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Abstract The shape transition between the vibrational U

(5) and deformed c-unstable O(6) dynamical symmetries of

sd interacting boson model has been investigated by con-

sidering a modified O(6) Hamiltonian, providing that the

coefficients of the Casimir operator of O(5) are N-depen-
dent, where N is the total number of bosons. The modified

O(6) Hamiltonian does not contain the number operator of

the d boson, which is responsible for the vibrational

motions. In addition, the deformation features can be

achieved without using the SU(3) limit by adding to the O

(6) dynamical symmetry the three-body interaction

QQQ½ �ð0Þ, where Q is the O(6) symmetric quadrupole

operator. Moreover, triaxiality can be generated through

the inclusion of the cubic d-boson interaction

dydydy
h ið3Þ

�½ ~d ~d ~d�ð3Þ. The classical limit of the potential

energy surface (PES), which represents the expected value

of the total Hamiltonian in a coherent state, is studied and

examined. The modified O(6) model is applied to the even–

even 124�132Xe isotopes. The parameters for the Hamilto-

nian and the PESs are calculated using a simulated search

program to obtain the minimum root mean square deviation

between the calculated and experimental excitation ener-

gies and B(E2) values for a number of low-lying levels. A

good agreement between the calculations and experiment

results is found.

Keywords Nuclear structure · Extended O(6) of IBM ·

Three-body interactions · Coherent state

1 Introduction

The simplest standard version of the interacting boson

model (IBM1) [1] has been widely used for describing the

collective nuclear quadrupole states observed in medium

and heavy nuclei. The building blocks of this model are

pairs of correlated nucleons with angular momentum Lp ¼
0þ and 2þ, which are represented by s and d bosons,

respectively. In its simplest version, the model does not

distinguish between proton and neutron bosons. According

to this algebraic model, the dynamical symmetries are

given by U(5) corresponding to spherical vibrator nuclei,

SU(3) corresponding to the axially deformed prolate

nuclei, and O(6) corresponding to c-unstable deformed

nuclei.

The shape transitions correspond to break these

dynamical symmetries. The critical point symmetry

E(5) [2] is designed for the critical point of transition from

spherical vibrator U(5) to the deformed c-unstable O(6).

Later, X(5) [3] and Y(5) [4] describe the critical points

between the spherical vibrator U(5) and axially deformed

prolate rotor SU(3), and between SU(3) and the triaxial

deformed shapes, respectively. The correspondence

between E(5) in IBM and the solution to the Bohr

Hamiltonian in the collective model was studied [5–9], and

the existence of an additional prolate–oblate transition was

recognized [10]. The U(5)–O(6) shape phase transition
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based on the concepts of the E(5) critical point dynamical

symmetry and the quasi-dynamical symmetry was

studied [6–11].

Applying the coherent state formalism [12, 13] to an

arbitrary Hamiltonian of the three limiting cases of IBM, as

well as to a Hamiltonian represented transition within the

region among them, the potential energy surface (PES) can

be derived by calculating the expected value of this

Hamiltonian, which is related to certain nuclear shapes.

Because it is known that IBM1, with only up to two-body

interactions, cannot give rise to stable triaxial shapes

[14, 15], the inclusion of higher-order interactions in the

Hamiltonian, such as three-body interactions between d

bosons, must be added [16, 17]. In addition, the effects of

three-body interactions in an O(6) Hamiltonian have been

considered [18–20]. The collective structure of the nuclei

in the A� 130 mass region was discussed within the

framework of a rigid triaxial rotor model [21–23] and

IBM [1], where the O(6) dynamical symmetry limit was

used [19, 24, 25] instead of a geometric c-unstable rotor

model [26]. The even–even xenon nuclei in this mass

region A� 130 are soft with regard to the c-deformation at

an almost maximum effective triaxiality with

c ’ 30� [27, 28].

The triaxiality in Xe, Ba, and Te nuclei within the mass

region A� 130 were studied experimentally [29–33] and

interpreted by several nuclear models [34–38]. In this

study, we consider the effects of adding terms of cubic d-

boson interactions and three QQQ½ � interactions (when Q is

the O(6) symmetric quadrupole operator) to the symmetry

O(6) sdIBM Hamiltonian to generate rotational and triaxial

nuclear states. This extended O(6) model with the inclusion

of a cubic d-boson interaction, and the inclusion of three-

body O(6) symmetric quadrupole terms enables a

description of the rotational motion without the use of the

SU(3) limit of IBM1 and also allows studying the prolate–

oblate shape phase transition. The model is applied to the

spectroscopy of the even–even xenon isotopes by calcu-

lating the PESs using the intrinsic coherent state formalism.

2 O(6) Hamiltonian of interacting boson model
with three-body interactions

The Hamiltonian we used is given by the following

weighted sum of three terms:

Ĥ ¼ HOð6Þ þ H3d þ HQ; ð1Þ
where the first term in the Hamiltonian (1) represents the

most general O(6) dynamical symmetry Hamiltonian and is

written in a multipole form as follows:

HO(6) ¼ a0ð ^
Py � P̂Þ þ a1ðL̂ � L̂Þ þ a3ðT̂3 � T̂3Þ; ð2Þ

where a0; a1; a3 are the model parameters of the Hamilto-

nian. The operators P̂; L̂, and T̂3 are the pairing, angular

momentum, and octupole operator, respectively. The

explicit expressions for these operators are given as

follows:

P̂
y ¼ 1

2
ðdy � dy � sy � syÞ;

L̂ ¼
ffiffiffiffiffi
10

p �
dy � ~d

�ð1Þ
;

T̂3 ¼
�
dy � ~d

�ð3Þ
:

ð3Þ

Here, sy and dy are the creation operators of s and d

bosons, and ~d is the annihilation operator of the d

boson. The scaler product is defined as

T̂L � T̂L ¼ P
M

ð�1ÞMTLMTL;�M , where TLM corresponds to

the M-component of the operator T̂L. The operators ~dm ¼
ð�1Þmd�m and ~s ¼ s are introduced to ensure the correct

tensorial characteristic under spatial rotations.

In general, the one- and two-body sdIBM Hamiltonian

give rise to spherical, axially symmetric, and c-unsta-
ble shape deformations. There are no stable triaxially

deformed nuclear shapes, unless one includes three-body

interactions to break the IBM dynamical symmetries. Thus,

to introduce a degree of rotation and triaxiality (c-depen-
dent), three-body interactions are considered in the second

and third terms of Hamiltonian (1).

The second term contains three creation and annihilation

operators of the d bosons in a general form as follows:

Ĥ3d ¼
X
L

hL dy � dy � dy
h iðLÞ

� ~d � ~d � ~d
� �ðLÞ

; ð4Þ

where hL is a strength parameter. There are five linear

independent combinations of type (4), which are deter-

mined uniquely by the value of L ðL ¼ 0; 2; 3; 4; 6Þ. We

will choose the single third-order interaction between the d

bosons (all hL ¼ 0 except h3), because L ¼ 3 is the most

effective at creating a triaxial minimum on the potential

energy surface. Then, the L ¼ 3 cubic d-boson interaction

yields the following:

Ĥ3d ¼ h3 dy � dy � dy
h ið3Þ

� ~d � ~d � ~d
� �ð3Þ

: ð5Þ

The third term in Hamiltonian (1) is the cubic quadrupole

operator and is written in the following form:

ĤQ ¼ �k Q� Q� Q½ �ð0Þ ð6Þ

with coupling parameter k, and where Q̂ is the O(6) sym-

metric quadrupole operator of the sdIBM given by
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Q̂ ¼ dysþ sy ~d
h ið2Þ

: ð7Þ

3 Boson intrinsic coherent state

The geometrical interpretation of the IBM Hamiltonian

can be obtained by introducing an intrinsic coherent state,

which allows associating a geometrical shape to it in terms

of the deformation parameter b and a departure from axial

symmetry c (b� 0; 0	 c	 p=3).
The intrinsic coherent state of sdIBM for a nucleus with

N valence bosons is given by [12]

j C i ¼ 1ffiffiffiffiffi
N!

p byc
� �N

j0i; ð8Þ

where j0i represents a boson vacuum (inert core) and b
y
c is

a boson creation operator given by the following:

b
y
c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
p sy þ b cos cd

y
0 þ 1ffiffiffi

2
p sin cðdy2 þ d

y
�2Þ

� �
:

ð9Þ
In terms of the parameters b and c, the expected value of

the Hamiltonian is easily obtained from the evaluation of

the expected values of each single term.

4 Potential energy surface (PES) and critical points

The PES associated with the classical limit of the

Hamiltonian HO(6) is given by its expected value in an

intrinsic coherent state (8), yielding the following energy

function:

EO(6)ðN; bÞ ¼ CjHO(6)jC
D E

¼ 1

4
a0NðN � 1Þ 1� b2

1þ b2

	 
2

þ6a1N
b2

1þ b2

þ 7

5
a3N

b2

1þ b2
:

ð10Þ
Equation (10) can be rewritten in another form:

EO(6)ðN; bÞ ¼
A2b

2 þ A4b
4

ð1þ b2Þ2 þ c; ð11Þ

where the coefficients A2;A4; c are given by

A2 ¼kN � a0NðN � 1Þ;
A4 ¼kN;

c ¼ 1

4
a0NðN � 1Þ;

with k ¼6a1 þ 7

5
a3:

ð12Þ

The PES Eq. (11) is c-independent and has two indepen-

dent parameters a0 and k.
To analyze the critical behavior for the energy function

Eq. (11), the anti-spinodal point occurs when E becomes

flat at b ¼ 0 or when o2E=ob2jb¼0 ¼ 0 (A2 ¼ 0), which

yields
a0ðN�1Þ

k ¼ 1.

The deformed nucleus has the absolute minimum at

b 6¼ 0. For any stable equilibrium state, the first derivative

of E with respect to b must be zero, and the second

derivative must be positive. Thus, we obtain the following:

A2 þ ð2A4 � A2Þb2 ¼ 0; ð13Þ
A2 þ ð6A4 � 8A2Þb2 � ð6A4 � 3A2Þb4 [ 0: ð14Þ
Therefore, the equilibrium value of b is as follows:

b0 ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2

A2 � 2A4

r
¼ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0ðN � 1Þ � k
a0ðN � 1Þ þ k

s
: ð15Þ

Under the condition a0ðN � 1Þ[ k, the critical point is

found at k ¼ a0ðN � 1Þ, and the corresponding E becomes

the following:

Ecritical ¼
kNb4

ð1þ b2Þ2 þ
1

4
a0NðN � 1Þ: ð16Þ

In Table 1 and Fig. 1, we show the PES calculations

corresponding to the modified O(6) limit for different

values of N ðN ¼ 2; 4; 7; 10; 12Þ. In Fig. 1, we show that

the critical point of a shape transition depends on the total

number of bosons N. We adjusted the PES parameters

listed in Table 1 to produce a shape transition at the critical

N ¼ 7, which for the value N ¼ 7 gives a flat b4 surface at
b ¼ 0. Five values of N are presented, one at the critical

value of N ¼ 7, and two below and two above this value.

For N\7, the nucleus is in a symmetric phase because the

PES has a unique minimum at b ¼ 0, meaning a spherical

shape under equilibrium is obtained. When N increases to

the critical point N ¼ 7, the non-symmetric and symmetric

minima attain the same depth, whereas for N[ 7 the shape

at equilibrium is deformed.

In a classical limit ðN ! 1Þ, the PES is not explicitly

dependent on N and is given by the following:
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EðbÞ ¼ ðk� a0Þb2 þ kb4

ð1þ b2Þ2 þ 1

4
a0: ð17Þ

Introducing the parameter x such that x ¼ a0=k, Eq. (17)
can be written as follows:

EðbÞ
k

¼ ð1� xÞb2 þ b4

ð1þ b2Þ2 þ 1

4
x ð18Þ

For x\1, the global minimum is at b ¼ 0. For x[ 1, we

arrive at a deformed c-soft shape. For x ¼ 1, a second-order

phase transition from a spherical to deformed shape occurs

(flat b4 surface).

Figure 2 shows the evolution of the PESs for various

values of x, where a shape phase transition occurs at x ¼ 1,

providing a flat b4 surface close to b ¼ 0; that is, the

classical limit has the capability of producing a shape

transition.

An N dependence occurs if we modify the O(6) Hamil-

tonian of the sd IBM Eq. (2) by providing the coefficients

a1; a3 of the Casimir operator of O(5)

C2 O(5)½ � � a1L � Lþ a3T3 � T3ð Þ, which are N dependent,

that is, a1 ¼ f1 þ g1N, a3 ¼ f3 þ g3N, and the modified O(6)

Hamiltonian in this case becomes the following:

Hmodified
O(6) ¼ a0P

yPþ f1 þ h1Nð ÞL � Lþ f3 þ h3Nð ÞT3 � T3:
ð19Þ

Fig. 1 PESs versus the deformation parameter b for the data listed in Table 1

Table 1 Parameters of the PES for a set of boson numbers N ¼
2; 4; 7; 10; 12 (a0 = 0.12 MeV, k = 0.320 MeV)

N 2 4 7 10 12

A2 0.4 − 0.16 − 2.8 − 7.6 − 12

A4 0.64 1.28 2.24 3.2 3.84

c 0.06 0.36 1.26 2.70 3.96
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This Hamiltonian is not U(5) invariant but exhibits prop-

erties of a spherical vibrator to a high degree of accuracy

despite not containing a n̂d operator. The PES for this

modified O(6) Hamiltonian is also given by Eq. (11) with

k ¼ 6f1 þ 7
5
f3

� �þ N 6h1 þ 7
5
h3

� �
.

Equation (11) can be written in the following form:

EðN; bÞ ¼ g2b
2 þ g4b

4 þ g6b
6

ð1þ b2Þ3 þ c; ð20Þ

where

g2 ¼ A2 ¼ kN � a0NðN � 1Þ;
g4 ¼ A2 þ A4 ¼ 2kN � a0NðN � 1Þ;
g6 ¼ A4 ¼ kN:

ð21Þ

The expected value of the cubic d-boson Hamiltonian H3d

is obtained using the intrinsic coherent state (8), yielding

the following:

E3dðN; b; cÞ ¼ 1

7
h3NðN � 1ÞðN � 2Þ b6

ð1þ b2Þ3
� ð�1þ cos2 3cÞ

¼ ab6 cos2 3c� ab6

ð1þ b2Þ3 ;

ð22Þ

where

a ¼ 1

7
h3NðN � 1ÞðN � 2Þ: ð23Þ

In addition, the classical potential corresponding to the

three-body Hamiltonian HQ using the intrinsic coherent

state (8) is given by the following:

Fig. 2 PESs of the O(6) dynamical symmetry of IBM at the classical limit as a function of the deformation parameter b for a, b a spherical shape

(x ¼ 0, x ¼ 0:5), c a flat b4 surface (x ¼ 1), and d, e a deformed shape (x ¼ 2, x ¼ 3)
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EQðN; b; cÞ ¼ �K

ffiffiffiffiffi
8

35

r
3NðN � 1Þ
ð1þ b2Þ3 þ 4NðN � 1ÞðN � 2Þ

ð1þ b2Þ3
" #

� b3 cos 3c

¼ g3b
3 cos 3cþ g5b

5 cos 3c

ð1þ b2Þ3 ;

ð24Þ
where

g3 ¼ �K

ffiffiffiffiffi
8

35

r
NðN � 1Þð4N � 5Þ;

g5 ¼ �3K

ffiffiffiffiffi
8

35

r
NðN � 1Þ:

ð25Þ

Adding Eqs. (22) and (24) corresponding to the three-body

interactions to Eq. (11), which describes the O(6) dynam-

ical symmetry, yields the total PES of the total Hamiltonian

(1).

EðN; b; cÞ ¼ 1

ð1þ b2Þ3 ½g2b
2 þ g3b

3 cos 3cþ g4b
4

þ g5b
5 cos 3cþ g6 � að Þb6 þ ab6 cos2 3cþ g0�:

ð26Þ

This final formula for the PES contains seven parameters,

g2; g3; g4; g5; g6; a; g0f g, in addition to the c angle.

5 B(E2) ratios

Calculations of the excitation energies and electric

quadrupole reduced transition probabilities B(E2) provide a
good test for shaping the transition. The electric quadrupole

transition operator in the O(6) limit of IBM is given by the

following [39]:

T̂ðE2Þ ¼ e dy � ~sþ sy � ~d
h ið2Þ ð27Þ

with e being the boson effective charge. The reduced

electric quadrupole transition probabilities are given by the

following:

BðE2; Ii ! IfÞ ¼
1

2Ii þ 1
jhIf jjT̂ðE2ÞjjIiij2; ð28Þ

where Ii and If are the angular momenta for the initial and

final states, respectively. For the ground state band, the

energy ratios RI=2 and the ratios of the E2 transition rates

BIþ2=2 are defined as follows:

RI=2 ¼
EðIþ

i
Þ

Eð2þ1 Þ
; BIþ2=2 ¼ BðE2; I þ 2 ! IÞ

BðE2; 2þ1 ! 0þ1 Þ
: ð29Þ

The ratios for the U(5) and O(6) limits of IBM are given by

the following:

RI=2 ¼
I

2
for U(5)

I

8

I

2
þ 3

	 

for O(6)

8>><
>>:

9>>=
>>;; ð30Þ

BIþ2=2 ¼
1

2
I þ 2ð Þ 1� I

2N

	 

for U(5)

5

2

ðI þ 2Þ
ðI þ 5Þ 1� I

2N

	 

1þ I

2ðN þ 4Þ
	 


for O(6)

8>>><
>>>:

9>>>=
>>>;
:

ð31Þ

6 Numerical calculations and discussion

To visualize the influence of the cubic boson interaction

term on the PES plots, we first represent the PES for the

pure O(6) limit Eq. (11) with parameters A2 ¼ �2:96;A4 ¼
2:64; c ¼ 1:4 (all in MeV), as shown in Fig. 3a. It is known

that the shape of the general one- and two-body IBM1

Hamiltonian at equilibrium can never be triaxial. Only the

inclusion of specific higher-order boson interaction terms

[at least three-body interactions such as H3d in Eq. (5) and

HQ in Eq. (6)] produces triaxiality. The influence of

the cubic term H3d of the O(6) limit is studied by

plotting the PESs in Fig. 3b–d according to HO(6) þ H3d

with the parameters g2 ¼ �2:96; g4 ¼ �0:32; g6 ¼
2:64; a ¼ 2:88; c ¼ 1:4 (all in MeV). It can be seen that a

stable triaxial minimum results at c ¼ 30� and b ¼ 0:7.

When the strength parameter of the cubic term H3d

equals zero (a = 0), a minimum in PES with respect to c can
only occur for c ¼ 0� or c ¼ 60�; that is, the equilibrium

shape of the classical limit can never be triaxial. For a 6¼ 0,

the cubic term lowers the PES with the greatest effect

occurring at b0 6¼ 0 and c ¼ 30�. Figure 4 illustrates the

PESs of EO(6) þ E3d according to Eqs. (11) and (22) in the

classical limit.

For the three-body O(6) symmetric quadrupole term HQ,

for a fixed k in Eq. (11) and k 6¼ 0 in Eq. (24), the surface

energy depends on c and leads to triaxiality. Figure 5 shows
the calculated PESs for k 6¼ 0 and various values of the

coefficient of the pairing operator a0.

● For a0 ¼ 0, the minimum potential surface occurs at

k[ 0, c ¼ 0, or k\0, where c ¼ 0� and the PES

exhibit spherical (b ¼ 0) and deformed (b[ 0) shapes

(panel a)

● For a 6¼ 0, a spherical shape occurs for a0\k (panel b)

and a deformed shape occurs for a0 [ k (panels d and

e).

● For a0 ¼ k, the spherical shape disappears (panel c)
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The even–even transitional nuclides 124�132Xe represent an

excellent example for the extended O(6) triaxial shapes.

Because the neutron numbers in this isotopic chain are

between N ¼ 70 and N ¼ 78, the doubly closed shell of

Z ¼ 50 and N ¼ 82 is assumed such that the neutrons are

treated as holes, whereas the protons are valance particles

when we determine the total number of bosons. For each

nucleus, the parameters of the PESs

g2; g3; g4; g5; g6; a; g0; c, which depend on the original

parameters of our proposed Hamiltonian, are adjusted from

a best fit to the experimental data of the level energies, B
(E2), which are the transition probabilities for the ground

state bands. A standard v test is used to conduct the fitting

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

XN

i¼1

XiðdataÞ � XiðIBMÞ
dXiðdataÞ

� �2s
; ð32Þ

where n is the number of experimental data points; XiðdataÞ
and XiðIBMÞ are the experimental and calculated spectro-

scopic properties, respectively; and dXiðdataÞ indicates

experimental errors. The experimental data include six

energies of levels 21; 22; 41; 31; 42; 81, and five B(E2)
reduced quadrupole transition probabilities of the transition

2þ1 ! 0þ1 ; 4
þ
1 ! 2þ1 ; 2

þ
2 ! 2þ1 ; 2

þ
2 ! 0þ1 ; 2

þ
1 ! 0þ2 , and

low-spin ground states. The best adopted parameters are

listed in Table 2. A comparison between the experimental

and our extended O(6)IBM calculations for the energy ratios

RIþi =2
þ
1
¼ EðIþi Þ=Eð2þ1 Þ and B(E2) ratios BIþ2=2 is shown in

Tables 3 and 4. For the pure O(6), the ratios are

R2þ
2
=2þ

1
¼ 2:235, R4þ

1
=2þ

1
¼ 2:647, R3þ

1
=2þ

1
¼ 4:058,

R4þ
2
=2þ

1
¼ 4:294, and R6þ

1
=2þ

1
¼ 4:941.

A good agreement between the present calculations and

the experiment results was found. We can see that the

collectivity increases smoothly with a decrease in the

neutron number from N ¼ 78 to N ¼ 70, and the value of

the R4=2 ratio changes from the vibrational limit R4=2 ’ 2

for 132Xe to c-soft rotor R4=2 ’ 2:5 for 124Xe.

In Table 4 and Fig. 6, we give the values of the calcu-

lated ratios of the E2 transition rates BIþ2=2 for
124;128;132Xe

compared to the experimental values and to the calculated

O(6) prediction.

Fig. 3 PES as a function of b
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The results of the extended O(6)IBM triaxial calcula-

tions for the classical limit of the evolution of the PESs for

the even–even 124�132Xe isotopic chain are shown in Fig. 7

as a function of the deformation parameter b2, the PES

parameters of which are listed in Table 2. From Table 2, we

can see that for 132Xe the parameters g3 and g5 have pos-

itive values compared to those of the otherXe isotopes

because 132Xe shows a quasi-vibrational nucleus demon-

strating a minimum PES in the form of a narrow ðb; cÞ
valley from the spherical region ðk\0Þ to the triaxial

region ðk[ 0Þ with c ’ 30� (where k is the strength

parameter of the three-body O(6) symmetric quadrupole

term). On the other side, the isotope 124Xe is a candidate

for a deformed O(6) triaxial in a ground state with the

shallow minima at c ’ 26�. The resulting contour PESs for
124Xe and 126Xe are shown in Fig. 8.

7 Conclusion

The effects of three-body boson interactions were con-

sidered. Three d-boson interactions dydydy
h ið3Þ

� ~d ~d ~d
� �ð3Þ

and the cubic QQQ½ �ð0Þ terms, where Q is the O(6) sym-

metric quadrupole operator, are added to the Hamiltonian

of the extended O(6) dynamical symmetry of the IBM. We

provided the coefficients of the Casimir operator of O(5),

which are N-dependent, where N is the total number of

bosons. The modified O(6) model exhibits rotational and

triaxiality behaviors. The model is applied to the even–

even 124�132Xe isotopes. A simulated fitting procedure is

conducted to obtain the model parameters for each nucleus

of the Xe isotopic chain and thus the minimum root mean

square deviation between the calculated and

Fig. 4 PESs according to HO(6) þ H3d in the classical limit as a

function of deformation parameters b, demonstrating the influence of

the departure from the axial symmetry c and the strength parameter a

of the cubic terms with three creation and three annihilation operators

of the d bosons. The parameter a0 is indicated in the figure, and k ¼ 4
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Fig. 5 PES Equations (11) and (24) in the classical limit as a function of deformation parameter b showing the influence of the strength

parameter k of the cubic term interaction QQQ½ �ð0Þ to introduce a degree of triaxiality. The parameter a0 is indicated in the figure, and k ¼ 4

Table 2 Values of the adopted best PES parameters (in MeV) as derived through the fitting procedure used in the present calculations for a
124�132Xe isotopic chain (where N is the boson number)

124Xe 126Xe 128Xe 130Xe 132Xe

N ¼ 8 N ¼ 7 N ¼ 6 N ¼ 5 N ¼ 4

g2 1.24 1.26 1.23 1.15 1.05

g4 3.88 3.57 3.21 2.8 2.001

g6 4.04 3.36 2.73 2.15 2.101

g3 − 0.158 − 0.118 − 0.084 − 0.056 0.169

g5 − 0.632 − 0.472 − 0.336 − 0.224 0.076

a 2.88 1.8 1.028 0.514 0.205

g0 1.4 1.05 0.75 0.5 0.22
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Table 3 A comparison between experimental and calculated energy ratios RIþi =2
þ
i
¼ EðIþi Þ=Eð2þ1 Þ for 124�132Xe isotopic chain

NB Nuclide R2þ
2
=2þ

1
R4þ

1
=2þ

1
R3þ

1
=2þ

1
R4þ

2
=2þ

1
R6þ

1
=2þ

1

8 124Xe

Cal. 2.376 2.471 3.501 4.100 4.316

Exp. 2.391 2.482 3.524 4.061 4.373

7 126Xe

Cal. 2.211 2.389 3.398 3.893 4.184

Exp. 2.264 2.423 3.390 3.829 4.207

6 128Xe

Cal. 2.141 2.336 3.252 3.699 3.912

Exp. 2.188 2.332 3.227 3.620 3.922

5 130Xe

Cal. 2.045 2.311 3.062 3.365 3.651

Exp. 2.093 2.247 3.045 3.373 3.626

4 132Xe

Cal. 1.911 2.126 2.753 2.912 3.223

Exp. 1.943 2.157 2.701 2.939 3.162

Table 4 Calculated ratios of E2 transition probabilities BIþ2=2 ¼ BðE2;Iþ2!IÞ
BðE2;2þ

1
!0þ

1
Þ, I

p ¼ 2þ1 to 8þ1 for 124;128;132Xe isotopes compared to those obtained

from the experimental results as well as the prediction of the O(6) limit of IBM

NB Nuclide B4=2 B6=4 B8=6 B10=8

8 124Xe

Exp. 1.34(24) 1.59(71) 0.63(29) 0.29(8)

Cal. 1.501 1.991 2.490 3.354

O(6) 1.354 1.458 1.420 1.282

6 128Xe

Exp. 1.47(2) 1.94(26) 2.39(4) 2.74(114)

Cal. 1.790 2.853 4.232 6.001

O(6) 1.309 1.333 1.181 0.897

4 132Xe

Exp. 1.24(18)

Cal. 2.990 2.032 17.492

O(6) 1.205 1.666 0.625
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Fig. 6 Comparison of the calculated BIþ2=2 ¼ BðE2;Iþ2!IÞ
BðE2;2þ

1
!0þ

1
Þ ratios of the ground bands in 124Xe ðNB ¼ 8Þ, 128Xe ðNB ¼ 6Þ, and 132Xe ðNB ¼ 4Þ

compared to the experimental results and O(6) IBM prediction

Fig. 7 PES as a function of b for a 124�132Xe chain
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experimentally selected set of energy levels and B(E2)
transition rates of the yrast states.
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