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Abstract
The Electron Cyclotron Resonance (ECR) ion source is a critical device for producing highly charged ion beams in various 
applications. Analyzing the charge-state distribution of the ion beams is essential, but the manual analysis is labor-intensive 
and prone to inaccuracies due to impurity ions. An automatic spectrum recognition system based on intelligent algorithms 
was proposed for rapid and accurate chargestate analysis of ECR ion sources. The system employs an adaptive window-length 
Savitzky–Golay (SG) filtering algorithm, an improved automatic multiscale peak detection (AMPD) algorithm, and a greedy 
matching algorithm based on the relative distance to accurately match different peaks in the spectra with the corresponding 
charge-state ion species. Additionally, a user-friendly operator interface was developed for ease of use. Extensive testing on 
the online ECR ion source platform demonstrates that the system achieves high accuracy, with an average root mean square 
error of less than 0.1 A for identifying charge-state spectra of ECR ion sources. Moreover, the system minimizes the stand-
ard deviation of the first-order derivative of the smoothed signal to 81.1846 A. These results indicate the capability of the 
designed system to identify ion beam spectra with mass numbers less than Xe, including Xe itself. The proposed automatic 
spectrum recognition system represents a significant advancement in ECR ion source analysis, offering a rapid and accurate 
approach for charge-state analysis while enhancing supply efficiency. The exceptional performance and successful imple-
mentation of the proposed system on multiple ECR ion source platforms at IMPCAS highlight its potential for widespread 
adoption in ECR ion source research and applications.

Keywords ECRIS · Spectrum recognition · SG filtering · AMPD algorithm · Greedy algorithm

1 Introduction

The ECR (Electron Cyclotron Resonance) ion source, ini-
tially developed by Prof. Geller and colleagues at Greno-
ble Laboratory in France [1, 2], has evolved into a highly 
efficient and highly charged state ion source with a diverse 
range of beam types. It is renowned for its exceptional sta-
bility and reproducibility and has found widespread appli-
cation in heavy ion acceleration facilities worldwide. For 
instance, the VENUS ion source at Lawrence Berkeley 
National Laboratory (LBNL) provides beam current for 

the 88-inch cyclotron [3], the SC-ECR ion source at the 
Institute of Physical and Chemical Research (RIKEN) in 
Japan supplies beam current for the Radioisotope Facility 
(RIBF) [4], and the SECRAL ion source at the Institute of 
Modern Physics (IMP) in Lanzhou, China, serves as the 
beam current provider for the Heavy Ion Research Facil-
ity (HIRFL) [5]. The beam transmission lines of the ECR 
ion source are illustrated in Fig. 1, where ions of varying 
charge-to-mass ratios ( q∕M ) exhibit distinct deflection 
trajectories in the dipole magnet, resulting in different 
peak positions in the spectrum. This property allows for 
separating and sorting ions based on their charge-to-mass 
ratio, a crucial aspect of the transport system in analyzing 
and manipulating ion beams in ECR ion source research 
and applications. The spectrogram of the beam reflects 
the energy distribution of the ions. Accurate and rapid 
identification of the charge-state of the injected ion beam 
is crucial for optimizing the beam supply efficiency of the 
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ion source. However, the traditional manual identification 
method, relying solely on the experience of engineers, 
entails complex calculations and comparisons and is sus-
ceptible to misidentification or omission due to system 
background noise. Furthermore, manual spectrum recogni-
tion has limitations such as a high technical threshold, pro-
longed time consumption, and a low accuracy rate [6–9]. 
To address these challenges, this paper presents a novel 
automatic spectrum recognition system for beam charge-
state distribution spectra, featuring three key algorithms: 
the Savitzky–Golay (SG) filtering algorithm with adaptive 
window length, the improved automatic multiscale peak 
detection (AMPD) algorithm, and the greedy matching 
algorithm based on relative distance. These intelligent 
algorithms collectively enable fast and accurate spectra 
recognition while reducing human involvement, lowering 
the technical threshold, and offering significant research 
value.

Influenced by environmental background noise, the spec-
trogram signal of the beam is often contaminated with noise. 
Several filtering algorithms have been proposed to mitigate 
this issue, including wavelet denoising [10], empirical modal 
decomposition (EMD) [11], Savitzky–Golay (SG) filtering 
[12], Legendre filtering [13], kernel regression [14], local 
extremum center [15], and signal sparsity-based denoising 
[16]. Among these, SG filtering has been widely utilized in 
diverse fields, such as digital control systems [17], electro-
cardiogram denoising [18], and nuclear electrical reaction 
calculations [19]. Preserving the signal shape and peak prop-
erties in SG filtering [20] makes it particularly appealing for 

the current study based on previous research. SG filtering is 
known to effectively filter noise and outliers while preserv-
ing the underlying trend and periodicity of the signal.

The first crucial step in spectrogram identification is the 
accurate and comprehensive detection of spectral peaks. 
Peak detection in signal processing plays a pivotal role in 
obtaining reliable results. Various algorithms have been 
developed for peak detection, including traditional window-
threshold methods [21], wavelet transforms [22], template 
techniques [23], hidden Markov models [24], and others. 
However, most of these peak-finding algorithms suffer 
from the challenge of setting hyperparameters before their 
application. In practice, it has been observed that many 
commonly used algorithms require a significant number of 
hyperparameters to be pre-set, leading to varying results in 
peak detection even within the same spectrum due to differ-
ent combinations of window length and peak height thresh-
old. Determining the optimal parameter combination is not 
universally applicable, making the tuning process laborious 
and challenging. An alternative approach that addresses 
these limitations is the automatic multiscale peak detection 
(AMPD) algorithm, which sets multiple window scales for 
peak detection based on the input signal characteristics. This 
method does not rely on prior knowledge or require frequent 
tuning, making it more suitable than other algorithms for 
detecting peaks in a spectrum.

The identification of beam spectrograms can be achieved 
by matching the identified peaks with the beam charge states 
[25]. The performance of the matching algorithm directly 
affects the accuracy of spectrogram identification results. A 

Fig. 1  ECR Beam Transport System. In this system, the beam 
deflection was achieved using a dipole magnet. The trajectory of the 
deflected beam varied based on the charge-to-mass ratio of the ions. 
The dipole magnet induced a magnetic field that caused the charged 

particles in the beam to experience a Lorentz force, resulting in a 
curved path. The curvature of the trajectory depends on the charge-
to-mass ratio of the ions, with lighter ions exhibiting larger curvatures 
than heavier ions
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commonly used approach is the greedy matching algorithm, 
which determines the optimal local resolution for each sub-
problem and combines the results to obtain a final global 
solution [26]. The essential advantage of this algorithm lies 
in its high efficiency and ability to quickly obtain a global 
solution through locally optimal solutions [27]. Greedy algo-
rithms have been widely employed in various fields, such as 
task scheduling problems in optimization [28], minimum 
spanning tree problems in graph theory [29], and queuing 
problems in queuing theory [30]. Despite the effectiveness 
of greedy algorithms in obtaining locally optimal solutions, 
it is important to note that they may not always find globally 
optimal solutions due to their lack of backtracking. However, 
greedy algorithms generally yield satisfactory results and are 
commonly used in practical applications.

This study presents a novel approach for denoising spec-
trograms by introducing an adaptive window length SG fil-
tering algorithm. The proposed algorithm can effectively 
remove background noise from the original spectrogram. 
By automatically determining the optimal window length, 
our algorithm overcomes the limitations of existing meth-
ods that require manual hyperparameter tuning, making it 
more practical and user-friendly. In addition, an improved 
AMPD algorithm is developed for spectral peak calibra-
tion. One notable advantage of our algorithm is its ability to 
automatically eliminate false peaks without needing prior 
hyperparameter settings, improving peak detection accuracy 
and reliability in spectrograms. Furthermore, the limitation 
of the greedy algorithm in global optimization is addressed 
by proposing an interquartile range (IQR) anomaly detection 
mechanism [31] based on relative distance. This mechanism 
aims to identify and reject solutions in the solution set that 
satisfy the greedy strategy but are outliers in the global con-
text. By mitigating the limitations of the greedy algorithm, 
the accuracy and robustness of our algorithm in identifying 
spectral peaks are enhanced. The accuracy of the final iden-
tification results is evaluated and verified in this paper using 
a discriminative empirical formula. The experiment results 
demonstrate the effectiveness of our proposed algorithms 
in achieving high-quality denoising, accurate peak detec-
tion, and precise charge identification in spectrograms. The 
automatic spectrum recognition system presents a promising 
approach to analyzing spectrograms in various applications.

2  Architecture of automatic spectrum 
recognition system

A human–computer interface is built into this system, and 
the operator can specify and send down the relevant param-
eters. After receiving the parameters from the front end, the 
back-end program will first scan the spectrum according to 
the start current, the stop current, and the scan step. Two 

critical parameters must be collected in the scanning process: 
the dipole magnet current and the Faraday cup intensity. In 
this paper, the dipole magnet current is acquired through a 
resistive shunt using an AMETEK SGA high-power program-
mable DC power supply [32] with a current acquisition range 
of 5–6000 A. The Faraday cup intensity is acquired using an 
Agilent 34410A high-performance digital multimeter with a 
"6 1/2" resolution and a sampling frequency of 1 kHz [33]. 
The dipole magnet current values are rounded to four decimal 
places in amperes (A), and the Faraday cup intensity values are 
rounded to two decimal places in electrostatic microamperes 
(eμA) to ensure ease of calculation and legibility. The col-
lected dipole magnet currents and Faraday cup intensities are 
transmitted to the data processing module. The signal is first 
smoothed and filtered in this module using the Savitzky–Golay 
(SG) filtering algorithm with adaptive windows, after which 
the smoothed signal is searched for using an improved auto-
matic multiscale peak detection (AMPD) algorithm. Moreo-
ver, a greedy matching algorithm based on relative distance 
is proposed to achieve the matching between peak and ion 
charge states. Finally, the final matching results are visually 
outputted after outlier rejection. The implementation of each 
algorithm will be described in detail in the following. The 
overall system architecture is shown in Fig. 2. The final results 
are displayed on the Qt interface, a widely used graphical user 
interface (GUI) toolkit for creating interactive software appli-
cations [34]. The data is processed and displayed by the Qt 
interface clearly and understandably to enable the system’s 
effective operation, allowing the operator to monitor the data 
processing results concisely and change the parameters in time 
for sending.

The beam intensity is measured using a high-precision 
multimeter, while the dipole magnet power supply is respon-
sible for collecting the current of the dipole magnet with 
an original hardware sampling rate of 1 kHz. Data down-
sampling is necessary to ensure synchronized data and to 
accommodate the architecture of the ECR ion source control 
system. After issuing a dipole current write command during 
a set sweep step, the dipole magnet current and Faraday cup 
intensity values were read back after a delay of 0.1 s. This 
interval allowed the dipole magnet sufficient time to respond 
to the control command. Consequently, the sampling rate is 
reduced to 10 Hz to ensure that the dipole magnet current 
and Faraday cup intensity match [35]. This process is dem-
onstrated in Fig. 3.

3  Design of SG filtering algorithm 
with adaptive window length

According to the design characteristics of the SG filter-
ing algorithm, a larger window length is associated with 
improved robustness against noise rejection and reduced 
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variance in the error deviation for a given filter order. 
However, excessively large window lengths can result in 
distortion and bias in the filter output compared to the 
actual signal. Therefore, finding the optimal parameters 
for the SG filtering algorithm involves balancing bias and 
variance in the error estimation. The parameters of the 
SG algorithm with an adaptive window length include 
the order n of the polynomial and window length of 
N = 2M + 1 . Within each window, a cost function at the 
following should be minimized, given by Eq. (1).

In Eq. (1), ak represents the k th polynomial coefficient. In 
this case, the output of SG filtering can be expressed as:

(1)�n =

M∑
i=−M

(
n∑

k=0

aki
k − xi

)2

.

(2)y(k) =

N−1

2∑
j=−

N−1

2

Wn(j)xk−j ,

Fig. 2  The overall architecture of the beam charge-state distribution 
spectrogram identification system. Once the parameters specified by 
the user through the human–computer interface are acquired, the data 
is obtained in real time by reading and writing the process variable 

(PV) value. The acquired data, including the dipole magnet currents 
and Faraday cup intensities, is then processed using the data process-
ing module

Fig. 3  Data acquisition and 
synchronization process
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where Wn(j) is the j th sample of the continuous function 
Wn(z) and Wn(z) is a polynomial that can be defined as

According to Eq. (4), 
(
n

k

)
 represents the binomial coef-

ficient. The equivalence of an+1 in this context is expressed 
by Eq. (5):

Similarly, qn(z) is a shifted Chebyshev polynomial 
obtained from the n th forward difference Δn . This instance 
is shown in Eq. (6).

An SG filter of order n and window length N is used to 
reconstruct the signal f (t) contaminated with noise. When 
the signal f (t) is sufficiently smooth such that there are n + 2 
consecutive derivatives, the optimal window length of the 
SG filter [36] can be approximated using Eq. (7) as follows:

where �2 is the variance, and vn can be considered a func-
tion of the signal correlation, where vn∕�2 can be interpreted 
approximately as the signal-to-noise ratio (SNR); the lower 
SNR to a larger optimal window length.

In this algorithm, the parameters utilized in this pro-
cess encompass the original signal input denoted as 
x =

[
x1, x2 … , xL

]T , the window length Nopt , the filter order 
n , as well as defining the filter output as y =

[
y1, y2 … , yL

]T . 
To calculate vn , the original signal x is filtered by SG as the 
initial step. Because of the reduced computational work-
load, the original window length is defined to be five here, 
and the filter order is two. The resulting output y after the 
first SG filter is obtained as its first-order derivative. Sub-
sequently, SG smoothing is iteratively performed, with the 
smoothed window length denoted as N1 = 2

⌊
Nopt∕2

⌋
 . The 

iterative application of the SG filtering algorithm is crucial 
in enhancing the estimation accuracy of the desired param-
eter vn . By repeatedly filtering the original signal with SG, 
the algorithm refines the estimate of vn , leading to a more 
precise and reliable result. The optimal window length Nopt 
determined through an iterative process based on Eq. (7). 

(3)Wn(z) = an+1
qn+1(z)

z

(4)
(
n

k

)
=

n!

k!(n − k)!
.

(5)an+1 =
n + 1

2n+1

�
n
n

2

� √
(−1)n

N
�
N2 − 22

�
⋯

�
N2 − n2

� .

(6)qn(z) = n!Δn

[(
z +M

n

) (
z −M − 1

n

)]
.

(7)Nopt =
2n+5

√
2(n + 2)((2n + 3)!)2

((n + 1)!)2
�2

vn
,

The iterative evaluation of Nopt continues until N1 = Nopt 
is achieved, indicating the termination of the process. This 
adaptive approach ensures that the SG filtering algorithm 
adjusts the window length based on the specific character-
istics of the input signal, resulting in an optimized window 
length that enhances the accuracy of the filtered signal.

4  Design of the improved AMPD algorithm

The improved AMPD algorithm proposed in this study 
enhances the original AMPD algorithm by incorporating 
constraints on the peak output. The original AMPD algo-
rithm employs a moving window method to find the local 
maxima of the signal, where the window length, denoted as 
wk , can be expressed as 

{
wk = 2k|k = 1, 2… , L

}
 , where L 

is a parameter associated with the range of the signal [37]. 
However, if L is set excessively large, certain spectral peaks 
may remain unidentified. On the other hand, choosing L as 
too small may result in the inclusion of "false peaks" in the 
results.

To ensure the complete detection of all spectral peaks 
of interest, the parameter L is designed in this study as 
L = ⌈N∕10⌉ − 1 , where N represents the signal range. While 
the results accurately identify all spectral peaks of interest, 
they may also contain spurious peaks. For instance, dur-
ing beam pauses or when there is a lack of beam flow, the 
Faraday cup intensity in the optimal state should ideally be 
0 eμA. However, due to the influence of disruptions from the 
device itself, the monitored Faraday cup intensity at this time 
may fluctuate slightly above and below 0 eμA. Nonetheless, 
these false peaks are less significant compared to the spectral 
peaks formed by the beam current, which requires atten-
tion. As the peak positions and peaks in the spectrograms of 
different types of beams may vary considerably, it was not 
feasible to establish a general significance level threshold. 
To avoid introducing additional hyperparameters into the 
algorithm, the original AMPD algorithm's peak output is 
improved in this study by specifying that only peaks with a 
significance level higher than 2% of the spectrogram based 
on the highest peak value are considered beam spectrum 
peaks. This empirical threshold helps filter out false peaks 
and retain only the peaks most likely to represent actual 
spectral peaks of interest. The process of the algorithm at 
this stage is as follows: firstly, the local maximum scale 
(LMS) is calculated based on parameter L . Secondly, the 
row-wise sum of the LMS is computed, and the LMS is 
reconstructed based on the minimum value of the row sum. 
In the third step, the peak-seeking output of the AMPD algo-
rithm is obtained. Finally, a new peak sequence is re-output 
after filtering the output peaks according to the empirical 
threshold. The calculation process is illustrated in Fig. 4:
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5  Design of the greedy algorithm based 
on the relative distance

In this study, a greedy matching algorithm based on the 
relative distance was developed to address the issue of 
matching peaks to charge states. This algorithm follows a 
greedy strategy compatible with the physical properties of 
the ion source. The difference between the peak detected 
in the previous section and the calculated theoretical value 
[according to Eq. (8)] was determined. The matches that 
met the requirements for each peak were identified by 
screening according to the greedy strategy, and greedy 
matching was completed based on this screening process. 
Considering the limitations of the greedy algorithm, which 
only involves local optimal solutions and cannot be back-
tracked, the concept of relative distance is introduced in 
this study. As the change in the charge-state of each ion 
in the same spectrogram is usually continuous, the first 
recognition result of the greedy algorithm was classified 
according to the ion species, and the coded charge states 
of the classified ions were obtained. Finally, the first rec-
ognition result is further refined using interquartile range 
(IQR) anomaly detection to reject outliers and obtain the 
final recognition result. This step helps improve the accu-
racy and reliability of the charge-state identification pro-
cess. The specific process of the algorithm used in this 
study is as follows:

The standard peak C of the total charge-state was ini-
tially calculated based on the empirical formula of the ion 
source within a specified sweep range, using Eq. (8). In 
this equation, � represents the constant of the dipole mag-
net resolution system of the ECR ion source, U denotes 
the extracted high voltage, and M∕q represents the ion 
mass-to-charge ratio.

The set of peaks computed in the previous section is 
denoted as P =

{
P1,P2 ⋯Pp

}
 , and the set of charge-state 

standard peaks is denoted by C =
{
C1,C2 ⋯Cc

}
 . These 

two sets are encoded separately. The next step is to devise 
a greedy strategy that generates a set of solutions that 
adhere to the greedy strategy. In this paper, the chosen 
greedy strategy is based on the resolution of the dipole 

(8)C = �

√
U ×

M

q
.

magnet against the spectral peaks, and it is defined as fol-
lows, where s means the minimum distance index:

Once an appropriate greedy strategy is determined, the 
next step is to calculate the relative distance between each 
peak and its corresponding theoretical value. The results 
were organized into a relative distance matrix, denoted as L 
(Eq. (10)), where L(p,c) =

|||Pp − Cc
|||.

The i  th peak, which corresponds to the mini-
mum distance index s , is filtered based on L , where 
L(i,s) = argmin

(
L(i,1), L(i,2) ⋯L(i,c)

)
 . Then, the set of solutions 

Rold =
{
R1,R2 ⋯Rp

}
 is expanded according to the greedy 

strategy, where Ri =
{
L(i,s) ⋯L(i,n)

}
.

After obtaining the set of raw solutions, the next step in 
the algorithm is to remove outliers from this set. First, the 
original codes were classified according to the ion species 
and then normalized using the robust_stable method. This 
method eliminates the magnitude of the data and makes 
them comparable [38]. This helps to account for any varia-
tions in magnitude or scale among the different ion species, 
allowing for more robust outlier detection. Finally, the outli-
ers were rejected after anomaly detection using the IQR, as 
described in Eq. (11). The IQR is a measure of the disper-
sion or spread of data and is calculated as the difference 
between the 75th ( Q3 ) and 25th percentiles ( Q1 ) of the data 
[39]. This outlier rejection step helps remove any spurious 
or erroneous solutions from the data, ensuring that only reli-
able and accurate solutions are considered in the subsequent 
analysis or processing steps of the algorithm.

In Eq. (11), Qmax represents the upper quartile and Qmin 
represents the lower quartile. When an observation does 
not satisfy Qmin < Q < Qmax , it is considered an outlier and 
must subsequently be removed from the solution set [40]. 

(9)
|||
M

q
−

Ms

qs

||| < 0.1 .

(10)L =

⎡⎢⎢⎣

L(1,1) ⋯ L(1,c)
⋮ ⋱ ⋮

L(p,1) ⋯ L(p,c)

⎤⎥⎥⎦
.

(11)

⎧⎪⎨⎪⎩

IQR = Q3 − Q1

Qmin = Q1 − kIQR

Qmax = Q3 + kIQR

Fig. 4  Calculation steps of the improved AMPD algorithm



Automatic spectrum recognition system for charge state analysis in electron cyclotron resonance…

1 3

Page 7 of 13 178

The final solution set is Rnew =
{
Rnew1,Rnew2 ⋯Rnewp

}
 . Fig-

ure 5 illustrates the flow schematic of the greedy match-
ing algorithm based on relative distance. The detailed 
procedure for this algorithm is presented in Algorithm 1. 
This algorithm utilizes the concept of relative distance 
and incorporates the IQR method for outlier rejection to 
improve the accuracy and reliability of the matching pro-
cess for identifying the charge states [41] of ions in the 
spectrogram.

6  Automatic spectrum recognition system 
performance evaluation and operational 
testing

6.1  Performance analysis of SG filtering algorithm 
with adaptive window length

The present study uses accurate Ar and Xe beam data to 
evaluate the proposed algorithm. The results of applying 
the SG filter algorithm with an adaptive window length to 
the charge-state distribution spectra of the Ar and Xe beams 
are presented in Fig. 6a, b, respectively. The original signal 
is depicted in pink, and the output of the SG filter is shown 
in red. The figures demonstrate that the proposed SG filter-
ing algorithm with an adaptive window length effectively 
smoothens the signal curve while preserving the original 
signal characteristics. The adaptive algorithm calculates the 
optimal window length for each position in the spectrum 
based on the signal features, in contrast to the original SG 
filtering algorithm, which employs a fixed window length. 
This approach enables filtering to preserve more original 
features while effectively decreasing noise and avoiding 
signal distortion. The results of this study suggest that the 
proposed algorithm is a promising tool for effectively filter-
ing and analyzing complex beam spectra.

Fig. 5  The flow diagram of the greedy matching algorithm based on 
relative distance

Algorithm 1   Greedy algorithm based on relative distance
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In a previous study [42], the standard deviation of the 
first-order derivative was introduced as a metric to assess 
the effect of data smoothing. Specifically, a minor standard 
deviation of the first-order derivative indicated that the sig-
nal was smoothed to remove noise. To compare the effective-
ness of the proposed SG filtering algorithm with adaptive 
window length against the original SG filtering algorithm, 
we examined the trend of the first-order derivatives in the 
original signal, the output of the ordinary SG filtering algo-
rithm, and the output of the proposed algorithm. Figure 7a, 
b depict the first-order derivative variations for the Ar and 
Xe beams, respectively. The blue line represents the first-
order derivative trend of the original signal with respect to 
the number of data points. The red line represents the trend 

of the first-order derivative of the signal filtered using the 
original SG filtering algorithm, whereas the green line rep-
resents the trend using the proposed algorithm. To ensure 
a fair comparison, we used the same parameter values for 
the original SG filter as those initially used in the proposed 
algorithm, namely, n = 2 and N = 5 . The results demon-
strate that the proposed algorithm outperforms the original 
SG filtering algorithm by producing a smoother first-order 
derivative trend, indicating better noise reduction and signal 
preservation.

The standard deviations of the first-order derivatives 
of the three signals were computed to compare the per-
formance of the proposed SG filtering algorithm with the 
adaptive window length against that of the original SG 

Fig. 6  a Original Ar beam signal and SG filter with adaptive window length output. b Original Xe beam signal and SG filter with adaptive win-
dow length output

Fig. 7  This study proposes an adaptive window length Savitzky–
Golay (SG) filter algorithm and compares its performance with that 
of the original SG filter algorithm and the original signal. The trend 
of the first derivative of the output results was analyzed for both Ar 

and Xe beams. Specifically, we examine the variation in the first 
derivative with the number of data points for each algorithm. a The 
variation of the first derivative of the Ar beam with respect to the data 
points. b The same for the Xe beam
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filtering algorithm and the original signal. Table 1 presents 
the results of the study. The table shows that The standard 
deviation of the first-order derivative decreases as the sig-
nal is filtered, indicating that noise is effectively reduced. 

Specifically, the proposed algorithm achieved standard 
deviations of 82.1846 and 147.0195 A for the Ar and Xe 
beam spectra, respectively, whereas the original SG filter-
ing algorithm yielded standard deviations of 90.5672 A 
and 151.7765 A for the same spectra. The proposed algo-
rithm yields a minor standard deviation compared with the 
original SG filtering algorithm, indicating better signal 
preservation. These findings support the claim that the 
proposed algorithm offers a better denoising and smooth-
ing effect on the beam spectra than the original methods 
evaluated in this study.

6.2  Performance analysis of improved AMPD 
algorithm

This study aims to evaluate the peak-seeking performance of 
the improved automatic multiscale peak detection (AMPD) 
algorithm by analyzing two beam spectra, as illustrated in 
Fig. 8. The Ar beam spectral peak detection is presented 
in Fig. 8a, b, whereas the Xe beam results are displayed 
in Fig. 8c, d. Owing to the denser charge-state distribu-
tion in the Xe beam spectrum, more peaks appear within 
a specific dipole magnet current variation range, leading to 
considerably greater detection difficulties than those encoun-
tered in the Ar beam spectrum. Nonetheless, the improved 
detection results of the AMPD algorithm agree with those 
obtained from physical experience, indicating its relative 
robustness to different beam spectra without the need for 
additional hyperparameters owing to the physical empiri-
cal threshold employed for peak filtering. Furthermore, the 
improved AMPD algorithm exhibited excellent performance 
in detecting the spectral peaks for high-charge states and 
dense distributions. The findings of this study suggest that 
the improved AMPD algorithm is a promising tool for accu-
rate and efficient peak detection in complex spectra, particu-
larly in scenarios involving highly charged states and dense 
distributions.

Table 1  The standard deviation of the first derivative of the signal for 
the three cases

The original signal The ordinary SG 
filter algorithm

The SG filter algorithm 
with adaptive window 
length

Ar 91.4372 A 90.5672 A 82.1846 A
Xe 152.5697 A 151.7765 A 147.195

Fig. 8  The improved AMPD algorithm proposed in this study was 
compared with the original AMPD algorithm for peak detection 
results. a and c The peak detection results of the original AMPD 

algorithm for the Ar and Xe beams, respectively. In contrast, b and 
d The proposed improved AMPD algorithm results for the Ar and Xe 
beams, respectively
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6.3  Performance analysis of greedy matching 
algorithm based on relative distance

The original greedy algorithm yields a global solution that 
is merely a stack of all the local optimal solutions and may 
not be the optimal global solution. An IQR-based anomaly 
detection mechanism using distance encoding was proposed 
to address this issue. First, the distance-encoding output of 
the initial greedy algorithm based on the ion species should 
be classified. Next, we performed IQR-based anomaly detec-
tion and visually represented the anomalous values using 
box-line plots. The anomaly detection results for the Ar and 
Xe spectra are shown in Fig. 9. Specifically, Fig. 9a illus-
trates the anomaly detection results for the Ar beam spectra, 
revealing that only one anomaly appeared in the identifica-
tion results of the main gas. In contrast, Fig. 9b shows the 
results for the Xe beam, where we identified two anomalous 
values for identifying the main gas.

A secondary judgment was made after removing outliers 
to ensure the accuracy of the final identification results. Spe-
cifically, in the same spectrum with the same ion mass, the 
dipole magnet currents and charge states of the two adjacent 
peak positions must satisfy the empirical formula expressed 
in Eq. (12):

The actual value of the Iq−1∕Iq was compared with the 
theoretical value of 

√
q∕

√
q − 1 . The accuracy of each 

matching term for each ion species was separately calculated 
as the difference between the actual and theoretical values. 
The root mean square error (RMSE) was subsequently com-
puted and averaged for each ionic species. A lower RMSE 

(12)
Iq−1

Iq
=

√
q

q − 1
.

implies a higher accuracy of the algorithm. The formula for 
calculating the RMSE is shown in Eq. (13) [43].

The RMSE values of the matching results for the Ar and 
Xe beams are presented in Table 2, where Yi represents the 
actual value, and f

(
xi
)
 represents the theoretical value in 

Eq. (13). To evaluate the results, we consider the algorithm 
acceptable when the RMSE < 0.1 A and excellent when the 
RMSE < 0.05 A [44, 45].

According to the data in Table 2, all the results fall within 
the acceptable range. The algorithm performed excellently 
in all categories except GasMain. This suggests that the 
proposed algorithm satisfies the accuracy requirements for 
beam spectrogram identification and has practical value in 
engineering applications.

6.4  Beam charge state spectrogram identification 
interface test

A software interface integrating data acquisition, peak find-
ing, and spectrum recognition was developed. The interface, 

(13)RMSE =

�
1

N

n∑
i=1

�
Yi − f

�
xi
��2

.

Fig. 9  (Color online) This figure illustrates the output results of the 
Ar and Xe beams obtained using the interquartile range (IQR) anom-
aly detection method. In the figure, the red dots represent the anoma-
lous values, the red line segment denotes the median, and the blue 

dashed line indicates the arithmetic means for each category. Pre-
cisely, a displays the box plot of the Ar beam, and b illustrates the 
box plot of the Xe beam

Table 2  The root mean square error of the matching results of Ar and 
Xe beams

Class GasMain C N O

RMSE (Ar) 0.0678 A 0.0034 A 0.0028 A 0.0024 A
RMSE (Xe) 0.0880 A – – 0.0115 A
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shown in Fig. 10, allows users to specify the start and end 
scan ranges and scan steps. Before peak seeking, users must 
specify the mass number of the main gas and the extracted 
high voltage of the ion source.

Clicking the "Identify spectrum" button in the main 
interface will open the identify spectrum interface, which 
displays the kind of ion and charge-state corresponding 
to each peak, as shown in Fig. 11. Users can zoom in on 
the interface to view the details. The identification results 
obtained using the system proposed in this study meet the 
accuracy requirements for identifying the Ar (Fig. 11a) and 
Xe (Fig. 11b) beams.

7  Conclusion

In this study, a novel spectral recognition system for beam 
charge-state distribution of high-charge-state Electron 
Cyclotron Resonance (ECR) ion sources was designed and 
developed. It enables automatic spectrum recognition using 
three algorithms: Savitzky–Golay (SG) filtering with adap-
tive window length, improved automatic multiscale peak 
detection (AMPD), and greedy matching based on relative 
distance.

The system achieved optimized smoothing with the spe-
cial SG filtering algorithm introduced in this study and accu-
rate peak detection with the improved AMPD algorithm. The 
proposed greedy matching algorithm effectively identified 
spectral peaks and their ion charge states. The system offers 
a user-friendly software interface and a real-time display of 
the results. This system effectively and accurately identified 
the beam spectra of Xe and the spectra of the mass numbers 
below Xe.

Fig. 10  Using simple button clicks, an operator can easily set the 
beam parameters on the user interface and perform spectrum scan-
ning, peak identification, and automatic spectrum recognition func-

tions. a Illustrates the primary interface for Ar beam spectrum 
identification, and b The primary interface for Xe beam spectrum 
identification

Fig. 11  This figure depicts the performance evaluation of the beam 
charge-state distribution spectrogram identification system for the Ar 
and Xe beams. a Spectrum recognition results for the Ar beam and b 
spectrum recognition results for the Xe beam.
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The advantages of the developed automatic spectrum rec-
ognition system are as follows:

1. The SG filtering algorithm with adaptive window length 
improved smoothing performance.

2. The improved AMPD algorithm eliminates the need for 
pre-setting hyperparameters and effectively rejects false 
peaks.

3. The greedy matching algorithm with relative distance, 
augmented by the IQR anomaly-detection mechanism, 
ensures accurate and efficient matching, thereby over-
coming the limitations of the greedy algorithm.

4. The user-friendly software interface enables easy param-
eter specification and real-time display of spectral iden-
tification results.

This automatic spectrum recognition system improves 
the commissioning efficiency of the ECR ion source and 
achieves a precise charge-state ion beam injection, making it 
a valuable contribution to high-charge-state ECR ion source 
research.
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