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Abstract
This study presents a probabilistic safety analysis (PSA) method for the external event of extreme snowfall on a floating 
nuclear power plant (FNPP) deployed in the Bohai Sea. We utilized the Weibull and Gumbel extreme value distributions 
to fit the collected meteorological data and obtained a hazard curve for the event of an extreme snowfall where the FNPP is 
located, providing a basis for the frequency of extreme snowfall-initiating events. Our analysis indicates that extreme snowfall 
primarily affects the ventilation openings of the equipment, leading to the failure of devices such as the diesel generators. 
Additionally, extreme snowfall can result in a loss of off-site power (LOOP). Therefore, the developed extreme snowfall 
PSA model is mainly based on the LOOP event tree, considering responses such as snowfall removal by personnel. Our 
calculations indicate a core damage frequency (CDF) of 1.13 × 10−10 owing to extreme snowfall, which is relatively low. 
The results of the cut-set analysis indicate that valve failures in the core makeup tank (CMT), passive residual heat removal 
system (PRS), and in-containment refueling water storage tank (IRWST) significantly contribute to the CDF.

Keywords Floating nuclear power plant (FNPP) · ACP100 ·  Extreme snow PSA · External hazard

1 Introduction

Floating nuclear power plants (FNPPs) have recently gained 
increasing attention owing to their flexible deployment and 
ability to provide heat, electricity, and water cogeneration 
for remote islands/regions [1–3]. To meet the needs of off-
shore platforms, an integrated pressurized water reactor 
(IPWR) that is compact, small, and has muscular mobil-
ity is usually selected as the FNPP, such as the ACP100 
(Advanced China Power 100). As a small modular reactor 
(SMR), the safety system of ACP100 adopts a passive design 
concept to achieve reactor safety under accidents owing to 
natural forces, which reduces the dependence on external 
water sources, power supplies, and personnel intervention. 
The following key engineered passive safety systems are 
included: core cooling, residual heat removal, and contain-
ment air cooling. The design system follows a single-failure 
principle, and no human intervention is required 72 h after 

an accident [2, 4]. A potential deployment site was selected 
in Yantai in the Bohai region. Prior to formal testing, a 
probabilistic safety analysis (PSA) of an FNPP is crucial for 
project development.

Owing to the currently limited deployment of FNPPs, 
studies regarding their safety have mainly focused on deter-
ministic analyses, including thermal-hydraulic characteris-
tics [5], structural stresses [6], and severe accident analy-
ses [7]. Studies regarding probabilistic analyses, especially 
those concerning external events, are limited, with current 
research primarily focusing on ship collisions [8]. According 
to meteorological data, heavy snowfall occurred in Yantai, 
where the FNPP was deployed. Considering the integrity of 
the safety assessment, it is necessary to consider the impact 
of extreme snowfall on an FNPP. In addition, incorporating 
extreme snowfall as an external event into the probabilistic 
safety assessment will have potential benefits for the design 
of an FNPP and the identification of risks for other nuclear 
power plants along the Bohai coast. This study aims to 
evaluate the impact of extreme snowfall on an FNPP using 
meteorological data within the framework of a risk assess-
ment of an external event and to provide risk insights for the 
design of an FNPP.
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Experts have typically used the general analysis frame-
work of an external event [9] extracted from the earthquake 
PSA and strong-wind PSA to analyze extreme snowfall. The 
framework typically includes the following several elements: 
(1) the use of specific criteria for disaster screening to elimi-
nate extremely unlikely hazards or combinations thereof, 
(2) using the collected data, selecting appropriate hazard 
intensity measures, and conducting disaster risk analyses to 
obtain the frequency of the initiating events (IEs), and (3) 
establishing a quantitative model of the impact of a hazard, 
typically an event tree (ET) or fault tree (FT) model.

Researchers have studied both light water reactors 
(LWRs) and non-LWRs within this framework. The screen-
ing of hazards is based on a series of standards, including 
the ASME/ANS Standards [10, 11], IAEA NS-R-3 [12], 
and IAEA SSG-3 [13], which are summarized in techni-
cal reports [14]. Narumiya et al. [15] proposed a method 
for selecting combined hazards by calculating risk factors 
(product of the frequency and consequences). Choi et al. 
[16] discussed the classification, combination, and impact 
of external hazards on nuclear power plants (NPPs) and 
provided risk calculations (multidimensional integrals) for 
specific combinations. Kubo et al. [17] established a method 
to quantify the risks caused by multiple combinations of 
hazards. Considering the correlation between earthquakes 
and flood failures, they conducted a dynamic probabilistic 
risk assessment (PRA) of earthquake-induced flood events. 
In addition, they were coupled with a thermal hydraulics 
code and risk assessment using a plant interactive dynam-
ics (RAPID) framework. Yamano et al. [18] developed a 
PRA method for the combined hazards of strong winds and 
heavy rain. The combined analysis of the risk probability 
evaluates the risk curve based on the maximum instanta-
neous wind speed, hourly rainfall, and duration. Kantarzhi 
et al. [19] developed an ice dynamics model for the Russian 
FNPP deployment environment. Based on meteorological 
data and site conditions, they determined the ice loads on 
the structure of the FNPP.

Considering the PSA of extreme snowfalls, scholars typi-
cally use the depth of snow [9],maximum load of the frost 
and icing [9], snow rate [20], low-temperature duration [21], 
minimum temperature [22], blockage [23], or a combination 
of the hazard intensities. Juraj [24] utilized ANSYS to study 
the load effects of extreme snowfall with a return period of 
104 years on structures. Scholars typically use extreme value 
distributions (including the Gumbel and Weibull distribu-
tions) to describe the distribution of hazard quantities for 
disaster risk analyses.

The PSA models for snow are typically developed based 
on a Level 1 PSA. By analyzing the impact of extreme 
snowfall on the SSCs, the PSA model of an internal event 
can be added to the snow PSA. The Japan Atomic Energy 
Agency (JAEA) developed sodium fast reactors (SFRs) and 

conducted a PSA under a combination of extreme snow-
fall and low temperatures. Yamano et  al. [21, 25] con-
verted 50-year weather data from a typical SFR plant site 
into hazard intensities (annual maximum snow depth and 
annual maximum snow depth) and obtained the relevant haz-
ard curve. The results demonstrate that the vital action of 
humans is critical for improving the speed of snow removal 
and achieve the necessary snow removal. Assuming that the 
initiating event is a loss of off-site power, Nishino et al. [20] 
also considered recovery measures to prevent the loss of 
DHRS functionality (snow removal and filter replacement) 
and installed electric heaters around the inlet and outlet as 
an additional countermeasure.

Because the deployment area of an FNPP can be offshore 
or in the open sea, both mobile and moored deployments 
pose a challenge in collecting meteorological data for snow 
hazards. The FNPP investigated in this study is expected 
to be deployed offshore of Yantai and is not intended to 
move widely [3]. Therefore, utilizing the meteorological 
data of nearby land to characterize the deployment site is 
acceptable.

As indicated in the aforementioned, the scope of the 
PSA in this study will be limited to Level 1. Similar to the 
analysis framework of land-based nuclear power plants [26, 
27], the Level 1 PSA of FNPP usually includes initiating 
events, event sequences, success criteria, and human factor 
analysis. Considering the difference between the external 
and internal PSAs for an FNPP in the event of an extreme 
snowfall, the external initiating events were mainly focused 
on. The entire analysis ultimately estimates the core damage 
frequency (CDF) and helps understand the advantages and 
disadvantages of existing or envisaged safety-related systems 
and procedures for preventing core damage.

2  Extreme snowfall hazard analysis

2.1  Methodology

Establishing a PSA model for external events cannot be 
separated from hazard analysis. The analysis of an extreme 
snow hazard aims to determine the intensity and frequency 
of the hazards. The intensity of extreme snowfall can 
be characterized by the thickness of the snow or rate of 
snowfall. The results of the extreme snowfall risk analysis 
typically include the annual exceedance probability of the 
snow thickness, snowfall rate, or a combination of the two 
[20, 21]. By collecting and processing the snow-related 
data of Yantai, the extreme value distribution can be used 
to fit the annual exceedance probability of the snow thick-
ness or snowfall rate, including the Type I extreme value 
distribution (Gumbel distribution) and type III extreme 
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value distribution (Weibull distribution) [21, 28, 29]. The 
cumulative distribution function formulas are as follows:

where X is the snow depth (cm) or snowfall speed (cm/day), 
m is the shape parameter of the Weibull distribution, � is the 
scale parameter of the Gumbel distribution, � is the scale 
parameter of the Weibull distribution, and � is the location 
parameter of the Gumbel distribution.

Assuming that the sample data of the maximum 
annual snow depth or snowfall speed of the plant site 
for N consecutive N years are collected and sorted as xi 
( i = 1, 2, ..,N  ) from small to large, the cumulative prob-
ability of xi of the i− th maximum can be estimated accord-
ing to the Cunnane criterion as follows:

where N is the total number of data points and � is the coef-
ficient of the plotting position formula. The coefficients of 
the plotting position formula � are � = 0 for the Weibull, 
� = 1∕2 for Hazen and � = 2∕5 for Cunnane distributions. 
According to Yamano [21], we assume that � = 2∕5.

The appropriate transformations of Eqs. 1 and 2, as 
shown in Eqs. 4 and  5, can be used to estimate the param-
eters of the Gumbel and Weibull distributions using least-
squares linear fitting methods, as shown in Eqs. 6 and 8.
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Thus far, we can estimate the extreme value distribu-
tion of the meteorological data. We used the K-S test to 
determine whether the distribution estimation was appro-
priate. Given the cumulative distribution function F0(x) of 
the hypothesized distribution and the empirical distribution 
function Fdata(x) of the observed data, the test statistic is 
given by the following:

For the non-decreasing functions f and g, the estimate of 
Eq. 10 can be calculated as follows [30]:

where sup indicates the supremum. Further details can be 
found in Appendix A.

2.2  Case study in the Bohai Sea

2.2.1  Collection of historical records

The FNPP off Yantai was considered as the research object, 
and a case study for the risk analysis of extreme snowfall 
was provided. Owing to the lack of data regarding the snow 
thickness in Yantai, we obtained the daily temperatures 
(maximum, minimum, and average) and precipitation data 
over the past 39 years from the National Greenhouse Data 
System [31] and the National Centers for Environmental 
Information (NCEI) [32]. The two meteorological stations 
(Yantai and Yantai North) that were nearest to the FNPP 
were adopted.

According to the definitions provided by the China Mete-
orological Administration, the formation of snow occurs by 
the direct sublimation of water vapor in the atmosphere or 
the direct solidification of water droplets. Specifically, the 
conditions for the formation of snowfall are as follows: (1) 
the presence of ice crystals in the atmosphere, (2) sufficient 
water vapor, and (3) an air temperature below 3 ◦C (freezing 
point). Based on the aforementioned conditions, an average 
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temperature of less than 3 ◦C along with the occurrence of 
precipitation on a particular day is considered snowfall. 
Because the staff of a nuclear power plant can usually clear 
snow within 24 h, the snowfall was analyzed for a limited 
duration of one day. The snow-to-liquid ratio (SLR) refers to 
the ratio of the depth of snow to the equivalent depth of the 
liquid after the snow melts, which can be used to calculate 
the snow depth.

Here, SLR indicates the snow-to-liquid ratio (cm/mm), SD 
denotes the new accumulated snow depth (cm) between the 
current and following day, and SL indicates the accumulated 
precipitation (mm) within the same period as that of the new 
snow depth.

Yang et al. [33] demonstrated that the multiyear average 
SLR in the northern coastal area of the Shandong Penin-
sula (in the Bohai Sea), which is known for ocean-effect 
snowstorms, was 1.3 cm/mm. The distribution of SLR in the 
northern Shandong Peninsula, including Yantai, is approxi-
mately a normal distribution, with a mean value of 1.30 and 
a variance of 0.65. Considering the significant uncertainties 
in the meteorological data, we also studied their impact on 
the hazard curve, as shown in Table 1. Based on the SLR, 
precipitation was converted into snow depth and sorted, as 
indicated in Table 2. Subsequently, the snowfall rate was 
calculated using Eq. 15 based on the calculated snow depth 
SD and duration of snowfall ΔT  ; it was also sorted and is 
included in Table 2.

2.2.2  Annual exceedance probability evaluation

Using the analysis method described in Sect. 2.1, the Gum-
bel and Weibull distributions were used to fit the snow depth 
and speed of the extreme snowfall. The results are presented 
in Table 3, and a comparison between the fitted value of 
the cumulative probability and measured value is shown in 
Figs. 1 and 2. As shown in Fig. 2, the deviation between the 
Gumbel fitting value and the measured value was within 

(14)SLR =
SD

SL

(15)SV =
SD

ΔT

20% for snow thickness. The deviation between the fitted 
and measured values was significant for the small measured 
values, whereas it was within 20% for the significant meas-
ured values. For the snowfall rate, the deviation between 
the fitted values of the two distributions and the measured 
value was relatively large. The deviation between the meas-
ured values was within the range of 20%. These findings 

Table 1  Uncertainty parameter 
of SLR, unit: cm/mm

Type Value

Minimum 0.7
25th percentile value 1.2
Median 1.3
75th percentile value 1.6
Maximum 2.0

Table 2  Extreme snowfall data of Yantai. SLR=1.3 cm/mm

No Cumulative distribu-
tion function

Snow depth (cm) Snow 
speed (cm/
day)

1 0.015306 2.60 1.72
2 0.040816 2.99 1.85
3 0.066327 4.42 1.91
4 0.091837 4.55 2.60
5 0.117347 4.55 2.77
6 0.142857 5.20 2.99
7 0.168367 5.72 3.02
8 0.193878 5.98 3.06
9 0.219388 6.89 3.42
10 0.244898 8.32 3.64
11 0.270408 9.23 3.66
12 0.295918 10.79 4.10
13 0.321429 11.31 4.42
14 0.346939 11.96 4.55
15 0.372449 12.09 4.55
16 0.397959 12.09 5.20
17 0.423469 12.22 5.33
18 0.448980 13.845 5.40
19 0.474490 14.56 5.66
20 0.500000 16.185 5.98
21 0.525510 16.38 6.05
22 0.551020 17.615 6.92
23 0.576531 17.94 7.93
24 0.602041 18.07 8.97
25 0.627551 18.72 9.04
26 0.653061 19.695 9.36
27 0.678571 20.54 9.36
28 0.704082 20.605 9.36
29 0.729592 21.06 10.30
30 0.755102 21.71 10.79
31 0.780612 23.79 10.86
32 0.806122 25.61 11.96
33 0.831633 27.495 13.75
34 0.857143 28.08 17.62
35 0.882653 31.98 19.70
36 0.908163 37.44 19.89
37 0.933673 52.39 21.06
38 0.959184 59.67 26.20
39 0.984694 84.24 84.24
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are consistent with those in other studies [21]. Based on 
the analysis results, it is recommended to use the Gumbel 
distribution to fit the annual exceedance probability of the 
snow thickness, and the Weibull distribution to fit the snow 
rate, for the hazard analysis of extreme snow of the Yantai 
plant site.

There are two primary sources of uncertainty regarding 
the snow speed and depth. The first source of uncertainty is 
the original meteorological data, which refers to the SLR 
uncertainty discussed in this study. We use the minimum 
( SLR = 0.7 cm/mm) and maximum values ( SLR = 1.3 cm/
mm) in the hazard curve to represent the uncertainty, as 
depicted in Fig. 3. We provided the 5th ( SLR = 0.786 cm/
mm) and 95th ( SLR = 1.914 cm/mm) percentile values of the 
SLR to quantify the uncertainty. Another source of uncer-
tainty is the parameter uncertainty inherent in the fitting dis-
tribution process. Table 3 lists the uncertainties encountered 
during the fitting process for a given SLR. Table 4 presents 
the 95th percentile results for the two types of parameters 
under uncertainty.

2.2.3  Snow hazard curves and evaluation

Annual exceedance frequency refers to the probability of 
a specific event or phenomenon occurring within a given 
year. It represents the likelihood of an event surpassing a 
certain threshold or level within a single year. Typically, the 
annual exceedance frequency of external events is used as 
the frequency of initiating events. The annual exceedance 
probability ( 1 − F(x) ) curves of the snow depth and snow-
fall speed are shown in Fig. 3. The solid line represents the 
fitted hazard curve obtained by applying the correspond-
ing distribution function to the data points. To consider the 
uncertainty of the SLR, we plotted the hazard curves under 
the conditions of the maximum, minimum, and median SLR, 
as shown in Fig. 3. This demonstrates that the uncertainty of 
the hazard analysis results caused by the uncertainty of the 
SLR can reach several orders of magnitude for significant 
hazard parameters (snow depth, snow speed).

3  Power plant response and the impact 
of extreme snowfall on safety‑related 
SSCs

The impacts of extreme snowfall on floating nuclear power 
plants include the following: direct damage of snow load on 
buildings, snow blockage of ventilation holes, and the indi-
rect impact of long-term power plant isolation. The potential 
damage from extreme snowfall significantly varies owing to 
the characteristics of snow. The specific impacts of extreme 
snowfall on an FNPP are as follows:

• Damage of structure and exposed parts caused by snow 
load.

• The failure of systems and equipment that depend on air 
circulation owing to the blockage of snow at the vent, 
mainly the heating, ventilation and air conditioning 
(HVAC) system and diesel generator equipment.

• Loss of off-site power (LOOP).

All buildings, regardless of the safety classification, are 
designed to withstand the impact of snow. In addition, the 
design of safety-grade buildings can prevent aircraft crashes, 
earthquakes, and external hazards, thereby providing suf-
ficient safety margins against extreme snowfall. Juraj et al. 
[24] also confirmed this, demonstrating that structures have 
a failure load that is nearly twice the magnitude of extreme 
snow loads. Therefore, the main impact of extreme snow-
fall on floating nuclear power plants is possibly the failure 
of systems and equipment that depend on air circulation 
owing to the blockage of snow at the vent and loss of off-
site power caused by extreme snowfall. Whether an FNPP 
requires off-site power depends on its design. Because the 
FNPP in our study is located offshore, off-site power can 
be supplied through submarine cables. Although the impact 
of extreme snowfall on submarine cables is lower than its 
impact on off-site power for onshore NPPs, considering that 
onshore power transmission and conversion equipment are 
located in the same area as the FNPP, this study assumes that 
a snowfall thickness exceeding 100 cm causes damage to the 
off-site power grid equipment, leading to LOOP.

Table 3  Fitting results of the extreme snow hazard (SLR = 1.3 cm/
mm), parameters: �, � or �,m . The confidence boundary for the 
parameter uncertainty is 95%

 Distribution Parameters Parameters Uncertainty p value

 Snow depth
Gumbel (11.85, 9.12) (11.54, 12.15), (8.65, 9.59) 0.9926
Weibull (19.05, 1.58) (18.63, 19.47), (1.49, 1.67) 0.9843
 Snow speed
Gumbel (5.14, 4.27) (4.90, 5.38), (3.87, 4.68) 0.7144
Weibull (8.63, 1.42) (8.28, 8.98), (1.31, 1.54) 0.8305

Table 4  The uncertainty of the distribution of the fitting parameters, 
considering the SLR uncertainty and fitting uncertainty. The confi-
dence boundary for the parameter uncertainty is 95%

Snow speed param-
eter

� m

Value (5.2203, 12.7134) (1.4207, 1.4209)

 Snow depth param-
eter

� �

Value (7.1643, 17.4485) (5.5178, 13.4383)
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In our study, the extreme snowfall led to a LOOP-initi-
ating event. When a LOOP occurs in a land-based nuclear 
power plant, the dependency of the safety-related systems 
on the electrical power system can impact the accident 
sequence. In particular, equipment failures during a LOOP 
event, such as valves being unable to open or close, may 
result in the inability to perform the corresponding safety 
functions, leading to an inability to lower the reactor pres-
sure and cool the core [34]. This situation is similar for an 
FNPP. The response of the safety-related system equipment 
of the plant resembles its response to an internal LOOP 
event, and an on-site emergency power supply must be con-
sidered. A combination of the successful or failed responses 
of the residual heat removal, pressure relief, and safety injec-
tion functions were utilized for the event sequence analysis. 
It is also possible to consider snow clearing at the vent in 
response to extreme snowfall events at a power plant. In this 
case, if the relevant personnel do not recognize the necessity 
of clearing snow, the snow at the vent will reach a threshold, 
and blockage of the vent may lead to the unavailability of 
the diesel generator. It is conservatively assumed that the 
unavailability of the diesel generators will lead to a loss of 
the emergency power supply of the plant, leading to a sec-
ondary station blackout (SBO) accident. Subsequently, the 
response process of the power plant must consider the loss 
of the relevant system that supports the power supply. The 
diesel generator is the main equipment affected by snow 
blockages at the vent. Although snow blockage at the vent 
may also lead to the failure of the HVAC systems, result-
ing in a gradual rise in the temperature within the plant, it 
may also lead to the failure of the diesel generator, which 
is a slow development process that can be included in the 
previous impact.

4  Extreme snowfall PSA model

The event tree (ET) analysis describes the response of 
a power plant to the initiating events through a series of 
events, linking the success or failure of several safety sys-
tems/functions to the final states of the plant (intact core: 
OK/core damage: CD). Based on previous assumptions, 
extreme snowfall events lead to the loss of the off-site power 
supply (LOOP) of floating nuclear power plants. Based on 
the Level 1 PSA model of an internal event [4] of an FNPP, 
an event tree model of extreme snowfall events for an FNPP 
was developed by referring to the event tree of the LOOP of 
an internal event and considering the unique snow removal 
response of extreme snowfall events. An event tree model 
of the core damage caused by extreme snowfall in an FNPP 
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can be developed by combining the system model of a Level 
1 PSA model of an internal event with personnel reliabil-
ity modeling. The event trees in the PSA model are shown 
in Fig. 4 through Fig. 7. The abbreviations of the function 
events in the event trees are listed in Table 5 (Figs. 5, 6).

A fault tree (FT) analysis is a standard method for the 
reliability assessment in nuclear power plants, enabling 
the determination of the probabilities of the top events in 
event trees. It utilizes graphical and top-down approaches 
to decompose complex system failures from the system to 
the component level. Based on the design of various safety-
related systems in ACP100 [35] and by referring to the fault 
tree of AP1000, we established fault trees for the safety sys-
tems of the FNPP. Figures 8 and 9 present the correspond-
ing fault trees for the DGEN and PRS functional events. 
In the FNPP PSA model, the FT method is also employed 
for a system reliability analysis [36], considering factors 
such as random failures, common-cause failures (CCF) of 
equipment, human errors, unavailability owing to testing and 
maintenance, and failures in support systems. The Multiple 
Greek Letter (MGL) model was adopted for the CCF analy-
sis in the PSA software called Risk Spectrum. Regarding 
human errors, the primary consideration is the impact of 
personnel unreliability on equipment during the initiation 
of events. The data are primarily obtained from NUREG/
CR-1278 [37], and an example of the snow clearance by 
personnel affecting the on-site power is discussed in this 
section. The model parameters and logic for equipment test-
ing and maintenance were set accordingly in Risk Spectrum, 
with data primarily sourced from AP1000, ACP100, and 
NUREG/CR-6928 [38].

The data required to quantify the CDF caused by extreme 
snowfall in floating nuclear power plants include the rel-
evant data used in the Level 1 PSA model of an internal 
event, the frequency of LOOP-initiating events caused by 
the extreme snowfall, and the probability of snow removal 
failure. The frequency of LOOP-initiating events caused by 
extreme snowfall can be estimated based on a site-specific 
risk analysis of extreme snowfall. As shown in Table 6, we 
analyzed the annual exceedance frequency corresponding to a 
snow depth of 100 cm and snowfall speed of 100 cm/day and 
finally obtained the most conservative result (3.00 × 10−3/
plant year) as the frequency of the initial event.

According to Noroozi et al. [39], the impacting factors of 
extreme snowfall on the workers include low temperatures, 
freezing, comprehensive weather effects, ocean ice, low vis-
ibility, and work pressures. According to Islam et al. [40], 
the impact is mainly owing to the following several aspects: 
(1) Compared to land-based nuclear power plants, floating 
platform environments can generate ship motion, noise, and 
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vibration under extreme snowfall, which increases the work-
load and pressure of snow-clearing personnel. (2) Low ambi-
ent temperatures may lower the body temperature, severely 
affecting the mental and sensory abilities and making it diffi-
cult to accurately determine the blockage locations. (3) Cold 
weather can significantly reduce physical performance and 
hinder the completion of snow-clearing tasks.

A simple reliability model considering the following two 
aspects can be adopted for snow removal at the air vent: (1) 
reliability of the relevant personnel realizing the necessity 
of snow removal, PAW ; (2) reliability of the snow removal 
operation, PRM . The probabilities of failure of the two afore-
mentioned types of events can be evaluated using an appro-
priate probability of human error, as expressed in Eq. 16. 
Based on the data above, the CDF caused by the extreme 
snowfall of a specific floating nuclear power plant can be 
estimated to assess the risk of floating nuclear power plants 
caused by extreme snowfall.

Here, the values indicated in the formula above can be found 
in NUREG/CR-1278 [37]. Although the values of NUREG/
CR-1278 are typically used in land-based nuclear power 
plants, this result is acceptable considering the similarity 
between land-based nuclear power plants and FNPPs, as well 
as the conservatism of the probability of failure in NUREG/
CR-1278.

The probability of failure of an individual receiving good 
skills training for 60 min to perform the step-by-step task 
under the average pressure level was used to estimate PAW 

(16)PSW-RM = PAW + PRM = 7.35 × 10−3
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Fig. 3  Hazard curve of the snowfall

Table 5  Abbreviations in event trees

Abbreviation Full form

CMT Core makeup tank
CSP Containment spray
DGEN LOOP and power source not recovered after 30 min
DHRS Decay heat removal system
EDG Emergency diesel generator
LOCA Loss of coolant accident
LOFW Loss of feed-water
LOOP Loss of off-site power
LPI Low pressure safety injection
LPI-C Low pressure safety injection recirculation
MLOCA Medium break LOCA
PRS Passive residual heat removal system
PZRSVC Pressurizer safety valve fail to close
PZRSVO Pressurizer safety valve fail to open
RHR Residual heat removal system
SWR Snow remove
SNOW Extreme snowfall
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Fig. 4  FNPP event tree (initial event: extreme snowfall)

Fig. 5  FNPP event tree (secondary event: LOFW)

Fig. 6  FNPP event tree (secondary event: MLOCA)

Fig. 7  FNPP event tree (secondary event: SBO)
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Fig. 8  FNPP fault tree (function 
event: DGEN)

Fig. 9  FNPP fault tree (function event: PRS)

Table 6  Probability of annual excess. The confidence boundary for the parameter uncertainty is 95%

Distribution SLR = 1.3 cm/mm

Snow depth (Gumbel) 6.37 × 10

−5 (3.65 × 10

−5 , 1.05 × 10

−4)
Snow speed (Weibull) 7.85 × 10

−15 (2.63 × 10

−18 , 5.78 × 10

−12)

 Distribution SLR = 2.0 cm/mm

Snow depth (Gumbel) 3.00 × 10

−3 (2.08 × 10

−3 , 4.03 × 10

−3)
Snow speed (Weibull) 2.24 × 10

−8 (8.43 × 10

−10 , 3.95 × 10

−7)
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( 8.5 × 10−4 ). This result is similar to the value obtained by 
Islam et al. using a human error assessment and reduction 
technique (HEART) method. In their study, the probability 
of personnel error in cleaning the air filter for the mainte-
nance of a sub-item of marine engine exhaust turbochargers 
was 1.16 × 10−4 , which was at task Level H. Considering 
the similarity between these two tasks and the increasing 
difficulty of the task under extreme snowfall conditions, if 
the task was assigned to Level G, the probability of person-
nel error obtained by using the HEART method during the 
snow removal process was 5.8 × 10−4.

The probability of failure of a person receiving good 
training to perform the step-by-step task under a high-pres-
sure level was used to estimate PRM ( 6.5 × 10−3 ). This result 
is similar to that of Shufan Li [41] regarding the personnel 
unreliability during small LOCA of FNPPs. (The probability 
of human failure is 5.8 × 10−3.)

For simplification, we used the values of NUREG/
CR-1278 to consider the personnel errors during the snow 
removal process. The aforementioned parameter uncertainty 
was considered to obey a Lognormal distribution, and the 
error factor (EF) was conservatively considered as EF = 30.

5  Result and analysis

5.1  Event sequences and MCS

We used a Risk Spectrum software to analyze the con-
structed model. Our calculated CDF for extreme snow 
was 1.13 × 10−10/plant year, with a 95% upper limit of 
4.18 × 10−10/plant year and a 5% upper limit of 3.34 × 10−13

/plant year. Compared to the total CDF of the Level 1 PSA of 
the IEs for operations at ACP100 (approximately 1.42 × 10−7

/reactor year [4, 35]), extreme snowfall was determined to 
be three to four orders of magnitude lower, indicating that 
the risk caused by extreme snowfall is relatively small. As 
shown in Tables 7 and 8, the primary sequence of events 
leading to extreme snow CD is as follows:

• After extreme snowfall, the CMT and PRS fail.
• After extreme snowfall, the opened pressurizer safety 

valve fails to close (PZRSVC), PRS fails, and the low-
pressure safety injection fails.

• After extreme snowfall, snowfall removal fails, PRS fails, 
and the low-pressure safety injection fails.

The results of the cut-set analysis indicate that the CCFs of 
the IRWST pipeline, the outlet pneumatic valve of the heat 
exchanger, and CCFs of the check valve are the main rea-
sons leading to core damage owing to the extreme snow. We 

recommend increasing staff awareness regarding extreme 
snowfalls and the reliability of snow removal, as well as 
improving the monitoring of critical components such as the 
valves and equipment vents.

5.2  Sensitivity analysis

First, we conducted a sensitivity analysis of the frequency 
of the initiating events. We assumed that snow depths of 
50 cm and 150 cm can lead to LOOP and used the cor-
responding annual exceedance frequencies of 9.87 × 10−2 
and 8.37 × 10−5 as the initiating frequencies of the event. 
Correspondingly, the CDF changed from 1.13 × 10−10 to 
3.72 × 10−9 and 3.15 × 10−12 , respectively. This result was 
significantly smaller than the CDF obtained from the Level 
1 PSA analysis of the internal event.

Meteorological departments can use weather forecasts to 
predict the occurrence of snowfall, personnel reliability can 
be significantly improved, and staff can effectively remove 
snow to avoid clogging the ventilation vents, to improve 
power availability. Assuming that the staff successfully 
removed the snow, a new CDF of 1.01 × 10−10 was obtained. 
The CDF has decreased by approximately 10%.

6  Conclusion

A methodological study for the probabilistic safety 
analysis of external events caused by extreme snowfall 
in f loating nuclear power plants was presented. The 

Table 7  Dominant MCS

No CDF/plant year Proportion (%) Minimum cut-set

1 1.78 × 10

−11 15.69 SNOW
CC-CMT-AV1-FD1
CC-PRS-AV1-FD1

2 1.78 × 10

−11 15.69 SNOW
CC-CMT-AV1-FD1
CC-PRS-AV2-FD1

3 1.46 × 10

−11 12.9 SNOW
CC-CMT-CV-RP
CC-PRS-AV1-FD1

4 1.46 × 10

−11 12.9 SNOW
CC-CMT-CV-RP
CC-PRS-AV2-FD1

5 1.15 × 10

−12 1.02 SNOW
CC-LPI-MV-FD2
CC-PRS-AV2-FD1
SWR
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primary conclusions of the analysis are as follows: (1) 
The intensity of the extreme snowfall specific to the plant 
site can be characterized by the snow depth and rate of 
snowfall. The use of the Gumbel and Weibull distribu-
tions to fit the annual exceedance probability of the snow 
thickness and snowfall rate demonstrates good applica-
bility. (2) The significant impacts of extreme snowfall on 
floating nuclear power plants include the loss of off-site 
power and unavailability of diesel generators owing to 
snow blockage at the air vents; extreme snowfall presents 
challenges for the pneumatic and check valves in related 
safety systems. (3) The PSA of extreme snowfall for a 
specific floating nuclear power plant can be conducted 
based on a Level 1 PSA of an internal event. The results 
of the quantitative analysis demonstrate that the CDF of 
extreme snow is 1.13 × 10−10.

In addition, note that the quantitative calculation of 
CDF is based on analyzing the extreme snow hazards. 
We adopted conservative assumptions and were aware of 
the uncertainties in meteorological data that can lead to 
uncertainties in the frequency of the initiating events that 
span several orders of magnitude, which can be compen-
sated for by a more detailed meteorological data collec-
tion and hazard analysis.

Appendix A: K‑S test

When the distribution of population X is unknown, hypoth-
esis testing of the population distribution (goodness-of-fit 
test) can be performed using the Kolmogorov–Smirnov 

(K-S) test on samples from the population. The main steps 
involved are as follows: 

1. Hypothesis formulation H0 : A hypothesis H0 regarding 
the population distribution is proposed, typically speci-
fying the distribution type and relevant parameters. The 
cumulative distribution function of the population X is 
F(x;�1, ..., �m).

2. Sample data (with a sample size of n) are used to esti-
mate the distribution parameters (�1, ..., �m) through fit-
ting methods such as least squares, maximum likelihood, 
and method of moments.

3. The value range of X is divided into k groups 
[xi−1, xi](i = 1, ..., k).

4. A cumulative distribution function of the sample obser-
vations is calculated Fn(x) = nx∕n , where nx represents 
the number of samples equal to or less than x.

5. Test statistics are built: Dn = max |F(x) − Fn(x)|.
6. Based on the sample size n and significance level � , the 

critical value D(n, �) is obtained through a table lookup 
(see Table 9), and a rejection domain Dn > D(n, 𝛼) is 
constructed.

7. If the test statistic falls into the rejection domain, the 
hypothesis H0 is rejected; otherwise, there is no suffi-
cient reason to reject H0 based on the current sample.
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