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Abstract
Density fluctuations and correlations due to a first-order quark-gluon plasma to hadronic matter phase transition and its critical 
end point, if they remain present after the hadronic evolution in a heavy ion collisions, can lead to an enhanced production 
of light nuclei in these collisions. This would then result in a non-monotonic collision energy dependence of the yield ratio 
NtNp∕N

2
d
 of proton number Np , deuteron number Nd , and triton number Nt . Measurements of this yield ratio as a function of 

collision energy thus provides the possibility to probe the equation of state of strong-interaction matter and its phase diagram.

Studying the properties of baryon-rich quark-gluon plasma 
(QGP) is the main focus of the beam energy scan (BES) 
experiments [1–3] at the Relativistic Heavy Ion Collider 
(RHIC) as well as at the future Facility for Antiproton and 
Ion Research (FAIR) and the Nuclotron-based Ion Collider 
Facility (NICA). There have been many theoretical studies 
on the QCD phase diagram and its structure, based on, for 
example, the lattice QCD [4], holographic models [5], and 
effective field theories [6]. Also, the QCD phase diagram has 
been explored in the hydrodynamic framework by the BEST 
Collaboration [7] and used in machine learning methods to 
study its effects in heavy ion collisions [8]. In particular, 
using the hydrodynamic  [9–12] or transport [13] model 
with an equation of state that has a first-order partonic to 
hadronic matter phase transition, it has been shown that the 
produced matter in heavy ion collisions could be mechani-
cally unstable due to the spinodal instability associated with 
the first-order phase transition. This would then lead to an 
amplification of the density inhomogeneity, and the result-
ing density fluctuations could enhance the production of 
composite particles, such as hadrons and nuclei, which can 
then be used as a signal of the first-order phase transition. 
For example, using a partonic transport model based on a 
three-flavor Nambu-Jona-Lasinio (NJL) model [14, 15] for 
Au+Au collisions with the initial quark temperature and 

density in the spinodal region of the corresponding strong-
interaction QCD phase diagram, it was shown in Ref. [13] 
that the quark density fluctuation after the evolution would 
be larger for the case with a first-order chiral phase transition 
than for the case without a first-order chiral phase transition 
in the equation of state. These results are illustrated in panels 
(b) and (a) of Fig. 1, respectively.

Also shown in Fig. 1 are the light nuclei produced from 
the hadronic matter resulting from the clumping quark mat-
ter after hadronization and further evolution as well as their 
yield ratio Op-d-t = NtNp∕N

2
d
 , where Np , Nd , and N t denote, 

respectively, the proton, deuteron, and triton numbers. 
According to Ref.  [16], where the coalescence 
model [17–20] is used for light nuclei production, this yield 
ratio is related to the neutron relative density fluctuation 
Δn = ⟨(�n)2⟩∕⟨n⟩2 , with ⟨n⟩ and ⟨(�n)2⟩ being the average 
neutron density and its variance, respectively, by 
Op-d-t ≈

1

2
√
3
(1 + Δn) . One thus expects an enhanced Op-d-t 

if the neutron density fluctuation remains present at the 
kinetic freeze-out of produced hadronic matter. A similar 
density fluctuation effect on the yield ratio Op-d-t also holds 
if deuteron and triton are produced thermally or statistically 
at the kinetic freeze-out of the hadronic matter [21, 22]. It 
was further argued in Ref. [23] that the critical fluctuations 
in the vicinity of the critical end point (CEP) of a first-order 
phase transition could also lead to an enhancement of the 
yield ratio Op-d-t as shown in Ref. [24]. An enhanced Op-d-t 
has also been interpreted as a signal for the CEP according 
to Refs. [25, 26], which showed that light nuclei production 
would be enhanced as a result of their increased binding 
energies when the attractive part of nucleon-nucleon 
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potential due to the � meson exchange becomes deeper 
because of its decreasing mass as the system is close to the 
CEP. Reviews on this very interesting topic of the relation 
of light nuclei and the related topic of net baryon number 
fluctuations to the QCD phase transition can be found, 
respectively, in Ref. [27] and Refs. [28–30]. For a recent 
review on experimental study of the QCD phase diagram in 
relativistic heavy ion collisions, it can be found in Ref. [31].

Recently, the STAR Collaboration has published in Physi-
cal Review Letters [34] the yield ratio Op-d-t from the data 
measured during the first phase of BES experiments. This 
result is based on the analysis led by Daniel Cebra, Mat-
thew Harasty, Hui Liu, Xiaofeng Luo, Nu Xu, Ning Yu, and 
Dingwei Zhang. As shown in Fig. 2 for Au+Au collisions in 
the center-of-mass energy range of 

√
sNN = 7.7 − 200 GeV, 

this yield ratio is enhanced at 19.6 and 27 GeV in the most 
central collisions, although it shows a monotonic collision 
energy dependence. This result has been compared with the-
oretical predictions of the coalescence model for deuteron 
and triton production based on kinetically freeze-out protons 

and neutrons from microscopic models for relativistic heavy 
ion collisions. The latter include the hybrid model based on 
the (3+1)D viscous hydrodynamic model MUSIC for the 
quark-gluon plasma and the UrQMD transport model for the 
hadronic matter [32, 35] as well as a multiphase transport 
(AMPT) model that includes both the partonic and hadronic 
phases [33]. With a smooth crossover transition between the 
quark-gluon plasma and hadronic matter, an essentially col-
lision energy independent Op-d-t is predicted by these mod-
els for both peripheral and central Au+Au collisions. There 
have been attempts to extend the study of Ref. [13] based on 
the NJL model for the quark matter to include its hadroniza-
tion and the evolution of the resulting hadronic matter via 
the AMPT model [21, 36]. These studies have shown that 
the quark density fluctuation can largely survive hadroniza-
tion but the hadron density fluctuation is somewhat washed 
out by their scatterings. The resulting yield ratio Op-d-t 
from the nucleon coalescence model based on kinetically 
freeze-out nucleons can, however, still be enhanced if the 
system goes through the spinodal region of the QCD phase 
diagram from the NJL model. Because of the low critical 
temperature and high baryon chemical potential in the NJL 
model, the enhanced Op-d-t only happens in central Au+Au 
collisions at center-of-mass energies lower than where the 
peak is seen in the STAR data. More realistic models for 
the QCD equation of state are thus needed in this transport 
model study. These equations of state can also be used in the 
MUSIC+UrQMD hybrid model to study the collision energy 
dependence of Op-d-t and to extract the critical temperature 
and baryon chemical potential from the STAR data.

Besides the yield ratio Op-d-t , there are other yield ratios 
of light nuclei that are also sensitive to nucleon density fluc-
tuations and can be used to probe the QCD phase diagram. 
For example, the yield ratio N�Np

N3HeNd

≈
2
√
2

9
√
3
(1 + Δp) is sensi-

tive to the proton density fluctuation Δp [24] and also to the 
closeness to the critical point [37]. To avoid the smearing 
effect of hadronic scatterings on the nucleon density fluctua-
tions and to directly probe the large density fluctuation dur-
ing the quark to hadronic matter first-order phase transition, 
one can consider the yield ratio of hadrons, such as 
NpNK̄0

N𝜋+NΛ

and
NK+NΞ−

N𝜙NΛ

 , which can be shown to be sensitive to the 
up quark and strange quark density fluctuations, respectively, 
if they are produced through quark coalescence [38, 39] and 
their numbers do not change during the hadronic evolution 
as in the statistical hadronization model [40, 41]. It is worth-
while to mention that in intermediate-energy nuclear colli-
sions, density fluctuations of produced warm nucleonic mat-
ter can be used to study the nuclear liquid–gas phase 
transition [42] and light nuclei produced in these collisions 
can be employed to probe the density dependence of nuclear 
symmetry energy [43, 44], which has importance implica-
tions in both nuclear structure and nuclear astrophysics. 

Fig. 1  (Color online) Density distribution of strongly interacting mat-
ter in a heavy ion collision after its expansion for the cases of crosso-
ver transition (panel a) and first-order chiral phase transition (panel 
b). Also shown for illustration of the latter case are deuterons and tri-
tons produced from the density fluctuating hadronic matter and their 
yield ratio Op-d-t = NtNp∕N

2
d
 , which  depends on the magnitude of 

neutron density distribution as discussed in the text
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Fig. 2  (Color online) Collision energy, pT dependence of the yield 
ratio NtNp∕N

2
d
 in Au+Au collisions at RHIC for 0%-10% central (left 

panel) and 40%-80% peripheral (right panel) collisions. Dashed lines 
are the coalescence baselines obtained from the coalescence-inspired 
fit. Shaded areas denote the calculations from the MUSIC+UrQMD 
hybrid  [32] and the AMPT [33] model. Taken from Ref. [34]
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