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Abstract The critical size of a finite homogenous slab is

investigated for one-speed neutrons using the alternative

phase function (AG, Anlı–Güngör) in place of the scat-

tering function of the transport equation. First of all, the

neutron angular flux expanded in terms of the Chebyshev

polynomials of second kind (UN approximation) together

with the AG phase function is applied to the transport

equation to obtain a criticality condition for the system.

Then, using various values of the scattering parameters, the

numerical results for the critical half-thickness of the slab

are calculated and they are tabulated in the tables together

with the ones obtained from the conventional spherical

harmonic (PN) method for comparison. They can be said to

be in good accordance with each other.

Keywords Criticality problem · UN method · Neutron

transport equation · Alternative phase function

1 Introduction

The particle transport equation, which was first devel-

oped by Boltzmann for the kinetic theory of gases, is based

on the conservation of the neutrons in a reactor system. The

radiative transfer of stellar and planetary atmosphere and

light scattering phenomenon are also related to the trans-

port concept. Therefore, the description of the behavior of

the neutrons in a reactor has a great importance for the first

calculation and thus the construction and the operation of

the reactor uneventfully. The number of fission neutrons is

wanted to be constant in all types of reactors in order to

obtain constant power and to control it safely. This situa-

tion of the reactor is defined as to be critical, and the

criticality of a fission system is one of the most important

problems in neutron transport theory. Therefore, the critical

size of a reactor can be said to be decided after the

investigation of the criticality problem related to the system

under consideration.

As well known, the transport equation is an integro-

differential equation, and thus, it is not easy to solve it

analytically. The discrete ordinates (SN) and polynomial

expansion-based techniques are accepted to be the most

common and powerful ones among the methods developed

for the solution of the transport equation [1–4]. In about all

methods, either the derivative of the neutron angular flux or

the neutron scattering function presented in the integral

part of the transport equation is treated by some approxi-

mations to simplify the solution of the equation. In some

instances, using an approximated scattering function in the

transport equation can be sufficient depending on the scope

of the problem under consideration. However, these

approximations can take the problems, and thus, the solu-

tions are more or less away from the real situations. Since

the scattering cross sections vary with the scattering angle

incredibly, various difficulties occur when the scattering

function is represented in terms of any polynomials.

Therefore, instead of using approximate expressions, if an

exact scattering model is used in place of the scattering

function, one could obtain more realistic results repre-

senting the system better [1, 2].

Henyey and Greenstein [5] had first developed an exact

scattering function called the Henyey–Greenstein (HG)
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hakanozturk@osmaniye.edu.tr

1 Department of Physics, Faculty of Arts and Sciences,

Osmaniye Korkut Ata University, 80000 Osmaniye, Turkey

123

NUCL SCI TECH (2019) 30:29(0123456789().,-volV)(0123456789().,-volV)

https://doi.org/10.1007/s41365-019-0552-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s41365-019-0552-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41365-019-0552-z&amp;domain=pdf
https://doi.org/10.1007/s41365-019-0552-z


formula to verify the existence of the diffuse interstellar

radiation. However, they did not explain physically in their

paper why they used such a function in the radiative

transport equation. Later in the following studies such as

biomedical applications, significant discrepancies have

been reported about using the Henyey–Greenstein formula

[5–8].

In this paper, an alternative scattering function (Anlı–

Güngör, AG) which was applied successfully to the criti-

cality problem in neutron transport theory using Legendre

and the Chebyshev polynomials of first kind is preferred

[9–11]. However, instead of using the first kind of Che-

byshev polynomials, the second kind of Chebyshev poly-

nomials approximation (UN method) is preferred to serve

as an alternative solution method to the literature. This

method has been successfully applied to the solutions of

the problems of the transport equation in nearly a decade

[13, 15]. Therefore, this study can be thought of as the

extension of the study previously carried out by Öztürk

[11]. In the solution algorithm, the neutron angular flux is

first expanded in terms of the Chebyshev polynomials of

second kind; then, the AG phase function is inserted into

the transport equation in place of the scattering function. At

the end, applying the UN method to the resultant equation

following the moment equations, a general expression for

the criticality condition is obtained for one-speed neutrons.

Then, the critical half-thicknesses of the slab are calculated

using various scattering and collision parameters in the

criticality condition. The numerical results are obtained

with an increasing order of N=1–9, and they are listed in

Tables 1, 2, 3 and 4. Finally, a comparison table including

the results obtained from the present method and the results

obtained from the conventional PN method is given.

2 UN method with AG phase function

The stationary transport equation for one energy group

neutrons in a source free medium can be written as,

X � rwðr;XÞ þ rTwðr;XÞ ¼
Z
X0

wðr;X0Þ rSðX0 �XÞ dX0;

ð1Þ
where Ω′ and Ω are the unit vectors along the neutron

velocity before and after a scattering collision, respec-

tively. c ¼ rS=rT is the cross-sectional parameter known

as the number of secondary neutrons per collision and σT is
the total macroscopic cross section. ψ(r, Ω) is the neutron

angular flux at position r traveling in direction Ω, and

rSðX �X0Þ is the scattering function [1–3].

Up to now, an appropriate scattering function repre-

senting the probabilities of the neutron interactions is found

to be enough for the solutions of the problems in neutron

transport theory because of its mathematical applicability.

Although using an approximate scattering function is

Table 1 Numerical results for the critical half-thickness as calculated

by increasing orders of UN approximation for c=1.01 and selected

values of t

t U1 U3 U5 U7 U9

−1 6.35409 7.29973 7.27243 7.27499 7.27369

−4/5 6.50873 7.48101 7.45336 7.45608 7.45448

−3/4 6.54923 7.52819 7.50059 7.50333 7.50195

−2/3 6.61848 7.60864 7.58120 7.58398 7.58252

−1/2 6.76399 7.77692 7.75001 7.75283 7.75102

−3/10 6.95230 7.99354 7.96732 7.97020 7.96833

−1/4 7.00194 8.05049 8.02441 8.02729 8.02529

−1/5 7.05270 8.10865 8.08269 8.08560 8.08387

0 7.26764 8.35447 8.32866 8.33159 8.32957

1/5 7.50408 8.62419 8.59787 8.60083 8.59894

1/4 7.56698 8.69585 8.66929 8.67226 8.66762

3/10 7.63154 8.76937 8.74251 8.74549 8.74048

1/2 7.90785 9.08370 9.05518 9.05821 9.05398

2/3 8.16329 9.37393 9.34341 9.34647 9.34066

3/4 8.30095 9.53021 9.49849 9.50158 9.49957

4/5 8.38706 9.62794 9.59543 9.59858 9.59680

1 8.76137 10.05244 10.01637 10.01973 10.01662

Table 2 Numerical results for the critical half-thickness as calculated

by increasing orders of UN approximation for c=1.02 and selected

values of t

t U1 U3 U5 U7 U9

−1 4.36099 4.98773 4.95863 4.96141 4.95998

−4/5 4.46439 5.11058 5.08128 5.08421 5.08269

−3/4 4.49144 5.14236 5.11315 5.11610 5.11456

−2/3 4.53769 5.19641 5.16742 5.17040 5.16882

−1/2 4.63477 5.30895 5.28061 5.28362 5.28200

−3/10 4.76024 5.45300 5.42548 5.42852 5.42682

−1/4 4.79329 5.49075 5.46339 5.46644 5.46471

−1/5 4.82706 5.52926 5.50204 5.50509 5.50338

0 4.96992 5.69153 5.66454 5.66761 5.66581

1/5 5.12677 5.86883 5.84138 5.84447 5.84261

1/4 5.16846 5.91583 5.88814 5.89123 5.88928

3/10 5.21121 5.96399 5.93601 5.93911 5.93711

1/2 5.39393 6.16940 6.13975 6.14288 6.14085

2/3 5.56249 6.35836 6.32668 6.32984 6.32764

3/4 5.65317 6.45983 6.42692 6.43011 6.42782

4/5 5.70985 6.52319 6.48948 6.49270 6.49033

1 5.95572 6.79755 6.76016 6.76360 6.76113
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usually accepted to be successful in many of the studies,

the direct form of a scattering function like Henyey–

Greenstein could be fascinating both in solution algorithm

and in calculation of numerical results. On the other hand,

the Henyey–Greenstein phase function is reported to be

unsuccessful in some of the studies about radiative transfer

[5–7]. Therefore, Anlı et al. [9, 12] constituted a new

scattering kernel, i.e., an AG phase function similar to

Henyey–Greenstein formula and they first applied it to

calculate the eigenvalue spectrum in the one-dimensional

slab geometry transport equation. In some recent studies,

the AG phase function has been applied to diffusion

equation and criticality problems in the transport theory

using Legendre polynomials (PN method) and Chebyshev

polynomials of first kinds (TN method) [10, 11].

In this work, other than the previous studies about

criticality calculations with defined scattering functions,

the Chebyshev polynomials of second kind are preferred

for use in the series expansion of the neutron angular flux.

The AG phase function is used as the scattering function in

the transport equation, and the critical half-thicknesses of

the slab for one-speed neutrons are calculated for various

values of the scattering parameters. Here, the detailed

information about the PN method with the AG phase

function does not needed to be given since it was men-

tioned in the previous work by the author [10, 11].

The AG phase function, which is first used by Anlı et al.

[9] in the determination of the eigenvalue spectrum, is then

expressed as the scattering function, rSðX �X0Þ, in neutron

transport equation, i.e., Eq. (1),

rAGS ðl0Þ ¼
rS

4p 1� 2l0t þ t2ð Þ1=2
; ð2Þ

where σS is any nonnegative coefficient, t is the parameter

representing all kinds of scattering (forward, backward and

anisotropic) and it is defined in the range of �1� t� 1, and

l0 ¼ X �X0 is the cosine of the scattering angle [5, 9],

l0 ¼ ll0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l02

p
cosð/� /0Þ: ð3Þ

The neutron angular flux is used as in Ref. [13],

wðx; lÞ ¼ 2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p XN
n¼0

UnðxÞUnðlÞ;
� a� x� a; �1� l� 1:

ð4Þ

When Eq. (2) is inserted on the right-hand side of

Eq. (1), the one-dimensional steady-state transport equa-

tion can be written as,

l
owðx; lÞ

ox
þ rT wðx; lÞ

¼
Z1
�1

wðx; l0Þdl0
Z2p
0

rS

4p 1� 2l0t þ t2ð Þ1=2
du0;

ð5Þ

with the free space boundary and symmetry conditions:

Table 3 Numerical results for the critical half-thickness as calculated

by increasing orders of UN approximation for c=1.20 and selected

values of t

t U1 U3 U5 U7 U9

−1 1.08842 1.16747 1.13348 1.13843 1.13597

−4/5 1.11017 1.19975 1.16634 1.17137 1.16891

−3/4 1.11584 1.20746 1.17423 1.17924 1.17679

−2/3 1.12549 1.22006 1.18717 1.19217 1.18972

−1/2 1.14565 1.24468 1.21255 1.21748 1.21505

−3/10 1.17147 1.27373 1.24257 1.24737 1.24496

−1/4 1.17823 1.28099 1.25005 1.25481 1.25241

−1/5 1.18512 1.28827 1.25754 1.26226 1.25986

0 1.21406 1.31772 1.28759 1.29212 1.28974

1/5 1.24547 1.34808 1.31805 1.32237 1.31998

1/4 1.25376 1.35587 1.32576 1.33002 1.32763

3/10 1.26222 1.36374 1.33352 1.33772 1.33532

1/2 1.29809 1.39623 1.36508 1.36905 1.36662

2/3 1.33071 1.42471 1.39214 1.39596 1.39347

3/4 1.34808 1.43949 1.40596 1.40972 1.40719

4/5 1.35887 1.44855 1.41434 1.41809 1.41553

1 1.40513 1.48641 1.44860 1.45245 1.44965

Table 4 Numerical results for the critical half-thickness as calculated

by increasing orders of UN approximation for c=2.00 and selected

values of t

t U1 U3 U5 U7 U9

−1 0.32188 0.30549 0.27813 0.27642 0.27071

−4/5 0.32719 0.31680 0.29045 0.28985 0.28463

−3/4 0.32856 0.31926 0.29298 0.29252 0.28734

−2/3 0.33090 0.32308 0.29684 0.29654 0.29142

−1/2 0.33574 0.32980 0.30350 0.30335 0.29832

−3/10 0.34190 0.33655 0.31016 0.30997 0.30503

−1/4 0.34350 0.33805 0.31165 0.31143 0.30651

−1/5 0.34512 0.33948 0.31308 0.31281 0.30792

0 0.35191 0.34465 0.31826 0.31771 0.31294

1/5 0.35917 0.34906 0.32266 0.32170 0.31705

1/4 0.36107 0.35007 0.32363 0.32255 0.31793

3/10 0.36301 0.35105 0.32456 0.32335 0.31175

1/2 0.37113 0.35465 0.32772 0.32591 0.32135

2/3 0.37841 0.35736 0.32960 0.32714 0.32249

3/4 0.38224 0.35866 0.33024 0.32738 0.32260

4/5 0.38461 0.35943 0.33052 0.32739 0.32249

1 0.39462 0.36258 0.33076 0.32612 0.32021
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wða; lÞ ¼ 0; ð6aÞ
wðx; lÞ ¼ wð�x; lÞ; l[ 0: ð6bÞ

The slab is assumed to be homogeneous expanding from

x=−a to x=a. The integrand on the right-hand side of

Eq. (5) over du0 can be obtained using the addition theorem
of the Legendre polynomials [9],

Z2p
0

rS

4p 1� 2l0t þ t2ð Þ1=2
du0 ¼ rS

2

X1
n¼0

tnPnðlÞPnðl0Þ: ð7Þ

Then, Eq. (5) can be rearranged using Eq. (7),

l
owðx; lÞ

ox
þ m wðx; lÞ ¼ m c

2

X1
n¼0

tnPnðlÞUnðxÞ: ð8Þ

A dimensionless space variable, such that σTx/ν → x is

defined in order to simplify the derivation of the equations

and ν, is the eigenvalue.

In the application procedure of the method, first the

neutron angular flux, wðx; lÞ, given in Eq. (4) is replaced in

Eq. (8), and then, the resultant equation is integrated over

μ ∈ (−1,1) after multiplying it by Um(μ). The orthogonality
and the recurrence relations of the Chebyshev polynomials

of second kind are used during this procedure [13–15],

Z1
�1

UnðlÞUmðlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
dl ¼ p

2
dn;m; ð9Þ

Unþ1ðlÞ � 2lUnðlÞ þ Un�1ðlÞ ¼ 0: ð10Þ
By following the steps mentioned above, a general

expression for the UN moments of the angular flux could

not be reached in this study. However, individual expres-

sions for n=0, 1, 2, …, 9 are obtained and they are

dU1ðxÞ
dx

þ 2mU0ðxÞ ¼ 2mcU0ðxÞ; ð11aÞ

dU2ðxÞ
dx

þ dU0ðxÞ
dx

þ 2mU1ðxÞ ¼ 2

3
mctU1ðxÞ; ð11bÞ

dU3ðxÞ
dx

þ dU1ðxÞ
dx

þ 2mU2ðxÞ

¼ �2mc
1

15
t2 � 5
� �

U0ðxÞ � t2

5
U2ðxÞ

� �
;

ð11cÞ

dU10ðxÞ
dx

þ dU8ðxÞ
dx

þ 2mU9ðxÞ

¼ �2mc

42t9

46189
þ 112t7

109395
þ t5

429
þ 40t3

3003
� 5t

99

� �
U1ðxÞ

48t9

20995
þ 112t7

36465
þ 28t5

2145
� 100t3

3003

� �
U3ðxÞ

9t9

1615
þ 16t7

1105
� 21t5

715

� �
U5ðxÞ

8t9

323
� 8t7

255

� �
U7ðxÞ � t9

19
U9ðxÞ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

;

ð11dÞ
where Φ−1(x)=0. A well-known solution [1],

UnðxÞ ¼ Anðm; tÞ expðxÞ; ð12Þ
is customarily used in Eqs. (11) in order to obtain analytic

expressions of all An(ν)’s as follows,

A1ðm; tÞ þ 2mA0ðm; tÞ ¼ 2mcA0ðm; tÞ; ð13aÞ

A2ðm; tÞ þ A0ðm; tÞ þ 2mA1ðm; tÞ ¼ 2

3
mctA1ðm; tÞ; ð13bÞ

2mc
15

t2 � 5
� �

A0ðm; tÞ þ A1ðm; tÞ þ 2m 1� ct2

5

� �
A2ðm; tÞ

þ A3ðm; tÞ
¼ 0;

ð13cÞ

2mc
42t9

46189
þ 112t7

109395
þ t5

429
þ 40t3

3003
� 5t

99

� �
A1ðm; tÞ

þ 2mc
48t9

20995
þ 112t7

36465
þ 28t5

2145
� 100t3

3003

� �
A3ðm; tÞ

þ 2mc
9t9

1615
þ 16t7

1105
� 21t5

715

� �
A5ðm; tÞ

þ 2mc
8t9

323
� 8t7

255

� �
A7ðm; tÞ þ A8ðm; tÞ þ 2m 1� ct9

19

� �
A9ðm; tÞ

þ A10ðm; tÞ ¼ 0;

ð13dÞ
where A−1(ν, t)=0 and A0(ν, t)=1. Equations (13) can also

be written in a matrix form for an alternative solution

algorithm,

½Mðm; tÞ�Aðm; tÞ ¼ 0; ð14Þ
where M(ν, t) is (N+1) 9 (N+1) coefficient matrix and A
(ν, t)=[A0, A1, …, AN]

T. It is possible to obtain non-trivial

solutions for the discrete eigenvalues by equating the

determinant of the coefficient matrix to zero, i.e., det[M(ν,
t)]=0.

As well known in the PN approximation, the contribu-

tion of the (N+1)th term to the neutron flux could be

accepted as negligible. In addition, the Legendre and

Chebyshev polynomials are the members of the Jacobi

polynomials. Then by following the same procedure
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derived for the PN approximation, the discrete and con-

tinuumν eigenvalues can be obtained by setting AN+1(ν, t)=
0 for various values of c and t. Brief information about the

profiles of the eigenvalues can be given as follows: All

roots of AN+1(ν)=0 are identical with the roots of UN+1(ν)
=0 in the case of c=0 and all values of t. When c=1, one
pair of the roots is �1i and the others are real lying in the

interval [−1,1]. When 0\c\1, all roots are real and one

pair of them is usually greater than 1. Finally when c[1,

one pair of the roots is purely imaginary and the others are

real [9, 19]. As an example for U1 approximation, two

linear algebraic equations, i.e., Equation (13a) for n=0 and

Eq. (13b) for n=1, are obtained and an analytic expression

for the eigenvalues can easily be derived by setting A2(ν, t)
=0 in Eqs. (13a) and (13b),

mk ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ð1� cÞð3� ctÞ

s
: ð15Þ

In other words, the same eigenvalues can be obtained

using Eq. (14) by deriving a 292 matrix equation and then

equating the determinant of the coefficient matrix to zero.

Therefore, the general solution of the flux moments for

odd numbers of N can be written with so computed discrete

eigenvalues νk for k=1, …, N+1,

UnðxÞ ¼
XðNþ1Þ=2

k¼1

akAnðmk; tÞ exp
rTx
vk

� �
þ ð�1Þn exp � rTx

mk

� �	 

;

ð16Þ
where An(−ν, t)=(−1)

n An(ν,t) and αk’s are the coefficients

which can be determined from the physical boundary

conditions of the system. The general solution Eq. (16) is

constituted as the summation of all eigenvectors corre-

sponding to each eigenvalues.

3 Boundary conditions and the critical system

The study of calculation of the eigenvalues of the

problem representing the system under consideration can

be said to be equivalent to find the critical size of that

system. The values of the number of secondary neutrons

per collision are very important to operate the reactor

safely and decide whether it is critical or not. In a reactor,

for each absorption collision the reactor cannot be said to

be critical when fewer neutrons are emitted than absorbed

(c\1). However, a reactor may be subcritical or critical for

a slab of finite thickness with c[1 [3].

The angular neutron flux is continuous across material

region boundaries except for the direction μ=0 in slab

geometries. Any finite sum of the Legendre polynomials is

continuous over the range −1 ≤ μ ≤ 1 and, therefore,

continuous at μ=0. Then, the PN approximation in slab

geometries is a rather poor representation of the angular

flux near material boundaries. Although the Mark and

Marshak boundary conditions are the most commonly used

ones for the criticality problems, the Marshak boundary

condition which is based on the condition of zero incoming

current at the vacuum boundary is somewhat more accurate

than the Mark condition, at least for small N [3, 16].

Because of the reasons mentioned above, for the criti-

cality of the slab, the Marshak boundary condition for UN

approximation of odd order can be written as,

Z1
0

wða;�lÞ Ukð�lÞ dl ¼ 0; k ¼ 1; 3; . . .;N: ð17Þ

In the application procedure of the boundary condition,

first the neutron flux in Eq. (16) is replaced in Eq. (4), and

then, the resulting equation is inserted into Eq. (17) with

the parity relation of the Chebyshev polynomials of second

kind Uk(−μ)=(−1)
kUk(μ),

2

p

XN
n¼0

ð�1Þnþk
XðNþ1Þ=2

k¼1

akAnðmk; tÞ exp
rTa
mk

� �	(

þ �1Þn exp � rTa
mk

� �� 
�
In;k ¼ 0;

ð18Þ

where In,k is

In;k ¼
Z1
0

UnðlÞUkðlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
dl

¼
p=4; n ¼ k;
sin ðn� kÞp=2½ �

2ðn� kÞ þ sin ðnþ kÞp=2½ �
2ðnþ k þ 2Þ ; n 6¼ k;

8<
:

ð19Þ
and

Z1
0

Unð�lÞUkð�lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
dl ¼ ð�1Þnþk

In;k: ð20Þ

Equation (18) is referred to as the criticality condition

and it can also be written in a matrix form,

Mk
mðaÞ

� �
bk ¼ 0; m; k ¼ 1; 2; . . .; N þ 1ð Þ=2; ð21Þ

where βk is the column vector comprising elements of

b1; b2; . . .; bðNþ1Þ=2
h iT

and Mk
mðaÞ is the coefficient matrix

with (N+1)/2 9 (N+1)/2 elements. Equation (18) or (21)

can be solved for a non-trivial solution when the coeffi-

cients βk’s are nonzero or the determinant of the coefficient

matrix is zero, i.e., det Mk
mðaÞ

� � ¼ 0. Since the eigenvalues

were already calculated from Eq. (15), as final application

by letting N=1 in Eq. (18) or Eq. (21), an analytic solution
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for the critical half-thickness of the slab can easily be

obtained for U1 approximation,

a ¼ 1

2rT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ð1� cÞð3� ctÞ

s
tanh�1 � 8

3p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� ctÞ
3ð1� cÞ

s !
:

ð22Þ

4 Numerical results

An application of the Chebyshev polynomials expansion

(UN approximation) is done for the critical slab problem for

one-speed neutrons in a uniform homogeneous medium. In

the method, the Chebyshev polynomials of second kind are

used in the angular part of the neutron flux as it has been

successfully applied before [13, 15]. Contrary to previous

approximation scattering functions, in order to get closer to

accurate solution of the transport equation, the AG phase

function is used. Various values of c and t are used in

Eq. (13) or (14) to compute the discrete eigenvalues by

setting AN+1(ν)=0. An analytic expression of the eigen-

values for U1 approximation is obtained and it is given in

Eq. (15). Various orders of the UN approximation with the

AG phase function are applied to Eq. (18) or (21), and the

numerical results for the critical half-thickness of the slab

are tabulated in Tables 1, 2, 3 and 4. A final table, i.e.,

Table 5, has been needed to compare the results obtained

from the present method with the ones already obtained

from the conventional PN method in a previous study [11].

The Marshak boundary condition is used during the

application of the criticality condition to the problem since

it is accepted as to be more valid than the Mark for small

N [3, 16]. All calculations are carried out by means of the

Maple software, and the total macroscopic cross section is

taken as to be its normalized value, σT=1 cm−1.

In Tables 1, 2, 3 and 4, the critical half-thicknesses of

the slab are listed for c=1.01, 1.02, 1.20 and 2.00 and t is
selected with increasing order from −1 to 1. One can easily

test that the t=0 case corresponds to isotropic scattering

[9, 13, 15]. In other words, by replacing the case of t=0 in

Eqs. (15–18) one would obtain the equations necessary for

calculating the eigenvalues and the critical half-thicknesses

using the UN method in slab geometry for isotropic scat-

tering [13, 15].

It can be seen from the tables that in many cases, the

critical half-thickness of the slab increases, while t is

increasing and c is decreasing. It was reported that the

critical thickness of the slab can behave non-monotonic

when neutrons tend to propagate in the forward direction.

This is observed as first an increasing trend and then a

decreasing trend with increasing forward anisotropy

parameter according to the choice of the c. This behavior of
the critical thickness is referred to as non-monotonic and it

is observed in this study for t approaching to 1 and c=2,
especially in the case of higher-order approximations with

N[5. That means the same non-monotonic behavior of the

critical thickness as reported before [17, 18] appears when

the neutrons scatter in the forward peaked directions. This

circumstance is given in Tables 4 and 5 by examining the

Table 5 Critical half-

thicknesses for c=1.01, 1.20 and
2.00 and selected values of t as
compared by P9 and U9

approximations

t c=1.01 c=1.20 c=2.00

P9 [11] U9 (present work) P9 [11] U9 (present work) P9 [11] U9 (present work)

−1 7.27723 7.27369 1.13840 1.13597 0.27052 0.27071

−4/5 7.45782 7.45448 1.17127 1.16891 0.28491 0.28463

−3/4 7.50499 7.50195 1.17906 1.17679 0.28775 0.28734

−2/3 7.58523 7.58252 1.19179 1.18972 0.29202 0.29142

−1/2 7.75318 7.75102 1.21664 1.21505 0.29922 0.29832

−3/10 7.96959 7.96833 1.24599 1.24496 0.30618 0.30503

−1/4 8.02650 8.02529 1.25333 1.25241 0.30769 0.30651

−1/5 8.08440 8.08387 1.26068 1.25986 0.30913 0.30792

0 8.33040 8.32957 1.29038 1.28974 0.31418 0.31294

1/5 8.60028 8.59894 1.32081 1.31998 0.31814 0.31705

1/4 8.67076 8.66762 1.32856 1.32763 0.31896 0.31793

3/10 8.74482 8.74048 1.33638 1.33532 0.31971 0.31175

1/2 9.05877 9.05398 1.36833 1.36662 0.32188 0.32135

2/3 9.34822 9.34066 1.39580 1.39347 0.32251 0.32249

3/4 9.50423 9.49957 1.40981 1.40719 0.32232 0.32260

4/5 9.60097 9.59680 1.41830 1.41553 0.32201 0.32249

1 10.02130 10.01662 1.45277 1.44965 0.31913 0.32021
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values with t[¼. However, since the criticality calcula-

tions are important especially for c near to 1, this anomaly

for the AG phase function can be thought as negligible. It

can be seen from these tables that this non-monotonic

behavior has occurred when c=2.00 (away from 1) and

higher-order approximation is used (N=9) which is pointed

to as the advantage of the Marshak boundary condition

against the Mark [3]. More discrepancies about the

behavior of the critical thickness are reported as to be seen

when using Henyey–Greenstein phase function [11].

5 Conclusion

In this paper, the critical thickness of one-speed neu-

trons in a finite homogeneous slab is studied using UN

approximation which is applied successfully in preceding

studies [13, 15]. As a second important application of this

study, the AG phase function is chosen as the scattering

kernel of the transport equation. The critical half-thick-

nesses of the slab are calculated numerically using

increasing orders of the UN approximation up to N=9 for

both positive and negative values of the parameter t. While

the positive values of t represent the forward peaked

scattering of the neutrons, the negative values of it repre-

sent the backward peaked scattering of the neutrons. These

are physically possible situations presented in a reactor.

When a neutron interacts with a particle having a mass

approximately equal to the mass of the interacting neutron,

such as a hydrogen nucleus in a moderator, this interaction

has a probability to end with a forward scattering. In a

similar way, when a neutron interacts with a particle hav-

ing a mass of greater than the mass of the interacting

neutron, such as an oxygen nucleus in a moderator, a

nucleus in reactor material or a daughter nucleus emitted

from a fission reaction, this interaction has a probability to

end with a backward scattering [9]. Therefore, this study

can be evaluated as the calculation of the critical half-

thickness of the slab for forward and backward scattering

since both the positive and negative values of t are given in

Tables 1, 2, 3, 4 and 5.

In summary, one can easily assert from the derivation of

the equations and the results already obtained here that the

AG phase function is seen to be convenient for the solution

of the problems in transport theory. Furthermore, the AG

phase function with its easily applicable derivation can also

be sufficient for other problems containing a phase function

in particle or photon transport and in science and

engineering.
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