decay chains. With this good

energy resolution, we may also monitor another well-

known alpha-emitting health hazard, 220Rn (half-life 55.6

s) by distinguishing its 6288 keV alpha particle with a

6051/6090 keV alpha particle from 212Bi (half-life 60.6

min) and 6002 keV alpha particle from 218Po (half-life 3.05

min).

Whether it is necessary to use a larger pixel size for

better energy resolution also depends on how much a

smaller pixel size benefits spatial resolution. In addition,

we noticed that this is a simplified model focused on the

study of how energy resolution changes with pixel size.

Though most of the free electrons are attached to elec-

tronegative molecules during their drift, there still might be

a small portion of free electrons. The ratio of free electrons

to ions might vary with drift distance, adding an additional

uncertainty in spatial reconstruction as well as total energy.

The boundary conditions for electric field should also be

treated properly for a real experiment. More physical

processes should be added if energy resolution depen-

dences on other parameters are to be studied.

Another concern with regard to small pixel size is their

relatively low signal-to-noise ratios that makes tracking

signals on pixels technically difficult before energies from

pixels belonging to the same track can be summed up.

From Fig. 7, the maximum signal-to-noise ratio on a pixel

ranges from 2 to 3r for a pixel size of about 100 lm to 50r
for a pixel size of 600 lm. When the pixel size is larger

than 200 lm, the maximum signal exceeds 7:5r. Further-
more, recent studies on machine learning may also provide

a solution to overcome this challenge [19–22]. Character-

istics such as straightness and the relative intensity of the

energy peak at the end of radon alpha track could be useful

patterns in recognizing and tracking the radon alpha signal.

In addition, noise performance is improving at the most

recent series Topmetal-IIa [23]; therefore, the overall per-

formance shall be further improved.
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