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Abstract
In this article, a comprehensive study of the fission process of Th, U, Pu, and Cm isotopes using a Yukawa-folded mean-
field plus standard pairing model is presented. The study focused on analyzing the effects of the pairing interaction on the 
fragment mass distribution and its dependence on nuclear elongation. The significant role of pairing interactions in the frag-
ment mass distributions of 230Th, 234 U, 240Pu, and 246 Cm was demonstrated. Numerical analysis revealed that increasing the 
pairing interaction strength decreased the asymmetric fragment mass distribution and increased the symmetric distribution. 
Furthermore, the odd-even mass differences at symmetric and asymmetric fission points were examined, highlighting their 
sensitivity to changes in the pairing interaction strength. Systematic analysis of the Th, U, Pu, and Cm isotope fragment 
mass distributions demonstrated the effectiveness of the model in reproducing the experimental data. In addition, the effects 
of the zero-point energy and half-width parameter on the fragment mass distribution for 240 Pu were explored. Thus, this 
study provides valuable insights into the fission process by emphasizing the importance of pairing interactions and their 
relationship with nuclear elongation.
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1  Introduction

Nuclear fission is a fundamental process that plays a key role 
in modern nuclear technology. The theoretical calculation 
of the fission process is a complex and challenging prob-
lem, which necessitates the utilization of advanced nuclear 
models and computational techniques [1–6]. Over the years, 
numerous theoretical models, ranging from simple empirical 
models to sophisticated microscopic models based on the 
nuclear structure and reaction theory, have been developed 
to predict fission yields [7–9]. These models, which have 
been validated against experimental data, have proven to be 
valuable tools for predicting the behavior of nuclear systems.

Pairing interactions significantly affect the properties of 
the fissioning nucleus and resulting fission products [10–15]. 
For instance, the strength of the pairing interaction strongly 
influences the shapes of the barriers that separate the ground 
state from scission [16–20], fission fragment distributions 
[21–25], and spontaneous fission lifetimes [26]. In the 
dynamic description of nuclear fission, pairing interactions 
should be considered on the same footing as those associ-
ated with the shape degrees of freedom [15]. Understanding 
the role of pairing interactions in nuclear fission is being 
actively researched, and various theoretical models have 
been developed to describe their behavior in different fis-
sion scenarios. Macroscopic-microscopic studies have dem-
onstrated that pairing fluctuations can significantly reduce 
collective action and affect the predicted spontaneous fis-
sion lifetimes [27]. In the Hartree-Fock-Bogoliubov (HFB) 
model, pairing can be self-consistently included by extend-
ing the trial space to quasi-particle Slater determinants [22, 
28]. Theoretical studies based on the HFB method revealed 
that the effect of pairing interactions hinders collective rota-
tion, reduces level crossings, and shortens the half-life of 
spontaneous fission [29]. The role of dynamic pairing in 
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induced fission dynamics was investigated using the time-
dependent generator coordinate method in the Gaussian 
overlap approximation based on the microscopic framework 
of nuclear energy density functionals [30]. The inclusion 
of dynamic pairing has been shown to significantly affect 
the collective inertia, flux through the scission hypersurface, 
and resulting fission yields. The latest research on the fis-
sion dynamics mechanism of 240Pu, which is based on the 
time-dependent Hartree–Fock (HF) method, demonstrates 
that as dynamical pairing diminishes at high excitations, the 
random transitions between single-particle levels around the 
Fermi surface, that mimic thermal fluctuations, becomes 
indispensable in driving fission [31].

Recently, an iterative algorithm [32, 33] was employed to 
investigate the fission barriers and static fission paths of Th, 
U, and Pu isotopes using a deformed mean-field plus stand-
ard pairing model with an exact pairing solution [34]. This 
innovative approach provided a precise representation of 
pairing interactions in nuclear fission and avoided artifacts 
introduced by Bardeen–Cooper–Schrieffer calculations, such 
as the non-conservation of particle numbers and pairing col-
lapse phenomena [11]. A comprehensive investigation of the 
inner and outer fission barriers in even-even nuclei of Th, 
U, and Pu isotopes clearly demonstrated the ability of the 
standard pairing model to closely replicate the experimental 
inner and outer barrier heights in comparison with the BCS 
scheme [34]. Moreover, researchers employed the deformed 
mean-field plus standard pairing model to explore the influ-
ence of pairing interactions on the scission configurations, 
total kinetic energy, and mass distributions of U isotopes 
[35]. The model successfully reproduced the total kinetic 
energy and fragment mass distributions of 232−238 U isotopes, 
which exhibited excellent agreement with the experimen-
tal data. The results highlighted the sensitivity of the scis-
sion region to variations in the pairing interaction strength, 
particularly for asymmetric and symmetric scission points. 
Notably, changes in the peak-to-valley ratio of the mass 
distribution resulting from variations in the pairing interac-
tion strength underscored the significant impact of pairing 
interactions on the fission process of 236 U within this model.

It is of paramount importance to develop reliable and 
effective models for characterizing the fragment mass dis-
tribution. Actinide nuclei play a crucial role in assessing the 
reliability of these models when studying the fragment mass 
distribution. Therefore, extending our previous research to 
describe actinide nuclei and investigating the influence of 
interactions on fragment mass distribution is not only nec-
essary but also highly meaningful. This research endeavor 
will enhance our understanding of nuclear fission involving 
heavy nuclei and improve the accuracy of predictive models.

This study presents a systematic analysis of the fission 
fragment mass distributions in Th, U, Pu, and Cm isotopes 
using a deformed mean-field plus standard pairing model. 

The potential energy was calculated within the macroscopic-
microscopic framework, incorporating the Fourier shape 
parameterization combined with the least significant dif-
ference (LSD) model and Yukawa-folded potential. The 
mass distribution of fission fragments was described using 
a three-dimensional collective model of the Born–Oppen-
heimer approximation. Extending on our previous study in 
Ref. [35], this study provides a comprehensive analysis of 
the impact of pairing on the mass distribution of fission frag-
ments across Th, U, Pu, and Cm isotope chains.

2 � Theoretical framework and numerical 
details

2.1 � Deformed mean‑field plus standard pairing 
model

The Hamiltonian of the deformed mean-field plus standard 
pairing model for either the proton or neutron sector is given 
by

Here, the sums run over all given i-double degeneracy levels 
of the total number n, while G > 0 represents the overall 
pairing interaction strength. The single-particle energies �i 
are obtained using mean-field methods such as the Yukawa-
folded single-particle potential, Woods-Saxon potential, 
and HF. The fermion number operator for the i-th dou-
ble degeneracy level is defined as ni = a

†

i↑
a
i↑
+ a

†

i↓
a
i↓

 , and 
the pair creation (annihilation) operator is represented by 
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in these expressions refer to time-reversed states.
Using the Richardson–Gaudin method [36–41], the exact 

k-pair eigenstates of (1) with �i� = 0 for even systems and 
�i� = 1 for odd systems, where i′ labels the double degen-
eracy level occupied by an unpaired single particle, can be 
expressed as

Here, ��i′⟩ is the pairing vacuum state with seniority �i′ satis-
fying S−

i
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the following set of Bethe ansatz equations:
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Here, the first sum runs over all i levels and Ωi = 1 − �ii��i� . 
For each solution, the corresponding eigenenergy is given 
by:

The general method for obtaining solutions of Eq. (4) is 
based on the polynomial approach described in Refs. 
[42–45]. This approach involves solving the second-order 
Fuchsian equation [46], given by

where A(x) =
∏n

i=1
(x

(�)
� − 2�i) is an n-degree polynomial

The polynomials V(x), also known as Van Vleck polynomi-
als [46], are of degree n − 1 and are determined based on 
Eq. (6). They are defined as follows:

The polynomials P(x) with zeros corresponding to the solu-
tions of Eq. (4) are defined as

Here, k represents the number of pairs, while bi and ai are the 
expansion coefficients that must be determined instead of the 
Richardson variables xi . Additionally, when we set ak = 1 in 
P(x), the coefficient ak−1 is equal to the negative sum of the 
P(x) zeros, that is, ak−1 = −

∑k

i=1
x
(�)

i
= −E

(�)

k
.

For doubly degenerate systems with Ωi = 1 , if the value 
of x approaches twice the single-particle energy of a given 
level � , that is, x = 2�� , Eq. (6) can be rewritten as follows 
[42, 45]:

An iterative algorithm for obtaining the exact solution of 
the standard pairing problem using the Richardson-Gau-
din method was established by employing the polynomial 
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approach described in Eq. (10) [32]. This algorithm is 
remarkably efficient and robust and can handle both spheri-
cal and deformed systems on a large scale. A crucial element 
that contributes to its success is the determination of initial 
estimates for large-set nonlinear equations, ensuring control 
and adherence to fundamental physical principles. Moreo-
ver, the algorithm effectively addresses the challenges of 
nonsolutions and numerical instabilities that are frequently 
encountered in existing approaches by reducing the high-
dimensional problem to a one-dimensional Monte Carlo 
sampling procedure. By leveraging this innovative iterative 
algorithm, we employed the model to explore actinide nuclei 
isotopes and obtained remarkable agreement with experi-
mental data [32–35].

2.2 � Fourier shape parameterization

Recent studies have highlighted the remarkable efficiency of 
Fourier parameterization in describing the essential features 
of deformed nuclear shapes, extending up to the scission con-
figuration [7, 47]. Based on these findings, the present work 
employs the innovative Fourier parameterization of nuclear 
shapes in conjunction with the LSD and Yukawa-folded 
macroscopic-microscopic potential-energy prescription, and 
obtains highly efficient results [35, 48, 49]. In particular, the 
macroscopic-microscopic framework introduced in Ref. [35] 
served as the foundation for this study. In this framework, the 
single-particle energies �i in the model Hamiltonian (1) were 
derived from the Yukawa-folded potential. The expansion of 
the nuclear surface, expressed as a Fourier series in terms of 
dimensionless coordinates, is given by

where �2
s
(z) represents the distance from a surface point to 

the symmetry z-axis and R0 = 1.2A1∕3 fm is the radius of the 
corresponding spherical shape with the same volume. The 
shape extends along the symmetry axis by 2z0 , with the left 
and right ends located at zmin = zsh − z0 and zmax = zsh + z0 , 
respectively. Here, z0 is half the extension of the shape along 
the symmetry axis, as derived from volume conservation, 
while zsh is determined to ensure that the center of mass of 
the nuclear shape lies at the origin of the coordinate system. 
Following the convergence properties discussed in Ref. [7], 
we retain the first five orders a2,… , a6 as a starting point and 
transform the parameters an into the deformation parameters 
qn as follows:

(11)

�2
s
(z)

R2
0

=

∞∑

n=1

[
a2n cos

( (2n − 1)�

2

z − zsh

z0

)

+a2n+1 sin
(
2n�

2

z − zsh

z0

)]
,



	 X. Guan et al.

1 3

173  Page 4 of 12

where a(0)
n

 represents the Fourier coefficients for the spheri-
cal shape. Although the higher-order coordinates q5 and q6 
are typically negligible within the accuracy of the current 
approach, the set of qi possesses explicit physical signifi-
cance in characterizing the nuclear fission process. In par-
ticular, q2 denotes the elongation of the nucleus; q4 repre-
sents the neck parameter; and q3 represents the left-right 
asymmetry parameter. In this study, the dynamic process of 
nuclear fission was modeled in a three-dimensional defor-
mation space (q2, q3;q4) using Fourier shape parameteriza-
tion. Notably, the present work does not consider non-axially 
symmetric shapes because they primarily play a significant 
role near the ground state and first saddle point.

2.3 � Mass distributions

In previous studies, the use of Wigner functions to approx-
imate the probability distribution associated with the neck 
and mass asymmetry degrees of freedom showed good 
agreement between the model predictions and experi-
mental results [7, 48, 50–52]. Based on these ideas, this 
study proposes a fission dynamics scenario in which the 
motion toward fission primarily occurs along the q2 direc-
tion, accompanied by fast vibrations in the perpendicu-
lar q3 and q4 collective variables. The total eigenfunction 
�nE(q2, q3, q4) of the fissioning nucleus is approximated as 
the product of two functions:

In this expression, �nE(q2) depends mainly on a single 
variable q2 and describes the motion toward fission, while 
�n(q3, q4;q2) simulates n-phonon fast collective vibrations on 
the perpendicular two-dimensional plane q3, q4 for a given 
elongation q2 . For low-energy fission, only the lowest-energy 
eigenstate �n=0 was considered.

The probability density W(q3, q4;q2) of f inding 
the system for a given elongation q2 within the area 
(q3 ± dq3, q4 ± dq4) is given by

To consider the fission process, a Wigner function was 
employed, which is given by

(12)
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(13)�nE(q2, q3, q4) = �nE(q2)�n(q3, q4;q2).

(14)W(q3, q4;q2) = |�(q2, q3, q4)|2 = |�0(q3, q4;q2)|2.

Here, Vmin(q2) is the minimum potential for a given elonga-
tion q2 , and E0 is the zero-point energy, which is treated as 
an adjustable parameter.

To obtain the fragment mass yield for a given elongation 
q2 , the probabilities from different neck shapes, simulated 
by the q4 parameter, were integrated as

Based on the concepts introduced in Ref. [51], the neck rup-
ture probability P was assumed to be equal to

where k represents the momentum in the direction toward 
fission and the constant parameter k0 is a scaling parameter. 
Rneck is the deformation-dependent neck radius, and Pneck is a 
geometrical factor that indicates the probability of neck rup-
ture, which is proportional to the neck thickness. The expres-
sion for the geometrical probability factor Pneck(Rneck) can 
be chosen arbitrarily to some extent, such as using Fermi, 
Lorentz, or Gaussian functions [52]. In this study, the fol-
lowing Gaussian form was adopted:

where d represents the half-width of the probability distri-
bution and is treated as another adjustable parameter in this 
analysis. The momentum k in Eq. (17) simulates the dynam-
ics of the fission process, which depends on both the local 
collective kinetic energy E − V(q2) and inertia toward the 
leading variable q2.

where M(q2) represents the average inertia over the degrees 
of freedom q3 and q4 at a given elongation q2 , and V(q2) 
denotes the average potential. Here, the portion of the total 
energy converted into heat, denoted by Q, is assumed negli-
gibly small. The inertia M(q2) can be conveniently approxi-
mated by employing the irrotational flow mass parameter Birr 
[53], which is initially expressed as a function of the single 
collective parameter R12 that represents the distance between 
fragments and the reduced mass � of both fragments

To incorporate the neck rupture probability P(q3, q4;q2) 
into Eq. (17), the integral of the probability distribution in 

(15)W(q3, q4;q2) ∝ exp
{
−

V(q3, q4;q2) − Vmin(q2)

E0

}
.
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(17)P(q3, q4, q2) =
k0

k
Pneck(Rneck),

(18)Pneck(Rneck) = exp[− ln 2(Rneck∕d)
2],

(19)
ℏ2k2

2M(q2)
= Ekin = E − Q − V(q2),
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Eq. (15) with respect to q4 must be reformulated. This is 
achieved by the following expression:

The aforementioned approximation implies a crucial obser-
vation: For a fixed q3 value, fission may occur within a spe-
cific range of q2 deformations, each associated with differ-
ent probabilities. To obtain the accurate fission probability 
distribution w�(q3;q2) at a particular q2 value, fission events 
that occurred in previous configurations with q′

2
< q2 must 

be excluded by applying the following expression:

The normalized mass yield was obtained as the sum of the 
partial yields at different values of q2.

Because the scaling parameter k0 introduced in Eq. (17) does 
not appear in the definition of the mass yield, the only free 
parameters, the zero-point energy parameter E0 in Eq.  (14) 
and half-width parameter d appear in the probability of neck 
rupture (18). Based on the successful reproduction of the 
experimental fragment mass yields in the low-energy fission 
of Pt to Ra isotopes, the values of the free parameters used in 
this study were d = 0.16R0 and E0 = 2.2 MeV [48].

3 � Potential energy

In this study, the potential energy of the system was com-
puted using the macroscopic-microscopic approach. The 
total energy of a nucleus with a specific deformation, rep-
resented as Etotal(N, Z, qn) , was determined using the fol-
lowing procedure:

In the calculation, the total energy Etotal(N, Z, qn) is com-
posed of two main contributions. The first term, denoted as 
ELD(N, Z) , corresponds to the macroscopic energy calculated 
using the standard liquid drop model and considers the pro-
ton number Z and neutron number N [54]. The second term, 
EB(N, Z, qn) , is related to the shape parameters q2, q3, q4 and 
represents the potential energy surface. In the current calcu-
lation, we focused solely on the energy term and neglected 
other contributions to the total energy.

(21)w(q3;q2) = ∫ W(q3, q4;q2)P(q2, q3, q4)dq4.

(22)w�(q3;q2) = w(q3;q2)
1 − ∫

q�
2
<q2

w(q3;q
�
2
)dq�

2

∫ w(q3;q
�
2
)dq�

2

.

(23)Y(q3) =
∫ w�(q3;q2)dq2

∫ w�(q3;q2)dq3dq2
.

(24)Etotal(N, Z, qn) = ELD(N, Z) + EB(N, Z, qn).

The deformation correction energy Edef(N, Z, q2, q3, q4) was 
obtained from the tables in Ref. [55]. The microscopic terms 
c o n s i s t  o f  t h e  s h e l l  c o r r e c t i o n  e n e r g y 
E
�(�)

shell
(N, Z, {�i}, q2, q3, q4) proposed by Strutinsky [56, 57] 

and pairing interaction energy E�(�)

pair
(N, Z, {�i}, q2, q3, q4) 

calculated using Eq. (1), where � ( � ) represents the label of 
the neutron (proton) sector. The microscopic calculations 
considered 18 deformed harmonic oscillator shells in the 
Yukawa-folded single-particle potential to determine the 
single-particle energy levels. Additionally, for the pairing 
correction energy, 66 single-particle levels around the neu-
tron Fermi level and 51 single-particle levels around the 
proton Fermi level were considered. To determine the over-
all potential energy surface, a multidimensional minimiza-
tion process was performed by simultaneously considering 
all axial degrees of freedom. This included minimizing the 
elongation of the nucleus q2 , asymmetry of the left and right 
mass fragments q3 , and size of the neck q4 . The nuclear 
shape and energy landscape can be comprehensively under-
stood by considering all these degrees of freedom together.

Figure  1 illustrates the behavior of the potential energy 
surface (PES) during the fission of 240Pu. At the initial stage 
of fission, q2 < 0.5 , the PES exhibits a very soft octupole 
deformation, and its minimum (ground state) occurs at 
q3 = 0 . The fission barrier heights obtained from the pre-
sent model are consistent with the corresponding experi-
mental results from Ref. [58]. In particular, the inner and 
outer barrier heights were 4.88 MeV and 5.24 MeV, respec-
tively, and the corresponding experimental results were 

(25)
EB(N, Z, qn) = Edef(N, Z, qn) + Eshell(N, Z, qn).

+ Epair(N, Z, qn)

Fig. 1   (Color online) Contour map of the PES of the nucleus 240 Pu 
(in MeV), minimized q

4
 with the pairing interaction strength 

G
� = 0.08 and G� = 0.10 (in MeV). The black trajectory shows the 

static fission path
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5.80 MeV and 5.30 MeV, respectively. Furthermore, in the 
asymmetric fission path, Fig. 1 exhibits a plateau at high 
deformation, followed by a cliff (asymmetric scission point: 
q2 = 2.45, q3 = 0.10, q4 = −0.09).

The strength of the pairing interaction G is typically 
determined using empirical formulas or by fitting experi-
mental data such as odd-even mass differences [59–62]. Pre-
vious studies have demonstrated that pairing is crucial in the 
inner and outer barrier regions. Furthermore, the first and 
second saddle points are highly sensitive to the strength of 
the pairing interaction [34, 63, 64]. Therefore, in the present 
model, experimental observables, such as the odd-even mass 
difference (reflecting ground-state properties) and barrier 
heights (reflecting excited-state properties), were used to 
determine the experimental values of the pairing interac-
tion strength during fission.

In this study, realistic values of the pairing interaction 
strengths for the isotopic chains of Th, U, Pu, and Cm were 
obtained by fitting the experimental values of the odd-even 
mass difference and heights of the inner and outer barriers. 
The odd–even mass difference was calculated using the fol-
lowing three-point formula:

The odd-even mass difference is attributed to the presence 
of nucleonic pairing interactions and is highly sensitive to 
changes in the pairing interaction strength G [65]. The cor-
responding values of G� ( G� ) are listed in Table 1.

Figure  2 clearly shows that the odd-even mass differ-
ences obtained using the proposed approach closely match 
the experimental data for the Th, U, Pu, and Cm isotopes. 
In addition, as shown in Fig. 3, the inner (a) and outer (b) 
fission barriers for the Th, U, Pu, and Cm isotopes calculated 
using the current model, exhibit remarkable agreement with 
the corresponding experimental values. It is necessary to 
indicate that the theoretical inner barrier heights of light Th 
isotopes in Fig. 3a are systematically lower than the experi-
mental data, which has also been reported in other calcula-
tions for light actinides in Refs. [12, 13, 66–68]. Based on 
the analysis of the different effects of the neutron and proton 
pairing interactions on the inner and outer barrier heights 
in Ref. [32], the above results may be related to the strong 

(26)
P(A) = E

total
(N + 1, Z) + E

total
(N − 1, Z)

− 2E
total

(N, Z).

neutron pairing interaction strength. In this study, the pairing 
interaction strength values in Table 1 were set to G�

0
 ( G�

0
 ) for 

the Th, U, Pu, and Cm isotopes.

4 � Effect of the pairing interaction 
on the fragment mass distributions of  230
Th ,  234 U,  240Pu , and 246Cm 

Investigation of the dynamics around fission structures is 
crucial for comprehending various aspects of the final fission 
state, such as the kinetic energy and mass distributions [7, 
69, 70]. In this study, the fission fragment mass distribution 
of 240 Pu was calculated based on its PES and compared with 
the experimental data  [71].

Table 1   Pairing interaction strength G� ( G� ) (in MeV) for Th, U, Pu, 
and Cm isotopes

 Th   U   Pu   Cm 

 G�    0.096   0.080   0.080   0.096 
G

�    0.120   0.100   0.100   0.120 

Fig. 2   (Color online) Odd–even mass differences (in MeV) for the 
Th, U, Pu, and Cm isotopes. The experimental values and theoretical 
values calculated using the present model are denoted as “Expt.” and 
“Theor.”, respectively. Experimental data are taken from Ref. [65] (in 
MeV)
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Figure 4 shows the reasonable agreement between the 
calculated results and experimental data [71]. Moreover, 
the obtained fission fragment mass distribution aligns with 
the understanding that the static fission in 240 Pu is predomi-
nantly asymmetric, as indicated by the fission PES. During 
the calculation, a Gaussian folded function with a full width 
at half maximum of 4.9u [72] was employed to determine 
the mass yields. In addition, the zero-point energy parameter 
E0 = 2.2 MeV and half-width parameter d = 1.6 fm [48], 
were utilized.

In the case of fission nuclei, each elongation deforma-
tion variable q2 corresponds to a distribution of the fragment 
mass numbers Af of the nuclear fragments produced dur-
ing fission. Figure  5 illustrates the distribution of fragment 
mass numbers for 240Pu. Fission predominantly occurs in the 
region of asymmetric fission, with the corresponding mass 
numbers of the heavy fragments centered around A ≈ 141 . 
The scission point, which represents the point of fragment 
separation, is located at q2 = 2.3 . Only a small proportion 
of the fragments undergo symmetrical fission.

To investigate the influence of the pairing interaction 
on the fission fragment mass distribution in the current 
model, we calculated the yield of the fission fragment as 
a function of the mass number ( Af ) for 230Th, 234 U, 240Pu, 
and 246 Cm with different pairing interaction strengths. The 
results presented in Fig.  6 indicate that for these nuclei, the 
two asymmetric peaks of the theoretical yield are signifi-
cantly reduced, while the symmetric valley becomes more 
prominent as the pairing interaction strength G increases 
from 80%G0 to 120%G0 . Similar observations were reported 
for a three-dimensional Langevin model based on the BCS 
approximation [73]. These findings suggest that the frag-
ment mass distribution is sensitive to variations in the pair-
ing interaction strength and highlight the significant role 

of pairing interactions in determining the fragment mass 
distribution for 230Th, 234 U, 240Pu, and 246Cm. Furthermore, 
when the pairing interaction strength G is 120%G0 , the the-
oretical calculations closely match the experimental data 
for the fragment mass distributions of 230Th, 234 U, and 240
Pu. However, for 246Cm, the calculated results align better 
with the experimental values when the pairing interaction 
strength is 80%G0.

Figure  7 illustrates the calculated odd-even mass differ-
ences at the asymmetric and symmetric fission points for 230
Th, 234 U, 240Pu, and 246Cm, considering the variation in the 
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pairing strength G ranging from 80%G0 to 120%G0 . In this 
analysis, it was assumed that the ground-state odd-even mass 
differences represented the odd-even binding-energy differ-
ences in the scission configuration, despite some shape dif-
ferences. A comparison of the experimental odd-even mass 
differences of asymmetric and symmetric fission fragments 
in nuclei such as 230Th, 234 U, 240Pu, and 246 Cm indicates 
that the calculated results exhibit better agreement with 
experimental values at the asymmetric fission point when 
the pairing strength is set to 120%G0 for 230Th, 234 U, and 
240Pu. Conversely, a stronger pairing interaction is required 
at the symmetric fission point, and the calculated results 
agree better with the experimental values when the pairing 
strength is set to 140%G0 for 230Th, 234 U, and 240Pu. The 
calculated results for the odd-even mass differences at the 
symmetric and asymmetric fission points for 246 Cm dem-
onstrated that the pairing strengths of 80%G0 and 120%G0 
are consistent with experimental values. This finding agrees 
with the earlier conclusion that the fission fragment masses 
for 230Th, 234 U, and 240 Pu are better distributed when the 
pairing interaction strength increases.

The calculations presented above suggest that differ-
ent elongation deformations of the nuclei require different 
pairing interaction strengths to provide a better description 
of the fission products. By fitting the ground-state binding 
energy, inner and outer barrier heights, and mass distribu-
tion calculations for the Pu isotopes, the optimal values for 

the strength of the pairing interactions were determined. 
As shown in Fig. 8, the strength of the pairing interactions 
varies nonlinearly with increasing elongation deformation 
of the nucleus. Compared to the barrier height, a stronger 
interaction is required to accurately describe the fragment 
mass distribution.

5 � Fragment mass distribution of T h , U, P u , 
and C m isotopes

Based on the above results, we calculated the fragment 
mass distributions of the Th, U, Pu, and Cm isotope chains 
based on the corresponding PES, with the pairing interaction 
strength set to  120%G0 . The theoretical calculations pre-
sented in Fig. 9 are consistent with the experimental data for 
all the isotopes. The peak height, width, and position of the 
fragment mass distribution closely match the experimental 
data. However, some discrepancies are observed for specific 
isotopes, which can be attributed to the limitations of the 
available experimental data.

For 228 Th and 230Th, the experimental data for the frag-
ment mass distribution were obtained by converting the 
charge distribution of the fragments at an excitation energy 
of 11 MeV in the fission system [64]. This may explain why 
the experimental value of the asymmetric mass yield of 
228 Th is lower than the theoretical value, whereas the sym-
metric fission yield is relatively high. The experimental data 
from thermal-neutron-induced fission were used for 234 U and 
236 U [74]. The theoretical results show a higher symmetric 
valley for 234 U compared to that for the experimental data. 
Owing to the lack of available experimental data for 238 U, 
the evaluated post-neutron data from ENDF/B-VIII.0 were 
utilized [75].
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Experimental data from spontaneous fission were 
used for 236Pu, 238Pu, and 240Pu, and the calculated results 
closely matched the experimental data in terms of the 
peak width. For 242Pu, experimental data from thermal 
neutron-induced fission were employed. The calculated 
results exhibited a similar peak width, but deviated from 
the experimental data by 2–3 mass units in the peak 
position. For the 244−248 Cm isotopes, the evaluated post-
neutron data from ENDF/B-VIII.0 were used. The calcu-
lated results presented in Fig. 9 are consistent with the 
experimental data, indicating the effectiveness of the pro-
posed model in reproducing the fission fragment mass 
distribution.

Overall, the model employed in this study successfully 
reproduced the experimental data of the fission fragment 
mass distribution for Th, U, Pu, and Cm isotopes, pro-
viding a valuable tool for understanding and analyzing 
fission processes.

6 � Effects of model parameters 
on the fragment mass distribution of  240
Pu 

In subsequent studies, the effects of the zero-point energy 
E0 in Eq. (15) and half-width parameter d in Eq. (18) of the 
three-dimensional collective model on the fragment mass 
distribution of 240 Pu were investigated. The results (Fig. 10a) 
indicate that the half-width parameter d primarily influences 
the position of the asymmetric peak. The position of the 
asymmetric peak shifts toward larger fragment masses as 
the half-width parameter d increases.

However, the zero-point energy E0 primarily affected the 
peak value of the fission fragments. As shown in Fig. 10b, 
the asymmetric peak value of the fission fragment mass dis-
tribution decreases with increasing zero-point energy E0 . 
These observations are consistent with findings reported in 
the literature [7]. These results highlight the importance of 
considering the zero-point energy and half-width parameter 
in the three-dimensional collective model for a more accu-
rate description of the fragment mass distribution in fission 
processes.

7 � Conclusion

In summary, this article presents a comprehensive analysis 
of the fission process in Th, U, Pu, and Cm isotopes using 
a Yukawa-Folded mean-field plus standard pairing model. 
The PES, fission paths, barriers, and fragment mass distri-
butions were calculated using a macroscopic-microscopic 
framework. This study focused on investigating the impact 
of pairing interactions on the mass distribution of fission 
fragments.

Our results demonstrate that pairing interactions play a 
crucial role in shaping the fission process of 230Th, 234 U, 
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240Pu, and 246Cm. The strength of the pairing interaction 
was determined by fitting the experimental data of odd-even 
mass differences and barrier heights, which led to better 
agreement between theory and experiment. Furthermore, we 
found that the fission fragment mass distribution was highly 
sensitive to changes in the pairing interaction strengths for 
230Th, 234 U, 240Pu, and 246Cm. Stronger pairing interactions 
favored symmetric fission, whereas weaker interactions led 
to more asymmetric fission. The odd–even mass differences 
for 230Th, 234 U, 240Pu, and 246 Cm at the symmetric and asym-
metric fission points were compared with experimental val-
ues, providing additional support for the findings regarding 
the role of the pairing interaction.

Moreover, a comparison of our theoretical calculations 
with the experimental data confirmed the accuracy of our 
model in describing the fission fragment mass distributions 
for Th, U, Pu, and Cm isotopes. The peak heights, widths, 
and positions of the fragment mass distributions were repro-
duced well, demonstrating the effectiveness of the proposed 
approach.

In addition, we explored the effects of the zero-point 
energy and half-width parameter on the fragment mass 
distribution for 240Pu. The zero-point energy primarily 
influenced the peak value of the fission fragments, while 
the half-width parameter affected the position of the asym-
metric peak.

In conclusion, this study contributes to the understand-
ing of the fission process by emphasizing the crucial role of 
pairing interactions and their relationship with nuclear elon-
gation. The consistency between the theoretical calculations 
and experimental data, along with the analysis of additional 
parameters, strengthen the validity and applicability of the 
proposed model. The insights gained from this study can 
guide future investigations in the field of nuclear fission, 
and advance our understanding of this fundamental process.
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