
FPGA implementation of neural network accelerator for pulse
information extraction in high energy physics

Jun-Ling Chen1 • Peng-Cheng Ai1 • Dong Wang1 • Hui Wang1 •

Ni Fang1 • De-Li Xu1 • Qi Gong1 • Yuan-Kang Yang1

Received: 6 January 2020 / Revised: 22 March 2020 / Accepted: 23 March 2020 / Published online: 27 April 2020

� China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese

Nuclear Society and Springer Nature Singapore Pte Ltd. 2020

Abstract Extracting the amplitude and time information

from the shaped pulse is an important step in nuclear

physics experiments. For this purpose, a neural network

can be an alternative in off-line data processing. For pro-

cessing the data in real time and reducing the off-line data

storage required in a trigger event, we designed a cus-

tomized neural network accelerator on a field pro-

grammable gate array platform to implement specific

layers in a convolutional neural network. The latter is then

used in the front-end electronics of the detector. With fully

reconfigurable hardware, a tested neural network structure

was used for accurate timing of shaped pulses common in

front-end electronics. This design can handle up to four

channels of pulse signals at once. The peak performance of

each channel is 1.665 Giga operations per second at a

working frequency of 25 MHz.

Keywords Convolutional neural networks � Pulse
shaping � Acceleration � Front-end electronics

1 Introduction

In modern particle physics experiments, the analysis and

discrimination of physical events depend on the observa-

tion of the types and kinetic information of the final state

particles . This information is usually extracted by mea-

suring the energy, time, and position of particles in the

detector [1–3]. With the development of digital nuclear

spectrometer systems, digital signal processing algorithms

have been applied to estimating pulse parameters [4, 5].

Mark A. Nelson et al. evaluated a curve fitting method to

calculate the relative arrival times of pulses [6]. Huang

et al. proposed an estimation method for parameters of

overlapping nuclear pulse signals based on a population

technique [7]. However, the exponential signal and the

non-Gaussian noise of the detector system complicate the

problem, making the traditional methods insufficient to

achieve optimal accuracy and efficiency. Moreover, the

long-term drift and short-term changes in the detector

cause systematic variations of the analog-to-digital con-

verters (ADC) [8].

Neural networks were applied to the field of high energy

physics in the 1980s [9] because of their advantages in

pattern recognition. Recently, the deep learning technology

represented by convolutional neural networks has pro-

gressed rapidly [9, 21]. It has been successfully applied to

high energy physics, and has been proven to perform well

in pulse shape identification and particle discrimination

[10, 11]. In a recent paper [8], a deep learning architecture

was proposed for a time series of nuclear pulse signals and

demonstrated favorable performance in practice.

Deep learning networks require a large number of cal-

culations to realize the forward propagation. Hardware

accelerators based on graphics processing units (GPU),
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application-specific integrated circuits (ASIC), and field

programmable gate arrays (FPGA) are widely used to

implement neural network calculations [12–15].

The GPU provides parallel computing and floating-point

computing capabilities, which make it a good choice to

train and apply to deep neural networks. However, because

of their high power consumption, GPUs are not suitable for

low power platforms [16]. On the other hand, the ASIC has

many advantages, such as low power consumption, high

performance, and small size [17]. Nevertheless, the

development cycle of an ASIC is long, and the customized

design also makes an ASIC less flexible in adapting it to

various networks. As a programmable device, an FPGA has

reconfigurable logic resources based on a look-up-

table (LUT) [20]. According to the operational require-

ments of the network model, the hardware circuit of an

FPGA can be adjusted and optimized, providing high

flexibility in the hardware framework. However, an FPGA

has no advantage in floating-point operations. FPGA has

the ability of parallel and pipeline processing. In recent

years, Microsoft, Amazon, and many other companies have

deployed a huge number of FPGAs in their data centers to

upgrade their computing facilities [26]. The FPGA, with its

short development cycle and flexible logic resources, is

also used as a preliminary step for ASICs. To preprocess

the nuclear pulse signals in the front-end electronics of the

detectors, we designed a customized neural network

accelerator for pulse timing based on the neural network

architecture described in [8].

2 Background

In the process of nuclear signal digitization, there are

two major converters: time-to-digital converters (TDC) and

ADC. Generally, the TDC is used for high precision time

measurement (picosecond scale), while the ADC is used

for amplitude information and lower time accuracy mea-

surements (nanosecond scale). The previous network

structure in [8] is used to process a one-dimensional time

series of nuclear pulse signals from ADC-based detectors.

In this section, we first introduce the shaped pulse, citing

the photon spectrometer (PHOS) calorimeter [18]. We then

review the previous work in [8].

2.1 Shaped pulse

The front-end electronics (FEE) of the PHOS

calorimeter has 32 independent readout channels, each of

which is connected to a detector unit composed of PWO

(PbWO4) crystals, avalanche photodiodes (APD), and

charge sensitive pre-amplifiers (CSA). The APD detects

the light induced by incident particles and the CSA

converts the resulting charge into a voltage signal. The

signal from a CSA is fed to a channel of the FEE card and

shaped by two CR-RC2 signal shapers with high gain and

low gain. At the terminations of the two shapers are two

10-bit ADCs for digitizing with a fixed sampling rate of 10

MS/s [19]. Based on the shaping circuit, the output pulse

shape of the shaper in the time domain is shown in Fig 1,

and the representation of the shaper can be formulated as

the equation below:

VðtÞ ¼
K � ðt � t0

sp
Þ2 � eð�2�t�t0

sp
Þ þ b for t� t0

b for t\t0

:

8
<

:
ð1Þ

In this equation, K is defined as 2Q�A2

Cf
, where Q is the APD

charge, A is the shaper gain, and Cf is the charging

capacitance of the CSA. t0 is the start time and b is the

pedestal. sp, as the peaking time, is equal to twice the

shaping time which is 2 ls here. Q, A, cf represent the APD
charge, shaper gain, and charging capacitance of the CSA,

respectively.

2.2 Pulse timing estimation

2.2.1 Neural network

A network model, shown in Fig. 2, is based on a model

proposed in [8] and verified to be feasible for a time series

of nuclear pulse signals. This network consists of a

denoising autoencoder (DAE) and a regression network.

An autoencoder is an unsupervised neural network that

attempts to approximately copy its input to output to learn

useful properties of the data [21]. The DAE is an
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Fig. 1 Typical diagram of the shaped pulse. The values of K and b
are related to the detector readout electronics. In this figure, the values

of K and b are set to 3 and 0.1, respectively. The start time t0 is

randomly taken as - 0.7
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autoencoder that receives a noise-added data as input and is

trained to recover the original data as its output [22]. The

regression network composed of two full connection layers

is used to output the parameters of interest.

To improve performance of the network, convolution

and deconvolution are added to replace full connection in

the encoder and decoder layers in the DAE and to enhance

the process of feature extraction. In [8], the network con-

sists of eight convolution layers and eight deconvolution

layers in the DAE, whereas in this design, the number of

convolution and deconvolution layers is reduced to five.

Skip connections are also used between the encoder and the

decoder. This means that, except for the last layer of the

encoder and the first layer of the decoder, every encoder

layer and the corresponding decoder layer are directly

connected, which solves the problem of gradient vanish-

ing/exploding in the network optimization. The parameters

of all layers of the network are shown in Table 1.

2.2.2 Data processing

The following steps are used to process the pulse data

for the neural network.

1. Generate the data set. For the pulse signal in

equation 1, different values of K and t0 are taken to

generate multiple sets of pulses. Thirty-two points with

a fixed interval are sampled for each example in the

data set. These examples are divided into the training

data set and the test data set in a ratio of 4 to 1.

2. Train the network. This step is performed on the GPU.

First, noise is added to the input data based on the

noise level that is expected to appear in the pulse

signal, and the DAE is pre-trained with the data. The

DAE receives noisy data as the input and the original

data as the label. By this means, the DAE can develop

the ability to filter out noise. Then, the network is

finetuned end-to-end.

3. Predict t0. We use the trained model on the test data set

and the values of the start time t0 are predicted.

In the experiment of [8], the difference between the pre-

dicted values and the actual values was fitted as a Gaussian

function. The standard deviation of Gaussian fitting is a

measure of time resolution, and the average is a measure of

system bias. The experimental results show that, in time

resolution, the performance of the neural network method

is 27.3 percent higher than the curve fitting method. In

addition, the system bias is greatly reduced by the neural

network. This means that it is feasible to use this network

to estimate the start time of a nuclear pulse, and this

method can greatly improve the time accuracy.

3 Firmware design and implementation

To preprocess the pulse data in the FEE of the detector

in real time and reduce the off-line data storage, we

designed a customized neural network accelerator based on

an FPGA for the network model in Sect. 2. In this section,

we introduce the overall architecture and the implementa-

tion of each module of the accelerator.

3.1 Firmware

This design is composed of an external central pro-

cessing unit (CPU) and an FPGA. The external CPU is

used to generate instructions, while the FPGA is respon-

sible for the layer calculations. To connect with a RISC-V

(an instruction set architecture) CPU in a future design, we

adopt the internal chip bus (ICB) [23] to communicate with

the outside. The convolution, deconvolution, and full
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Fig. 2 Architecture of the network

Table 1 Architecture of the network

Layer Kernel[Nc] Feature map[Nc] Output[Nc]

Conv1 4[16] 32[1] 16[16]

Conv2 4[32] 16[16] 8[32]

Conv3 4[64] 8[32] 4[64]

Conv4 4[128] 4[64] 2[128]

Conv5 4[128] 2[128] 1[128]

Deconv5 4[128] 1[128] 2[128]

Deconv4 4[64] 2[128] 4[64]

Deconv3 4[32] 4[64] 8[32]

Deconv2 4[16] 8[32] 16[16]

Deconv1 4[1] 16[16] 32[1]

Fc1 — 32[1] 256[1]

Fc2 — 256[1] 256[1]

Nc is the number of channels. Conv1 is the first layer of convolution

and Deconv1 is the last layer of deconvolution. Fc1 and Fc2 are fully

connected layers
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connection operations are configured by the instructions of

the external CPU.

For one layer of the network, the data flow of the FPGA

is shown in Fig. 3:

• After the accelerator is started, the external CPU sends

instructions through the ICB. There are four devices

loaded on the ICB, global controller with the process

element (PE) array, adder tree (AT), row buffer (RB), and

column buffer (CB). The ICB selects appropriate devices

for reading and writing operations according to the

addresses.

• Through the ICB bus, the feature map data and

convolution kernel data are each sent to the RB and

CB. The RB and CB adjust the order of the feature map

data and kernel data separately, and add different zero-

padding depending on the calculation types. When

there are more than 16 channels in the feature map, the

channels will be spliced in order.

• The preprocessed feature map data and kernel data are

sent to a 4� 4 PE array for multiply-and-accumulate

(MAC) calculations.

• The calculations from the PE array are fed into the AT for

the following operations. TheAT performs 0 to 8 levels of

adder operations on the data and decide whether to use the

activation function depending on the configurations.

• The calculations from the AT are transmitted through

the ICB.

• Finally, the operations of a single turn in a network

layer are complete. Since each PE can store up to 16

kernels, when the stored kernels are used up, the feature

map data will be unchanged in the PEs, while the kernel

data will be input and the operations in steps 3-5 will be

repeated until all kernels are calculated.

3.2 Data preprocessing in the accelerator

Two buffers, RB and CB, are placed between the ICB

and the arithmetic module to preprocess the feature map

data and the kernel data to simplify external manipulations.

Owing to the 32-bit bus width of the feature map in the

PE array, the feature map data in the RB should be 4 bytes,

aligned through the data buffer to connect with the PE

array lines. Owing to the different calculations between

convolution, deconvolution, and the fully connected oper-

ation, it is necessary to add zero-padding for the feature

map data. The convolution and deconvolution operations

are shown in Figs. 4 and 5. For the convolution layers

(left), zeros are added at the ends of the feature map data.

For the deconvolution layers (right), zeros are added at

both ends of the data and interleaved between the data. For

the fully connected layers, no zero-padding is added. The

CB caches 8-bit kernel data and then outputs 16� 8-bit

data to match the 16 PEs. In addition, RB and CB tem-

porarily store input data while the PEs are working, which

can improve the parallel efficiency of the accelerator.

3.3 Details of RB and CB

The RB is not only used to cache and align the feature

map data, but also used to add zero-padding to the input

data, which is used to simplify the external data operation

and reduce the operations in the PE unit. First, four 8-bit

Bus
Column 
Buffer Adder Tree Control

Global Control

PE array

Control signals
Feature map data

Kernel data

Control signals
Feature map data

Kernel data
Intermediat data

Row 
Buffer

Spatial
Adder
Tree

Temporal
Adder
Tree

Fig. 3 (Color online)

Architecture of the accelerator

Fig. 4 Diagram of convolution calculation. The letters a-h represent

the feature map data and the shadow cubes stand for zero-padding.

The letters x, y, z, and w constitute the kernel data and the numbers 1

to 5 represent the result of the operation
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RAMs, corresponding to four rows of the PE array, are

used to cache data. The feature map data loads into the

RAMs row by row. The feature map data is then zero-

padded under the control of a state machine.

The zero-padded data is transmitted as four rows indi-

vidually to four deserializers. After that, four rows and four

columns of data are sent to the PE array.

The CB is used to cache and align the kernel data.

Similar to the front of RB, sixteen 8-bit RAMs, corre-

sponding to 16 PEs, are used to cache the kernel data.

3.4 Calculation module

The calculation module is composed of the PE array and

the AT. The PE array is a 4� 4 array consisted of 16 PEs,

which is mainly responsible for MAC calculations. The AT

includes spatial AT and temporal AT. The spatial AT is

used to accumulate the calculations of different PEs at the

same time, and the temporal AT accumulates the results of

the spatial AT at different times.

As shown in Fig. 6, each PE consists of a controller, an

Arithmetic Logic Unit (ALU) and memory. The memory

stores the feature map data and kernel data and punches

them into the ALU. In the ALU, 4 bytes of feature map

data and 4 bytes of kernel data read from the memory are

multiplied by element, and then, the calculations are added

and fed to the AT as the result of one PE manipulation.

The accelerator is equipped with 16 PEs, and so is able

to calculate 16 channels of input data at a time. When there

are fewer than 16 channels of input data, the output data

from the PEs is stored by the spatial AT and then sent back

through the ICB. Otherwise, the calculations of the PEs are

stored by the spatial AT and then sent to the cache of the

temporal AT. The data cached in the temporal AT is stored

with other data until data from all channels are calculated.

3.5 Details of PE and AT

A PE ALU consists of three carry ahead adders and four

multipliers designed as a four-stage pipeline. A PE calcu-

lates the multiplications and additions of four feature map

values and four kernel values in six clock periods. Both the

spatial adder tree and the temporal adder tree are four-stage

adder trees composed of 15 carry ahead adders, which can

be up to eight-stage in total.

Owing to the large number of kernels, a PE is equipped

with two areas of RAM to store all the feature map data

and part of the kernel data, respectively. After the stored

kernel data is calculated, the next batch of kernel data is

transmitted into the PE, while the feature map data is kept

in the RAM. When there are greater than 16 feature map

data channels, the feature map data calculated in a PE

needs to be concatenated between channels. For example,

the first channel of the feature map data is concatenated

with the 17th channel of data. The concatenation is com-

pleted in the RB. When the convolution window moves to

the connection of two channels of data, the calculation of

the ALU is invalid. The PE controller recognizes the ALU

result as valid or invalid by counting the times of the PE

calculation.

The 8-stage AT is used to accumulate the convolution

results of all channels of a feature map. Firstly, 16 FIFOs

are designed in the spatial adder tree to store the results of

16 PEs. The spatial adder tree takes one value from each of

the 16 FIFOs and adds them. Then, the results from the

spatial adder tree are stored in RAM in the temporal adder

tree. The data stored in the RAM is read in a particular

order to be added up together by channels. An example is

shown in Figs. 7 and 8.

3.6 Parallelization and data reuse

Because of the large number of calculations in convo-

lution operations, implementing parallel calculations will

significantly improve the efficiency of the accelerator.

Moreover, in convolution and deconvolution, the feature

map data corresponds to multiple sets of kernel data, and

Fig. 5 Diagram of deconvolution calculation. This figure shows the

zero-padding method and the calculation of the deconvolution

Fig. 6 (Color online) Structure of a PE
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one set of kernel data corresponds to several convolution

subregions. All of these computations are independent, and

thus, data reuse can effectively reduce the data movement

and improve efficiency. This design adopts the following

methods to improve the operating efficiency.

Parallel calculation

in the channels:

The feature map data from

multiple channels can be

calculated in parallel. The PE

array can calculate up to 16

channels of data at a time, while

the AT adds the multi-channel

data in a pipeline to realize multi-

channel internal parallel

calculation.

Parallel calculation

in the kernels:

The length of the kernel in the

network is 4. To accommodate

the kernel length, the PE is

designed to perform calculations

for 4 units of 8-bit feature map

data and 4 units of 8-bit kernel

data at a time. Therefore, the

kernel data corresponding to the

same subregion of convolution

can be calculated in parallel.

Kernel data reuse: In one round of convolution, after

being taken out, the kernel data is

stationary while the feature map

is moved until all calculations for

this kernel data have been

performed. After that, another set

of kernel data is fed into the PE

and calculations continue with the

previous round.

Feature map data

reuse:

In the first layer of the encoder,

there is one input channel. At this

time, 16 PEs can share the same

set of feature map data and

implement the spatial reuse of

feature map data.

4 Experiment

To verify the function of the design and evaluate its

performance, we analyzed three aspects of the design.

Firstly, we measured the FPGA resources occupied by the

accelerator; secondly, we evaluated the computing perfor-

mance of the accelerator when it ran the network; finally,

we assessed the impact of different quantization precision

on the time resolution of the network estimating pulse time.

This design was implemented on the KC705 board,

equipped with a Xilinx FPGA chip XC7K325T.

Fig. 7 Diagram of the data

calculated in the spatial adder

tree. This figure shows the

concatenation method of the

data after PEs and the structure

of the spatial adder tree

Fig. 8 Diagram of the data

calculated in the temporal adder

tree. This figure shows the

structure of the temporal adder

tree
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4.1 Resource usage

We synthesized the RTL code on the Vivado platform,

and obtained the resource utilization shown in table 2 as

provided by Vivado. Compared with general neural net-

work accelerators [14, 24], this design uses less resources.

The utilization shows that this board can provide four

independent channels for pulse signals.

4.2 Calculation performance

To verify the function of the RTL code logic and

evaluate the performance of accelerator, we performed

behavioral simulation of the RTL code on Vivado at a

working frequency of 25 MHz, and measured the time

required for each layer of the network to calculate a set of

data. Based on the time and the number of operations at

each layer, which can be easily calculated based on the size

of the network model, we obtained the performance of this

accelerator. As shown in Table 3, the peak performance is

1.665 Giga operations per second (GOPS).

4.3 Pulse timing estimation

We used this design to estimate the pulse time and

compare the time resolution with a GPU. In the case of the

same network model and training method, the difference

between using an FPGA and a GPU for pulse time esti-

mation is mainly due to different quantization conditions.

The FPGA is not suitable for floating-point operation,

which is what the GPU excels at. We therefore measured

the difference in the time resolution between a fixed-point

quantization network on the FPGA and a floating-point

quantization network on the GPU when estimating pulse

time. Based on the pulse model discussed in Sect. 2, we

added Gaussian noise to the pulse and sampled it to obtain

40000 samples in the training data set and 10000 samples

in the test data set. The DAE was trained according to the

different quantization precisions of 8-bit fixed-point, 8-bit

and 16-bit mixed fixed-point, 16-bit fixed-point, and 32-bit

floating-point, respectively. We then calculated the root

mean square error (RMSE) between the DAE output and

the true value, and gathered the statistics of the RMSE

distribution. The RMSE indicates the recovery of the true

pulse sequence by the DAE network. The lower the RMSE,

the stronger the DAE network’s ability to find the true

noiseless signal from the signal with noise added. Lastly,

the regression network was trained according to the dif-

ferent quantization precisions. According to the regression

output and the true value, we mapped the distribution of the

result and measured the time resolution. The result is

shown in Fig. 9 and Table 4

Compared with 8-bit fixed-point DAE, the 8-bit encoder

and 16-bit decoder perform slightly better in recovering the

true pulse signal, while the 16-bit fixed-point DAE shows a

significant improvement. For the regression task, the time

resolution of the 16-bit network is 13% better than that of

the 8-bit network, whereas that of the mixed network is

1.1% worse than that of the 8-bit network. The time res-

olution of the 32-bit floating-point network is 1.9% better

than that of the 16-bit network.

The result shows that the improvement of quantization

precision can improve time resolution, but mixed quanti-

zation has no advantage. The time resolution measured by

the FPGA is indeed worse than that of the GPU owing to

the quantization precision. This difference, however, is not

as evident as the difference between 8-bit fixed-point

quantization and 16-bit fixed-point quantization.

Table 2 Resource usage of this design

Resources LUTs LUTRAM FF IO

Used 47927 319 56170 86

Available 203800 64000 407600 500

Utilization (%) 23.50 0.50 13.78 17.20

Look-up-table (LUT), LUTs used for RAM (LUTRAM), flip flop

(FF), and input or output (IO) statistics are reported after placement

and routing is completed with the Vivado set tool

Table 3 Performance of the accelerator

Layer Running time (ls) Performance (GOPS)

Conv1 27.3 0.075

Conv2 34.6 0.947

Conv3 107.5 0.610

Conv4 220.2 0.595

Conv5 256.0 0.512

Deconv5 297.0 0.883

Deconv4 366.1 1.432

Deconv3 162.6 1.612

Deconv2 78.7 1.665

Deconv1 5.2 1.575

Fc1 204.8 0.081

Fc2 337.9 0.389

The performance shows the operation speed of the accelerator, which

indicates the number of operations performed by the accelerator per

second [25]. The number of operations at each layer of the network

can be easily calculated based on the size of the network model
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5 Conclusion

Neural networks have excellent learning abilities when

processing time series of nuclear pulse signals. The DAE,

owing to its structure, has some advantages compared with

the traditional method in terms of its anti-noise properties.

Currently, there are many studies on the application of

neural networks to pulse parameter estimation and particle

identification, but few of them are applied to FEE for real-

time data processing. For a verified network model, we

designed a customized accelerator applied to pulse time

recovery. The customized design means that the accelera-

tor consumes less resources while still ensuring the per-

formance, so as to provide support for multiple data

channels. This design provides a possibility to preprocess

the data in the FEE of detectors in real time, reduce the

amount of data storage and improve the precision of pulse

time extraction. It is also a preview step for ASIC design.

The study comparing our design with a GPU showed the

influence of quantization on the final result. Higher quan-

tization precision resulted in more accurate data represen-

tation and less error propagation during the neural network

Fig. 9 (Color online) The results of the network for different

quantization. The 8-bit and 16-bit mixed fixed-point quantization

indicates that 8-bit fixed-point quantization is applied to the encoder

of the DAE and 16-bit is used on the decoder. We plotted the results

of the test samples and showed the true t0 and the predicted t0. The
color of each square in the two-dimensional histogram shows the

number of examples (with true t0 and predicted t0) that fall into that

region
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training. However, higher quantization precision also

reduced computing efficiency. Thus, the balance between

quantization precision and computing efficiency is worth

considering for future research. Methods for reducing the

impact of low-precision quantization on networks trained

with floating-point weights and feature maps are also worth

studying.
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