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Abstract A Monte Carlo simulation using two schemes,

the discrete energy loss approach and the continuous

slowing down approximation, was implemented in C?? to

calculate the energy transmission coefficient and average

energy loss for low-energy (1–10 keV) incident electrons

passing through a thin metal layer. The simulation model

uses the Ashley model for electron inelastic scattering, the

electron elastic scattering cross section taken from the

NIST database, and the stopping power derived from the

full Penn algorithm. The results of the two schemes agree

well with each other and can be used to quantitatively

evaluate the shielding effect of a thin coated metal layer on

incident electrons for a diamond amplified photocathode.
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1 Introduction

As a novel photoinjector design concept, the diamond

amplified photocathode (DAP) was proposed to provide

high-quality electron beams for new linac-based light

sources such as the X-ray free-electron laser and energy-

recovery linac [1–8]. Figure 1a shows the structure of the

diamond window, an essential component of the DAP. The

metal coating on the incident surface of the diamond film is

usually 30–50 nm in thickness and acts as a negative

electrode to drive secondary electrons (SEs) toward the

emission surface. However, the metal coating will inevi-

tably cause some energy loss of incident electrons.

As shown in Fig. 1b, the metal coating acts as a shield,

and only transmitted electrons, including transmitted pri-

mary electrons and transmitted SEs, can enter the diamond

to produce SEs by ionization. The ratio of the number of

SEs generated in the diamond to the number of incident

electrons is called the SE generation gain. To quantitatively

evaluate the shielding effect of the metal coating on inci-

dent electrons, we denote the energy transmission coeffi-

cient and average energy loss of incident electrons as gE
and DE, respectively. These variables are described in

detail in Sect. 2.6.

The Monte Carlo method is widely used in simulations

of electron transport in solids [9–13]. Instead of studying

the SE emission yield and energy distribution of

backscattered electrons, we focus on the gE and DE values

of incident electrons. gE and DE can be calculated using

two simulation schemes: the discrete energy loss approach

(DELA) and continuous slowing down approximation

(CSDA) [12]. The main difference is that the DELA deals

with the energy loss in discrete inelastic collisions, but the

CSDA uses an approximation of continuity in describing

the energy loss calculated using the stopping power.

Because Al, Ti, Pt, or Au can be used as the coating

material for the DAP, in this work, we aim to calculate the

gE and DE values of incident electrons for these metals by

varying the primary energy in the range of 1–10 keV and

the thickness of the coated metal layer. The simulation

details and results are presented in later sections.
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2 Theory and method

Considering that the total energy of transmitted elec-

trons with energy \ 50 eV is much less than that of

transmitted electrons with energy [ 50 eV, the cutoff

energy can be set to 50 eV. We thus need to deal with the

electron scattering process in the energy range of

50–104 eV. In this energy range, the Mott cross section is

generally used to describe the electron elastic scattering,

and a dielectric approach to electron inelastic scattering is

used [9–13]. In this work, we used the differential elastic

scattering cross sections (DCSs) taken from the NIST

database [14]. The DCSs can be used to calculate the

elastic mean free path and elastic scattering angle [10–12].

For inelastic collisions, the Ashley model based on the

dielectric theory can be used to calculate the energy loss of

primary electrons [15, 16]. The stopping power needed by

the CSDA was calculated using the full Penn algorithm

(FPA) model [17].

2.1 Mean free path

The elastic mean free path can be calculated using the

total elastic cross section [9, 12]:

kel ¼
A

qNArel
; ð1Þ

where kel is the elastic mean free path (in Å), A is the

atomic weight, NA is the Avogadro number, q is the density

of the material (in g/Å3), and rel is the total elastic cross

section (in Å2). rel can be obtained by integrating the

differential cross section over the entire polar angle:

rel ¼
Zp

0

dr
dh

dh; ð2Þ

where dr=dh is the differential cross section obtained from

the NIST database [14].

The inelastic mean free path can be calculated using a

modified form of the Bethe equation proposed by Tanuma

et al. [18]:

kin ¼
E

E2
p½b lnðcEÞ � C=E þ D=E2� ; ð3Þ

where kin is the inelastic mean free path (in Å), E is the

electron energy (in eV), Ep is the bulk plasma energy (in

eV), and b, c, C, and D are fitted parameters. The values of

these parameters were given in Ref. [18].

Then the total mean free path can be given by [11, 12]

k�1
t ¼ k�1

el þ k�1
in : ð4Þ

2.2 Energy loss

Under the CSDA, the energy loss is calculated according

to the stopping power and the step length between two

elastic collisions [11, 12]:

W ¼ s � dE

ds

� �
Penn

; ð5Þ

where (-dE/ds)Penn is the stopping power calculated using

the FPA, as shown in Fig. 2.

The step length s is selected by choosing a uniform

random number R in the range 0–1 via

s ¼ �kel lnðRÞ: ð6Þ

Under the DELA, the energy loss can be calculated

using the differential inelastic mean free path:Z W

0

dk�1
in

dw
dw

�Z Wmax

0

dk�1
in

dw
dw ¼ R; ð7Þ

where Wmax is 3/4E according to the Ashley model

[15, 16], W is the possible energy loss and is varied from 0

to Wmax, R is a random number, and the differential

inelastic mean free path dk�1
in

�
dw can be expressed as

Fig. 1 (Color online)

Schematic of diamond window

structure (a) and the interaction

of incident electrons with the

coated metal film (b)
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dk�1
in

dw
¼ 1

pa0E

Zqþ

q�

dq

q
Im

�1

eðq;wÞ

� �
; ð8Þ

where a0 is the Bohr radius, E is the initial energy of the

primary electron, w is the energy loss, and q is the

momentum transfer in the range of q-–q?. Further, �hq� ¼ffiffiffiffiffiffiffiffiffi
2mE

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE � wÞ

p
� Im½�1=eðq;wÞ� is the energy loss

function, which can be obtained by extending the optical

energy loss function Im½�1=eð0;wÞ�. In the Ashley model,

it is given by

Im½�1=eðq;wÞ� ¼
Z1

0

dwp

wp

w
d w� wpðqÞ
	 


Im �1=eð0;wÞ½ �;

ð9Þ

where wp is the plasmon energy, and wpðqÞ is given by

wpðqÞ ¼ wp þ
�h2q2

2m
: ð10Þ

The optical energy loss functions of Al, Ti, Pt, and Au

can be derived from handbooks of optical data [19, 20].

Equations 7–10 can be used to calculate the energy loss for

inelastic collisions.

It is worth noting that Penn proposed another, more

accurate, model, i.e., the FPA, to describe the inelastic

scattering process [21, 22]. Shinotsuka et al. [17] have

calculated the stopping power using the FPA model. We

used the Ashley model to apply the DELA because it has a

simpler expression formula than the FPA. In addition, we

also used the stopping power based on the FPA to imple-

ment the CSDA.

2.3 Secondary electron generation

Energetic electrons propagating in solids lose energy

owing to inelastic scattering, and the energy loss can excite

an SE from the outer shell or core shell or cause plasmon

excitation.

If an SE is excited owing to energy loss, we assume that

the SE originated as a Fermi sea electron; then the initial

energy of the SE can be calculated according to its exci-

tation probability, which is proportional to the joint density

of states of free electrons [23], i.e., PðE0;WÞ /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0ðE0 þWÞ

p
via

Z Es;ini

0

PðE0;WÞdE0
�Z EF

0

PðE0;WÞdE0 ¼ R; ð11Þ

where E0 E0\EFð Þ is the energy of a Fermi sea electron,

W is the specific energy loss, Es, ini is the initial energy of

the SE, and R is a random number. The final energy of the

SE can thus be given by Es, ini ? W.

2.4 Scattering angle

Figure 3 shows the possible scattering process of an

electron in a coated metal film, including elastic and

inelastic scattering. To accurately trace its trajectory, the

scattering angle, including the polar and azimuthal angles,

should be known.

The polar elastic scattering angle can be calculated

using the differential cross section:Z hPe

0

dr
dh

dh

�Z p

0

dr
dh

dh ¼ R; ð12Þ

where hPe is the required polar elastic angle of primary

electrons, and R is a random number.

10 2 10 3 10 4

10 0

10 1

Al
Ti
Pt
Au

Fig. 2 (Color online) Stopping power of Al, Ti, Pt, and Au provided

by Shinotsuka, et al. [17]

Fig. 3 (Color online) Schematic of electron scattering in coated

metal
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The polar inelastic scattering angle can be calculated by

the Møller scattering angle formula [9, 24]:

sin2ðhpiÞ ¼
2En

2þ l� lEn

; ð13Þ

sin2ðhSEÞ ¼
2� 2En

2þ lEn

; ð14Þ

where hPi and hSE are the polar angles of primary electrons

and SEs, respectively, during inelastic scattering; l is the

kinetic energy of the electron in units of its rest mass

(511 keV); and En equals W/E, where W is the energy loss

of the primary electrons, and E is the kinetic energy.

The azimuthal scattering angle including elastic and

inelastic scattering can be calculated by

b ¼ 2pR; ð15Þ

where R is a random number.

There is also another method to calculate the inelastic

polar angle. Considering only SEs with energy exceeding

50 eV, which corresponds to a large energy loss W, the

polar inelastic angle of primary electrons is just that pre-

dicted by the classical binary collision model [11, 12]:

sin hPi ¼ W=Eð Þ1=2; ð16Þ

and the corresponding polar angle of SEs can be obtained

assuming that SEs emerge with spherical symmetry

[12, 25]:

hSE ¼ pR: ð17Þ

We found that the difference between the results (gE and
DE) calculated using Eqs. 13, 14, 16, 17 is very small. In

this work, Eqs. 13 and 14 were used to calculate the polar

inelastic scattering angle.

2.5 Monte Carlo procedure

In the Monte Carlo simulation, for both the CSDA and

DELA, the step length between two successive collisions

must be computed first. For the CSDA, the step length

s can be calculated using Eq. 6. Then the energy loss of

primary electrons corresponding to this step length can be

calculated using Eq. 5.

For the DELA, the step length s can be obtained using

the total mean free path via

s ¼ �kt lnðRÞ: ð18Þ

After an electron passes the step length s, the type of

individual scattering event should be determined:if

R� k�1
el

�
k�1
t ; ð19Þ

it is elastic without any energy loss; otherwise, it is

inelastic with the energy loss calculated using Eq. 7.

After collisions, the elastic scattering angle of primary

electrons for both the CSDA and DELA can be calculated

using Eq. 11, and the inelastic angle for the DELA can be

calculated using Eqs. 13 and 14. Under the CSDA, SE

generation is completely neglected, and only primary

electrons are tracked. Under the DELA, two extreme

conditions are considered: one is that SE generation is

ignored, and the other is that every energy loss will excite

an SE.

2.6 Calculation object

The number and energy of transmitted electrons are

recorded. If their number is Nt, which corresponds to the

total number N of incident electrons, their average energy

can be calculated and is denoted by Eave. The energy

transmission coefficient is defined as the ratio of the total

energy of transmitted electrons to the total energy of

incident electrons and thus can be given by

gE ¼ NtEave=NE; ð20Þ

where NtEave and NE are the total energies of transmitted

electrons and incident electrons, respectively. gE can be

used to evaluate the energy shielding effect of the coated

metal film on incident electrons.

The average energy loss is defined as the ratio of the

total energy loss (NE - NtEave) to the total number N of

incident electrons and can be given by

DE ¼ NE � NtEave

N
¼ Eð1� gEÞ: ð21Þ

DE can be used to analyze the reduction in the SE

generation gain caused by the coated metal for a DAP. It is

known that the energy required to create an electron–hole

pair in diamond is Eion = 13.4 eV [26, 27]; thus, the

reduction in the gain can be given approximately by DE/
Eion.

3 Results and discussion

A Monte Carlo simulation was carried out under the

CSDA and DELA for the following conditions: primary

energies of 1–10 keV, thin coated metal films of Ti, Pt, or

Au with thicknesses of 15–50 nm and of Al with thick-

nesses of 30–80 nm, and a cutoff energy of 50 eV. We

found that tracing 5 9 105 electron trajectories was suffi-

cient to reach a stable result.

3.1 Energy distribution

Figure 4 shows the energy distribution of transmitted

electrons calculated under the DELA. On the left, the solid
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curves correspond to the transmitted electrons, including

secondary and primary electrons, whereas the dashed

curves correspond only to transmitted primary electrons. In

the 1–9 keV range, the calculated results fluctuate greatly

because fewer electrons are counted in this energy range.

Therefore, the fitted results are given and are reflected in

the smooth shape of these curves in the 1–9 keV range. In

the 7–10 keV range, the solid and dashed curves coincide.

The area surrounded by an ellipse in the left panel was

enlarged, as shown in the right panel. The common feature

of these four curves is that the highest peak is located at

10 keV and corresponds to transmitted primary electrons

without inelastic scattering. The energy distribution of Al is

apparently different from that of the other three metals; i.e.,

there are several peaks distributed in the 9.9–10 keV range,

and the interval between peaks is about 15 eV. This feature

coincides with the plasmon energy of * 15 eV in Al,

confirming that the chief energy loss mechanism in Al is

plasmon excitation. We can also see that, for Pt and Au, a

large number of the transmitted electrons appear in a wider

energy range (7–10 keV). However, for Ti and Al, the

transmitted electron energy distribution range is relatively

concentrated at 9.5–10 keV.

3.2 Energy transmission coefficient

Figure 5 shows the energy transmission coefficient cal-

culated using Eq. 20 under the DELA. In Fig. 5, the solid

curve shows the results when SE generation is considered,

and the dashed curve shows the results when SE generation

is neglected. We can see that the two curves are very close,

although the results with SE generation are slightly higher

than those without SE generation. This result confirms that

primary electrons make the dominant contribution to the

total energy of transmitted electrons. Considering that the

actual result is larger than the calculated result when SE

generation is neglected but lower than that in the extreme

case considering SE generation, the average value of both

results is taken as the suggested result under the DELA.

This suggested result should be very close to the actual

result and will be compared with the calculated result under

the CSDA.

Figure 6 shows the energy transmission coefficients,

where the solid curves are the results calculated under the

CSDA, and the dashed curves are the suggested results

under the DELA. Curves of different color represent metal

films of different thickness. Three thicknesses, 30, 50, and

80 nm, were chosen for the calculation for Al, but thick-

nesses of 15, 30, and 50 nm were chosen for Ti, Pt, and Au.

Fig. 4 (Color online) Energy

distribution of transmitted

electrons for 10 keV primary

electrons passing through

30-nm-thick metal coating

under DELA

Fig. 5 (Color online) Energy

transmission coefficient under

DELA for metal film in

thickness of 30 nm (a) and
50 nm (b)
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First, it can be seen that for Al and Ti, the results of the

CSDA are slightly higher than those of the DELA, and for

Pt and Au, the results of the CSDA are slightly lower than

those of the DELA. Then, according to the shape of the

curves, it is obvious that for thinner metal coatings and

higher incident electron energies, the energy transmission

coefficient increases. As heavy metals, Pt and Au have a

much stronger shielding effect on the incident electrons

than Al and Ti. According to the results shown in Fig. 6,

for an incident energy of 10 keV and a coating thickness of

30 nm, the energy transmission coefficient is 98, 95, 64,

and 67% for Al, Ti, Pt, and Au, respectively.

There is a threshold energy for the energy transmission

coefficient. For 80-nm-thick Al and 50-nm-thick Ti, the

threshold energy is at least 2 keV, which means that inci-

dent electrons would be totally shielded if their primary

energy was lower than 2 keV. For 30-nm-thick Pt and Au,

the threshold energy is in the range of 2–3 keV, but is close

to 3 keV. Although the threshold energy was discussed

only in an approximate range here, it is worth noting that

the actual value of the threshold energy can be calculated

using our program.

3.3 Average energy loss

To conveniently evaluate the reducing effect of the

metal coating on the SE generation gain of a DAP, it is

better to give the average energy loss computed using

Eq. 21; e.g., if the average energy loss was 3 keV, then the

reduction in the SE generation gain can be given approx-

imately by 3000/13.4 = 224.

Figure 7 shows the average energy loss calculated using

the energy transmission coefficient results shown in Fig. 6.

For an incident energy of 10 keV and a coating thickness

of 30 nm, the average energy loss calculated under the

CSDA is approximately 180, 430, 3610, and 3290 eV for

Al, Ti, Pt, and Au, respectively, and the corresponding

Fig. 6 (Color online) Energy transmission coefficient for metal films of Al (a), Ti (b), Pt (c), and Au (d)
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reduction in the SE generation gain is approximately 13,

32, 269, and 246 for Al Ti Pt Au, respectively.

3.4 Error analysis

To reduce the calculation’s systematic error caused by

the Monte Carlo method itself, the number of tracked

primary electrons was set to 5 9 105 for the DELA and

CSDA, which is sufficient to reach stable results.

It should be noted that the correctness of the calculation

results depends on the accuracy of the calculation model.

We use a simplified treatment for the calculation model

under the CSDA and DELA, i.e., by completely ignoring

SE generation for the CSDA and considering two extreme

cases, as mentioned above, for the DELA, and by setting

the energy cutoff to 50 eV. Although this treatment will

introduce some error, it still works well because the

transmitted primary electrons make the dominant contri-

bution to the total energy of transmitted electrons.

It can be observed from Fig. 7 that there are errors

between the DE values calculated under the CSDA and

DELA. Figure 8 compares the errors of the DE values

calculated under the DELA and under the CSDA. The

maximum relative error of DE is 14% for Al and 9% for Ti,

but it is 3% for Pt and Au. The error comes mainly from the

difference between the two optical models, i.e., the Ashley

model and FPA model, used in the DELA and CSDA,

respectively.

It is shown that although two different schemes (the

DELA and CSDA) were employed in the calculation, and

each scheme is based on different calculation models, the

difference between the two types of results is acceptably

small.

Fig. 7 (Color online) Average energy loss for metal films of Al (a), Ti (b), Pt (c), and Au (d) The solid curve corresponds to the CSDA, and the

dashed curve corresponds to the DELA
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4 Conclusion

We implemented a Monte Carlo simulation of electron

transport in metal films using the DELA and CSDA to

study quantitatively the shielding effect of a coated metal

film on incident electrons for a DAP without considering

the details of SE generation. It is valid in the energy range

of 50–104 eV. The energy transmission coefficient and

average energy loss of incident electrons calculated under

the DELA and CSDA are close to each other, and the error

between them is acceptable. We observed quantitatively

that the heavy metals Pt and Au cause a much stronger

shielding effect than the light metals Al and Ti. The results

show that if 30-nm-thick Pt was used as the metal coating

for a DAP, the average energy loss would be 3.61 keV for

an incident electron energy of 10 keV, resulting in a

reduction of the SE generation gain by approximately 269.

This should be improved by changing the metal coating

from one with complete coverage to a lithographically

patterned grid coating. However, for 30-nm-thick Al and

Ti, the average energy loss is small; thus, there is no need

to consider using a lithographically patterned grid coating

to reduce the average energy loss.

In addition to calculating the energy transmission

coefficient and average energy loss, our program can also

be used to study the backscattering coefficients (the DELA

and CSDA), the energy distribution of backscattered

electrons (the DELA), and the maximum incident range

(the DELA and CSDA). However, it cannot be used to

analyze the SE emission yield because it neglects the

details of SE generation and sets the cutoff energy at

50 eV. This can be improved in future work.
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