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Abstract An 6Li þ 89Y experiment was conducted at the

Laboratori Nazinali di Legnaro, INFN, Italy. The 550 lg/

cm2 thick 89Y target was backed on a 340 lg/cm2 thick 12C

foil. The several c rays in the experiment with energies

higher than 3000 keV can most likely be ascribed to the

transitions in the 13C nuclei, which can be formed through

various interactions between the 6Li beam and the 12C foil.

The high-energy properties of c rays in 13C are employed

for energy calibrating HPGe detectors, especially for the

[ 3000 keV region, which is impossible to reach by

common standard sources (152Eu, 133Ba, etc.). Further-

more, c–c and particle–c coincidence measurements were

performed to investigate the formation of 13C.

Keywords Energy calibration � Coincidence

measurement � Weakly bound nuclei � Reaction mechanism

1 Introduction

Owing to their excellent energy resolution, high-purity

germanium (HPGe) detectors are widely employed in the

detection of c transitions. In c-ray spectroscopy experiments,

the energy calibration of HPGe detectors is critical. To per-

form a reliable energy calibration for HPGe detectors, a set of

standard radioactive sources that can emit many c rays with

precisely known energies are used, such as 152Eu, 133Ba,
60Co, and 137Cs. However, when the high-energy c rays (for

instance, Ec [ 3500 keV) require analysis, such energy

regions cannot be calibrated by the aforementioned sources

since none of them can produce the required intense c rays

with energies higher than 3500 keV [1, 2]. Moreover, the few

standard radioactive sources that can emit c rays with ener-

gies higher than 1500 keV have short lifetimes [3]: 66Ga
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(833.5–4806 eV, 13 c rays in total, T1=2 = 9.49 h), 10 c rays

have energies higher than 1500 keV; 24Na (1368.6 and

2754 keV, T1=2 = 14.997 h); 56Co (846.8–3548.1 keV, 14 c
rays in total, T1=2 = 77.236 d), 9 c rays have energies higher

than 1500 keV [2, 3].

Assuming that one HPGe detector is calibrated by the
152Eu source, this detector could exclusively measure c
rays with energies up to approximately 1500 keV since the

measured energy is only valid in that calibration region. In

the extrapolation region, the measured energy derived from

the calibration coefficient might deviate significantly from

the real value. The situation would be improved if any

known high-energy c rays, produced either by the

radioactive source [3] or the in-beam experiment, could be

employed in the energy calibration procedure.

The investigation of reaction mechanisms induced by

stable weakly bound nuclei (such as 6;7Li) has drawn con-

siderable attention during the last few decades [4–18].

Owing to the low breakup threshold and the strong cluster

structure of the weakly bound nuclei, 7Li has an aþ t cluster

structure and a small separation energy of 2.47 MeV. Also

the breakup, as well as the transfer channels, may couple to

the fusion reaction especially when the beam energies

approach the Coulomb barrier, leading to a series of com-

plicated and interesting processes [5, 10, 19–35].

In a fusion reaction study [10, 30, 33], c-ray spectroscopy

has already proven to be powerful since, in principle, the

yields of each residual nucleus (excited states) can be

obtained by counting their characteristic c transitions. For

this study, a 6Li þ 89Y experiment was performed in the

Laboratori Nazinali di Legnaro (LNL), INFN, Italy. In this

experiment, the 89Y’s target back material was 12C foil.

Details of the experimental procedure are recorded in

Sect. 2. Several possible reaction processes between the 6Li

beam and the 12C foil produce 13C nuclei as by-product.

Nevertheless, as discussed in Sect. 3, the characteristic c rays

(3684.5 and 3853.8 keV) in 13C were applied to calibrate the

HPGe detector. Furthermore, in the same section, the pres-

ence of 13C was confirmed by c–c analysis and the possible

reaction mechanisms that may be responsible for the pro-

duction of 13C were investigated by particle–c coincidence

analysis. It should be noted that such energy calibration

methods might be appropriate for other experiments when

the targets are backed with a carbon foil.

2 Experimental procedure

This 6Li þ 89Y experiment was conducted using the

INFN-LNL Tandem-XTU accelerator in Italy. A 6Li3þ

beam with ELab = 34 MeV and an average beam intensity

of 1.0 enA was impinged on a 550 lg/cm2 thick 89Y target,

which was backed by 340 lg/cm2 thick 12C foil. A sche-

matic view of the detector arrays obtained from [36] is

shown in Fig. 1. Around the target position, 40 DE–E sil-

icon detectors (a silicon-ball named EUCLIDES [37]) and

25 HPGe detectors (GALILEO array [37]) were used to

measure the light-charged particles and c rays, respec-

tively. Each DE detector had a thickness of 130 lm, and

the E detector had a thickness of 1 mm. The GALILEO

array had 10 HPGe detectors at 90� relative to the beam

direction, and another 15 detectors were equally spaced at

119�, 129�, 152� [38–40]. Along the beam direction, an Al

cylindrical absorber with a thickness of 200 lm was

inserted inside EUCLIDES to protect the silicon detectors

from elastically scattered beams. Additional experimental

details can be found in the previous publication [36].

3 Data analysis

3.1 Calibration of c-ray energy spectrum

In the current experiment, the HPGe detectors were

initially calibrated by the standard radioactive sources

including 60Co,88Y, 133Ba and 152Eu, and the function of

Estandard ¼
X5

j¼0

bj � Channel j ð1Þ

Fig. 1 (Color online) Schematic view of detector array around the

target position, which is obtained from [36]; 40 DE–E silicon

telescopes and 25 HPGe detectors are used to measure the light-

charged particles and c rays, respectively
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was used to perform the first energy calibration step. Here,

Estandard represents the energy of known c rays emitted from

the aforementioned sources, Channel is the channel posi-

tion of each c ray in the raw ADC (specific name of ADC

in front and ADC in the bracket) spectrum, and bj relates to

the calibration coefficients. It is noted here that in the

current stage, the highest Estandard = 2734 keV (88Y source).

Thus, in the experiment, a measured c ray with energy

higher than 2800 keV may be observed in a position dif-

ferent from its actual energy, and such deviations can vary

between different detectors.

The partial level scheme and several known c rays in
13C are displayed in Table 1 and Fig. 2, respectively

[2, 41]. After the first-step calibration, Fig. 3a shows the c-

ray energy spectrum measured by different HPGe detectors

at 90� during the 6Li þ 89Y experiment. It was observed

that the peak positions varied among different detectors.

Since the first-step energy calibration included the

Estandard up to 2734 keV, the c-ray energies measured in the

region shown in Fig. 3a could be inaccurate. Conversely,

detectors at 90� in Fig. 3a were selected to avoid a possible

Doppler shift effect on the c-ray measurement. In conclu-

sion, the incorrect calibration in this energy region

becomes the only possible explanation for the phenomenon

shown in Fig. 3a. The two c rays observed in each detector

in Fig. 3a are probably attributed to the 3684.5 and

3853.8 keV transitions de-exciting the 3853.8 keV state in
13C as shown in Fig. 2. Further confirmation of this

assumption can be found in the following two subsections.

A second-step calibration of the HPGe detector could

then be performed. The c rays which were used in the

previous calibration, as well as 3684.5- and 3853.8-keV c
rays in 13C were employed in the new energy calibration

for the same functions Eq. 1 as shown before. The newly

calibrated c-ray energy spectra of each HPGe detector at

90� are shown in Fig. 3b which are shown in the same

energy region by Fig. 3a. It can be concluded that the

second-step energy calibration solves the energy discrep-

ancy for the c rays with Ec [ 3500 keV in Fig. 3b. The

newly calibrated c-ray energy spectra having different

energy regions are also shown in Fig. 4. It can be seen in

Fig. 4 that besides the c transitions in 13C, other peaks

corresponding to fusion-evaporation residues, such as
92Mo, produced from the 6Li þ 89Y system were identified.

3.2 c–c coincidence analysis

In this section, c–c coincidence analysis, which is based

on the result of the aforementioned second calibration, is

applied to confirm the partial level scheme of 13C as shown

in Fig. 2.

Figure 5a–c shows the c-ray spectra which were gated

by the 169.3-, 764.4- and 3089.4-keV transitions, respec-

tively. From Fig. 5a, b, it can be concluded that the 169.3-

and 3684.5-keV c rays were in coincidence with each

other, and the 764.4- and 3089.4-keV c rays were also in

coincidence with each other. Figure 5c not only re-con-

firms the coincidence between the 764.4- and 3089.4-keV

transitions but also establishes the cascade order by iden-

tifying the 595.1-keV c rays which were mutually in

coincidence with the 169.3- and 3089.4-keV transitions.

Consequently, this experiment confirmed the partial level

scheme as shown in Fig. 2.

Because the c transitions with energies higher than

3000-keV are frequently referenced in previous explica-

tions, it may be concluded that without the second cali-

bration, the level scheme confirmation of 13C cannot be

performed. The success in reconstructing the 13C level

Table 1 Partial characteristic c
transitions in 13C with

Ec\4000 keV [2, 41]

Ec(keV) Transitions

169.3 5=2þ�!E1
3=2�

595.1 3=2��!E1
1=2þ

764.4 5=2þ�!E2
1=2þ

3089.4 1=2þ�!E1
1=2�

3684.5 3=2� �!M1þE2
1=2�

3853.8 5=2þ �!M2þE3
1=2�

Fig. 2 Partial level scheme of 13C below the excitation energy of

4000 keV. The unit of energy for each state and the c transition is keV

[2, 41]
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Fig. 3 c-Ray energy spectrum of 10 HPGe detectors at 90� (3500 keV\Ec\4000 keV). a The first-step calibration, b the second-step

calibration
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scheme proves reasonable the assumption that the c rays

observed in Fig. 3 belong to 13C.

Moreover, 511 and 3172.1 keV c rays can be identified

in the newly calibrated c-ray energy spectra and c-ray

energy spectrum which is gated by the 169.3-keV c ray (see

Fig. 5a). Since 3172.1-keV is approximately 511 keV

smaller than 3684.5-keV, it is concluded that the 3172.1-

keV peak is the single escape peak of the 3684.5-keV c ray.

3.3 Particle–c coincidence analysis

Figure 6a, b displays the c-ray energy spectra which are

measured in coincidence with protons and a particles,

respectively. The characteristic c rays of 13C at 168.8-,

598.6-, 762.5-, 3684.6- and 3853.8-keV (see Table 1) are

clearly visible in Fig. 6a. The characteristic c rays of 13C at

168.7- and 598.2-keV can also be observed in Fig. 6b with

low statistics. The other characteristic c rays of 13C as

listed in Table 1 cannot be seen in Fig. 6b owing to their

low relative intensities [2]. Thus, it can be concluded that

(at least part of) the 13C nuclei are created in coincidence

with a and protons.

Considering the possible reaction channels, there are

several possible causal processes, such as (1) one-neutron

stripping process, denoted as 6Li ? 12C �!
5Li ? 13C

�
(there is no bound state for 5Li, and thus, it will

disassociate into a proton and a immediately), (2) complete

fusion of 6Li þ 12C followed by the 1a1p evaporation

channel, and (3) an incomplete fusion channel. This means

that the 6Li breaks up to a and deuteron, and the deuteron is

then captured by the 12C, followed by one-proton evapo-

ration. All the aforementioned processes might account for

the production of the 13C nuclei, since such (1)–(3) chan-

nels can populate 13C with excited states, as well as a and

proton particles, being consistent with the experimental

observations. A more detailed, or quantitative investigation

of the causal processes requires additional measurement of

the charged particles (a and protons) with considerably

higher energy resolution.
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4 Summary

A 6Li þ 89Y experiment to study fusion reactions

induced by weakly bound nuclei was performed at INFN-

LNL in Italy. 13C can be formed by the one-neutron

stripping process, complete fusion channel and incomplete

fusion channel between the 6Li beam, and the 12C back

material. The characteristic c rays of 13C can be used for

energy calibrating HPGe detectors in the high-energy

region. It is concluded that this method is appropriate for

other experiments with carbon foil and can contribute to

the investigation of high-energy c rays. The partial level

scheme of 13C is confirmed by c–c coincidence analysis,

and the formation of 13C in the 6Li þ 12C system was

investigated by particle–c coincidence analysis.
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