
Vol.:(0123456789)1 3

Nuclear Science and Techniques (2023) 34:77 
https://doi.org/10.1007/s41365-023-01218-y

GPU‑based cross‑platform Monte Carlo proton dose calculation engine 
in the framework of Taichi

Wei‑Guang Li1,2,3   · Cheng Chang3 · Yao Qin3 · Zi‑Lu Wang3 · Kai‑Wen Li3 · Li‑Sheng Geng1,4,5 · Hao Wu2,6

Received: 30 October 2022 / Revised: 9 February 2023 / Accepted: 23 March 2023 / Published online: 26 May 2023 
© The Author(s), under exclusive licence to China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese 
Academy of Sciences, Chinese Nuclear Society 2023

Abstract
In recent years, graphics processing units (GPUs) have been applied to accelerate Monte Carlo (MC) simulations for pro-
ton dose calculation in radiotherapy. Nonetheless, current GPU platforms, such as Compute Unified Device Architecture 
(CUDA) and Open Computing Language (OpenCL), suffer from cross-platform limitation or relatively high programming 
barrier. However, the Taichi toolkit, which was developed to overcome these difficulties, has been successfully applied to 
high-performance numerical computations. Based on the class II condensed history simulation scheme with various pro-
ton–nucleus interactions, we developed a GPU-accelerated MC engine for proton transport using the Taichi toolkit. Dose 
distributions in homogeneous and heterogeneous geometries were calculated for 110, 160, and 200 MeV protons and were 
compared with those obtained by full MC simulations using TOPAS. The gamma passing rates were greater than 0.99 and 
0.95 with criteria of 2 mm, 2% and 1 mm, 1%, respectively, in all the benchmark tests. Moreover, the calculation speed was 
at least 5800 times faster than that of TOPAS, and the number of lines of code was approximately 10 times less than those 
of CUDA or OpenCL. Our study provides a highly accurate, efficient, and easy-to-use proton dose calculation engine for 
fast prototyping, beamlet calculation, and education purposes.

Keywords  Proton therapy · Monte Carlo dose calculation · GPU acceleration · Taichi

1  Introduction

The availability of proton therapy has dramatically 
increased in recent years. According to the 2021 statistics 
of the Particle Therapy Co-Operative Group(PTCOG) [1], 
98 proton therapy facilities are operational worldwide, 19 
facilities are under construction, and 4 facilities are being 
planned. Owing to the sharp falloff in the dose distribution 
(Bragg Peak), a proton beam can deliver most of the dose 
to tumors, thus protecting the surrounding healthy tissues. 
In addition, with the development of new types of beam-
line systems, such as Huazhong University of Science 
and Technology Proton Therapy Facility (HUST-PTF) [2] 
and treatment techniques, such as flash therapy [3], pro-
ton dose calculation requires much higher accuracy than 
that in conventional photon radiotherapy [4]. Most current 
commercial proton-dose calculation engines used in treat-
ment planning systems are based on analytical algorithms 
which can rapidly yield accurate dose results for homo-
geneous tissues. However, the predicted results are inac-
curate when highly heterogeneous tissues are considered 

This work was partly supported by the National Natural 
Science Foundation of China (Nos. 11735003, 11975041, and 
11961141004).

 *	 Li‑Sheng Geng 
	 lisheng.geng@buaa.edu.cn

 *	 Hao Wu 
	 hao.wu@bjcancer.org

1	 School of Physics, Beihang University, Beijing 102206, 
China

2	 Key Laboratory of Carcinogenesis and Translational 
Research (Ministry of Education/Beijing), Department 
of Radiation Oncology, Peking University Cancer Hospital 
and Institute, 52 Fucheng Road, Beijing 100142, China

3	 Medical Management Department, CAS Ion Medical 
Technology Co., Ltd., Beijing 100190, China

4	 Beijing Key Laboratory of Advanced Nuclear Materials 
and Physics, Beihang University, Beijing 102206, China

5	 School of Physics and Microelectronics, Zhengzhou 
University, Zhengzhou 450001, China

6	 Institute of Medical Technology, Peking University Health 
Science Center, 38 Xueyuan Road, Beijing 100191, China

http://orcid.org/0000-0002-8468-1506
http://crossmark.crossref.org/dialog/?doi=10.1007/s41365-023-01218-y&domain=pdf


	 W.-G. Li et al.

1 3

77  Page 2 of 11

[5]. In addition, proton therapy produces many secondary 
particles, the information on which is of great importance 
for analyzing their physical and biological effects [6]. The 
analytical algorithms fail to provide detailed information 
on secondary fragments.

In contrast, Monte Carlo (MC) algorithms fully simulate 
particle reactions and model transport geometries, achieving 
accurate total and fragment dose results. Thus, MC simula-
tions are considered the gold standard in dose calculations, 
although they are time-consuming. Currently, widely used 
MC tools, such as Geant4, Gate, Topas, and FLUKA, are 
based on Central Processing Units (CPUs). However, graph-
ics processing units (GPUs) can integrate more computing 
units, which can simulate transport processes in parallel 
[7–9] and significantly reduce calculation time. Jia et al. 
developed the first GPU-based MC proton-dose calculation 
engine, called gPMC [10]. The physics model was adapted 
from Fippel and Soukop [11], where proton transport was 
simulated in the class II condensed history scheme with a 
continuous slowing down of approximations. Ionization and 
elastic and inelastic interactions between the protons and 
materials were included. Chan et al. [12] applied a more 
precise nonelastic nuclear reaction model that incorporated 
the Bertini cascade and evaporation kernels by sacrificing 
speed. Both models are CUDA-based, and their applications 
are limited to Nvidia GPUs. New versions of gPMC, gPMC 
v2.0, and goMC were realized in the OpenCL framework 
[13, 14], facilitating cross-platform applications. Although 
OpenCL supports multiple GPU hardware, it is mainly 
developed using an Application Programming Interfaces 
(API) with a specific hardware development interface.

In 2019, Hu et al. proposed a new parallel programming 
language called Taichi for high-performance numerical com-
putations [15–17]. It supports most mainstream GPUs and thus 
works well in cross-platform environments. Taichi is embed-
ded in Python and uses just-in-time (JIT) compiler frameworks 
to offload computing-intensive Python code to native GPU or 
CPU instructions. Using the @ti.kernel decorator, Taichi's JIT 
compiler automatically compiles Python functions into an effi-
cient GPU or CPU machine code for parallel execution. These 
features enable easy programming that significantly reduces 
the total number of lines of code compared to OpenCL and 
CUDA. Moreover, Taichi can be well integrated into main-
stream Python deep learning ecosystems such as PyTorch, 
which integrate GPU high-performance computing with deep 
learning neural networks [18–20]. Consequently, Taichi has 
been widely used in high-performance physics studies [16] 
and machine learning fields [21]. However, Taichi has not 
yet been applied to dose calculations in radiotherapy. In this 
work, we developed a new cross-platform GPU-based MC 
proton dose calculation engine for the Taichi platform, named 
Taichi Proton Monte Carlo (TPMC), with a model of proton 

transport similar to those in [11, 14], except for a different 
inelastic nuclear reaction model.

The strategy for GPU acceleration in Taichi is similar to 
those in OpenCL and CUDA. Primary and secondary stacks 
were built to store primary protons and secondary particles, 
respectively. The GPU calculation threads first processed the 
primary protons to start transport and then saved all the sec-
ondary particles produced into the secondary stacks. After all 
the primary protons stopped or escaped from the region of 
interest, the secondary protons were transported on the GPU 
threads again and treated as primary protons, except that the 
information of the produced secondaries was not documented. 
Using the Taichi platform reduced the number of lines of code 
to only a few hundred. The computation time was reduced by 
allocating the deposited dose to different local dose counters 
to avoid the atomic addition effect. In our study, we prepared 
110-, 160-, and 200 MeV proton pencil beams and four water 
and human tissue phantoms for dose calculation. The gamma 
passing rates, calculation speeds, and total number of lines of 
code were evaluated and compared with those obtained from 
Geant4-TOPAS and other GPU-based simulations.

The remainder of this study is organized as follows. In 
Sect. 2, we describe the physical process of the TPMC, paral-
lel simulation strategy, and Taichi GPU memory arrangement. 
The results of the dose calculations for Taichi and the other 
platforms are compared in Sect. 3. Finally, in Sect. 4, we con-
clude our study and discuss its current and future applications.

2 � Methods

In this study, we employed the class II condensed history simu-
lation scheme [22] and continuous slowing down approxima-
tions for proton transport. A simplified physics model was 
established to simulate the nuclear reactions of the primary 
and secondary protons. The physical process of proton trans-
port was almost the same as those in Refs. [10, 11], which 
will be briefly introduced in the following section. On the 
other hand, the proton transport was accelerated in the Taichi 
framework on GPUs, where parallel threads were applied and 
a new dose counter model was developed to solve thread-block 
problems.

2.1 � Physics model

Protons were transported step by step in materials. The step 
size is defined as

where ΔSmax is the maximum step size required to ensure 
that energy loss remains within 25% of the total kinetic 

(1)ΔS = min

(

ΔSmax,ΔSvox,
− ln (�)

�tot

)

,



GPU‑based cross‑platform Monte Carlo proton dose calculation engine in the framework of Taichi﻿	

1 3

Page 3 of 11  77

energy or 2 mm [22] in each step. ΔSvox is the distance 
between the particle position and voxel surface, � is a ran-
dom number in the range of [0–1], and �tot is the total reac-
tion cross section. The step length in different materials ΔS 
was first converted to its corresponding water equivalent 
length ΔSw (with the same energy loss in water)

where � , �w, Tp, and fs(�, Tp) denote the material density, 
density of water, kinetic energy of the protons, and relative 
stopping power of the voxel material to water, which was 
determined in [11], respectively. At each step, the angular 
distribution of the scattered protons was calculated using 
Moliere’s function [23, 24]. The average proton energy loss 
in one step (ΔE) was obtained by solving

where Lw(E) is the restricted stopping power of water, 
which was calculated using the Bethe-Bloch formula [25]. 
To consider the effects of secondary electrons in the ioniza-
tion process less than the cutoff energy Tmin

e
 = 0.1 MeV, the 

actual energy loss was varied with a Gaussian fluctuation 
ΔEf = ΔE + N(0, �2) , where the standard deviation � was 
determined following Ref. [23] In addition, all secondary 
electrons were considered depositing their energy locally, 
as their short range compared to the computed tomography 
(CT) voxel size. Post-step reactions between protons and 
materials occurred after each step, including ionization, 
proton–proton elastic nuclear interactions, proton–oxygen 
elastic nuclear interactions, and proton–oxygen inelastic 
nuclear interactions. These interactions were treated in the 
same manner as in Ref. [10], except that the inelastic cross 
sections were extracted from MC simulations using Geant4 
[26] and tabulated as inputs to accelerate the MC simulation, 
as suggested by Wan et al. [12].

2.2 � GPU acceleration

As mentioned in Sect. 1, the implementation of CUDA is 
limited to the GPU of NVIDIA. Although OpenCL can 
solve this problem [13], it requires an additional applica-
tion programming interface and lacks functional libraries, 
thereby creating higher programming barriers for medical 
physicists and developers. However, Taichi can overcome 
the drawbacks of these two languages [15]. It is based on 
Python and can therefore conveniently use available pack-
ages such as random, numpy, and pandas. When applied 
to GPU acceleration, an easy outermost scope for-loop 
command automatically parallelizes work items on dif-
ferent threads in the Taichi kernel, whereas in CUDA and 

(2)ΔSw = fs(�, Tp)
�

�w
ΔS ,

(3)ΔSw = −
E1−ΔE

∫
E1

dE�

Lw(E
�)
,

OpenCL, appropriate GPU machine codes must be designed 
[15]. Moreover, switching from Nvidia cards to other GPU 
cards can be achieved simply by changing only the head 
files in Taichi, instead of (almost completely) rewriting the 
code in OpenCL. Finally, the compilation time and memory 
space are saved in Taichi because it is performed on the 
LLVM-based compiler Clang [15], and Taichi also tunes 
the parameters to best explore the GPU architecture. Table 1 
briefly compares these three languages.

The cross-sectional data of proton-nucleus reactions and 
the density and stopping power distribution of the target 
were first loaded by the CPU and stored in the GPU global 
memory, which was called constantly during the simula-
tions. The transport of primary protons was randomly simu-
lated stepwise on different GPU threads until they stopped or 
moved out of the target. The automatic parallelization of par-
ticles on a GPU can be achieved using @ti.for-loops com-
mand in TPMC. Secondary particles were generated after 
inelastic nuclear interactions, and their information, includ-
ing the location, energy, and direction, was recorded in the 
GPU global memory and pushed into the secondary particle 
stack. The transport of secondary particles was blocked until 
all the primary protons were simulated. Subsequently, we 
randomly allocated secondary protons to different threads 
for transport.

Although the particles were transported in parallel on the 
GPUs, the dose deposition process in each thread was not 
independent. Individual dose deposition on the global dose 
counter causes a thread block, where the dose information 
of other threads must wait until the current process of proton 
information transfer ends, known as atomic addition. This 
treatment was the primary reason for the time-consuming 
nature of the GPU-based MC dose engine. In this study, we 
applied the same strategy as in gPMC V2.0 [14] to mitigate 
the memory conflict problem. Eight local dose counters were 
prepared to balance the calculation efficiency and memory 
size. The deposited energy was randomly assigned to a dose 
counter after each step, and the total doses were summed 
for the eight counters after all the particle transports were 
completed.

The GPU implementation of the aforementioned pro-
cess is schematically illustrated in Fig. 1. Protons were 
simulated in batches with a batch size of Nbatch = 65536 
protons in all cases, except for the last batch in our simula-
tion. After Np primary protons were loaded into a batch, 

Table 1   Development environment and bases of different platforms

Platform Base GPU Library

CUDA C++ Nvidia Nvidia
OpenCL API Multiple OpenCL
Taichi Python Multiple Python



	 W.-G. Li et al.

1 3

77  Page 4 of 11

the transport simulation was initiated. It is noteworthy 
that Np is equal to Nbatch . In each batch, the dose informa-
tion of Np primary protons, Ns secondary protons, other 
secondary fragments, and all tertiary particles was calcu-
lated following the physics model and saved in the local 
dose counter Dr (r = 1–8). After all the particle transports 
were performed in a batch, the dose information in Dr 
was sent to the CPU memory and added to the total dose, 
D

total
= D

total
+
∑

r Dr . The simulation process ends when 
the number of simulated primary protons Npri is equal to 
the number of total primary protons Ntotal.

In this study, all TPMC GPU dose calculation processes 
were performed on an NVIDIA Tesla V100 PCle 32 GB 
card system with 5120 processor cores. The operating fre-
quency was 1230 MHz with 14 TFLOPS in single-preci-
sion mode. All the CPU procedures were performed on 
an Intel Xeon 8260 CPU with 24 processor cores system, 
processor base frequency of 2.4 GHz, and 1 TB of maxi-
mum memory.

2.3 � Test model

We used a Gaussian pencil beam with a spot size of 5 mm 
and scattering angle of 0°. The number of primary protons 
simulated was 107, and the beam energies were 110, 160, and 
200 MeV. Four phantoms of different levels of heterogeneity, 
containing water, lung tissue, and bone tissue were designed 
for testing, as shown in Fig. 2. The size of the phantom was 
10 cm × 10 cm × 30 cm, with a 1 mm × 1 mm × 1.5 mm scor-
ing grid. The densities and elemental compositions of the 
materials are listed in Table 2.

3 � Results

3.1 � Dose validation

The physics setting of TOPAS included the following Geant4 
modules: g4em-standard_opt3, g4hphy_QGSP_BIC_HP, 

Fig. 1   Schematic of the GPU 
acceleration of TPMC

Fig. 2   Size, shape, and materi-
als of the four testing phantoms



GPU‑based cross‑platform Monte Carlo proton dose calculation engine in the framework of Taichi﻿	

1 3

Page 5 of 11  77

g4decay, g4ion-binarycascade, g4helastic_HP, and g4q-
stopping, following Testa et al. [27]

3.1.1 � Depth–dose curve

Figure 3 shows the depth–dose curves obtained for TPMC 
and TOPAS in the pure water phantom (phantom in Fig. 2). 
The dose values for beams with different energies are nor-
malized by the maximum dose (Bragg peak) of 110 MeV. 
The dose differences between TPMC and TOPAS mainly 
occur around the Bragg peak regions.

3.1.2 � Lateral dose verification

Lateral dose verification was performed by comparing the 
results for the four phantoms calculated by the TPMC and 
TOPAS at the same incident proton energy, E = 160 MeV. 
The relative error maps of the dose distributions are shown 
in Fig. 4. In most of the regions with energy deposition, 
the results of TPMC are consistent with those of TOPAS. 
These differences mainly appear in the Bragg peak areas for 
phantoms (a), (b), and (c). Interestingly, for the pure water 
phantom (a), our predicted dose values are larger than those 
of TOPAS at energies before the Bragg peak, and TPMC 

decreases faster than TOPAS after the Bragg peak. These 
differences increase further when lung tissue is inserted into 
the proton beam pathway. However, the opposite results are 
obtained when the inserts were replaced with bone tissue, 
as shown in panels (b) and (c) of Fig. 4. For the heterogene-
ous phantom, large differences appear along the extension 
line of the boundary between the two inserted materials, 
apart from the two Bragg peaks. Despite this difference, the 
Bragg peak regions of TPMC and TOPAS are consistent in 
all the test cases.

The influence of the heterogeneous medium was further 
studied by simulating two additional incident proton ener-
gies, 110 MeV and 200 MeV, for phantom (d). The lateral 
dose contour maps of the TPMC and TOPAS in the three 
cases, the corresponding lateral profiles at a depth of 6 cm 
(material boundary), and the two Bragg peaks are shown in 
Fig. 5a–c. The results show that the lateral dose distribution 
in TPMC is consistent with that in TOPAS, regardless of the 
proton beam energy, phantom depth, or material difference.

3.1.3 � Quantitative analysis

To evaluate the accuracy of the TPMC quantitatively, we 
calculated the gamma passing rates for the four testing 

Table 2   Densities and elemental compositions of the materials in the testing phantoms. The densities and composition values are in units of g/
cm3 and mass weighted percentage, respectively

Material Density H C N O Na P S Cl K Mg Ca

Water 1.0 11.2 88.8
Lung 0.3 10.3 10.5 3.1 74.9 0.2 0.2 0.3 0.3 0.2
Bone 1.9 13.5 16.0 4.2 44.5 0.3 9.5 0.3 0.2 21.5

Fig. 3   (Color online) Depth–
dose distribution (top) and rela-
tive dose difference (bottom) 
for the pure water phantom for 
mono-energetic proton pencil 
beams of 110 MeV (black peak 
at 91 mm), 160 MeV (red peak 
at 175 mm), and 200 MeV (blue 
peak at 258 mm), calculated by 
TPMC and TOPAS. The dose 
value for different energy beams 
is normalized with respect to 
the maximum dose (Bragg 
peak) of 110 MeV



	 W.-G. Li et al.

1 3

77  Page 6 of 11

phantoms with three incident proton beam energies. The 
criteria were set to 1 mm/1% and 2 mm/2%. A mask was 
added to each phantom whose height and width were set 
to 5 cm and 30 cm, respectively. The depth of the mask 
was 1.1 times the depth of the Bragg peak. A deeper 
Bragg peak was selected for the heterogeneous phantom. 
The gamma passing rates in various situations are listed in 
Table 3. We note that all the values are greater than 0.99 
and 0.95 under the criteria of 2 mm/2% and 1 mm/1%, 
respectively. These quantitative results indicate that the 
TPMC is sufficiently precise for proton treatment plan-
ning. In addition, the gamma passing rates of the TPMC 
gradually decrease with increasing proton beam energy 
and complexity of the phantom.

3.1.4 � CT image validation

The accuracy benchmark of TPMC against TOPAS was 
then performed on a CT-acquired patient phantom. A 
square beam with an energy of 110 MeV was incident. 
The dose distributions are shown in Fig. 6. The TPMC 
dose calculation results for the horizontal and inclined 
injection beams are shown in Fig. 6a, b, and the TOPAS 
results are plotted in Fig. 6c, d. Figure 6e, f depicts the 
dose differences between the two MC results. For regions 
with doses above 50% of the maximum dose, the aver-
age dose difference is less than 1.5%. We also performed 
a gamma-index test (2  mm/2%), and the passing rate 
exceeds 99%. Focusing on the dose points within the 10% 
isodose lines, the passing rate is greater than 96% for 
both cases.

3.2 � Acceleration verification

The efficiency of the TPMC was tested on an NVIDIA Tesla 
V100 GPU card system and an Intel Xeon 8260 CPU pro-
cessor (192 cores) system. The latter was also used in the 
full-MC simulation using TOPAS. We built the CUDA and 
OpenCL acceleration programs based on gPMC [10] and 
gPMC V2.0 [14]. For comparison, the same physical model 
was also encoded on the CUDA and OpenCL platforms. 
In all the cases processed by GPUs, the local dose coun-
ter was optimized to eight to reduce memory conflicts as 
much as possible. The simulation times for the 107 incident 
protons for various beam energies, platforms, and devices 
are listed in Table 4. Clearly, the simulation time is primar-
ily determined by the proton beam energies because high-
energy protons have longer transport paths and induce more 
complicated nuclear reactions than low-energy protons. In 
addition, the simulation efficiency of the three GPU-based 
platforms was at the same level (within 10 s) and all met the 
clinical requirements. Owing to the acceleration of the GPUs 
and simplification of the physics model, the calculation time 
is generally approximately 7000 times faster than that of the 
full MC simulations by TOPAS. Taichi did not show explicit 
improvements in simulation time compared with CUDA and 
OpenCL because proton transport workflows are essentially 
the same in GPU-based platforms.

3.3 � Simplification of the code

As mentioned in Sect. 1, Taichi integrates numerous func-
tion code instructions for ease of use. We compared the total 
number of lines of code written in Taichi, OpenCL, and 

Fig. 4   (Color online) Lateral dose difference of TPMC and TOPAS in the four test phantoms for a 160 MeV mono-energetic proton pencil beam: 
a difference in water phantom, b difference in lung phantom, c difference in bone phantom, and d difference in heterogeneous phantom



GPU‑based cross‑platform Monte Carlo proton dose calculation engine in the framework of Taichi﻿	

1 3

Page 7 of 11  77

Fig. 5   (Color online) Lateral 
dose difference of TPMC and 
TOPAS in the heterogeneous 
phantoms for: a 110, b 160, 
and c 200 MeV mono-energetic 
proton pencil beams



	 W.-G. Li et al.

1 3

77  Page 8 of 11

CUDA, as shown in Table 5. The number of lines of code 
for programming the physics model was the same for all the 
three platforms. However, Taichi significantly reduced the 
total number of lines of code, which was approximately 11 
times less than OpenCL and eight times less than CUDA. 
Such differences mainly come from the GPU implementa-
tion because it is quite easy in Taichi where only two lines 
of code are needed, compared to the thousands of lines 
needed in other platforms. This improvement makes TPMC 
an easy-to-use package that allows algorithm developers, 
students, and medical physicists to focus more on the under-
lying physics of proton transport rather than on code-writing 
techniques.

4 � Discussion

To ensure the accuracy of our physics model, it is worth 
noting that the maximum depth–dose difference in the pure 
water phantom occurred around the Bragg peak region. 
This is because nuclear reactions play a dominant role in 
the production of many short-range secondary fragments. 
However, the energy of these fragments was assumed to 
be locally deposited without additional interactions in the 
TPMC. This difference increases with increasing incident 
proton energy, which can be understood in the same way 
that the higher the projectiles energy, the more the frag-
ments produced. In addition, the lateral dose difference 
mainly originates from the approximate treatment of the 
delta electrons, whose influence on the proton transport 
directions is neglected in our physics model. The accuracy 
of TPMC decreased when other materials, such as lung or 
bone tissues, were inserted into water. The transport of 
delta electrons is probably non-negligible in low-density 

materials for lung tissues [10], while for bone tissues, 
proton-calcium inelastic nuclear interactions should be 
included. Moreover, the phantom with the heterogeneous 
medium exhibited the lowest gamma passing rate. The 
cross section of protons and materials might dramatically 
change when protons pass through the heterogeneous 
interface, but we only consider the material information 
of the current voxel in that case. These results indicate 
that the accuracy of TPMC may decrease further when the 
structure of the human body is more complicated.

The lateral dose differences of TPMC and TOPAS in 
Fig. 4 exhibit opposite results when lung or bone tissues 
were inserted compared to those of the pure water phan-
tom. This was attributed to the material conversion method 
used to calculate the water-equivalent steps in Eq. (2). For 
lung and bone tissues, although energy loss is assumed to 
be conserved in such conversion, the value of fs(�, Tp) is not 
absolutely accurate, since it is obtained by fitting to experi-
mental data [11]. Thus, the energy of the protons after pass-
ing through the inserts (other than water) changed compared 
with the real situation, leading to a shift of approximately 
1 mm in the Bragg peak position.

Although both CUDA and OpenCL can achieve better 
computation performance through numerous well-developed 
functions, the implementation of Taichi in proton dose cal-
culations is still appealing because it supports multiple 
GPU devices and has a low programming barrier. Taichi 
also exhibits advantages in other aspects. In proton transport, 
Taichi continues to process all the particles on the GPUs, 
whereas OpenCL sends the information of the generated 
secondary protons from the GPU to the CPU memory after 
the simulation of each batch finishes. This information is 
returned to the GPU during secondary proton transport. 
Such cross-transportation may lead to a relatively low effi-
ciency, as shown in Table 4, where the simulation time of 
OpenCL in each case is slightly longer than that of Taichi. 
In addition, Taichi supports most Python function libraries 
such as PyTorch and Numpy, which naturally integrate dose 
calculations within the framework of deep learning. This 
feature provides a new aspect for future work, namely, using 
convolution neural networks to improve the accuracy of the 
present study. Similar studies were conducted by Ryan Neph 
et al. [20], who used 3D Unet and high-noise dose maps 
(105 incident particles) to predict low-noise dose distribu-
tions (107 incident particles) in treatment planning. Another 
work by Wu et al. [28] improved the accuracy of the pencil 
beam algorithm using Unet. Both studies yielded promising 
results, indicating that deep learning has great potential for 
dose prediction. Finally, the great power of Taichi in gradi-
ent descent optimization can be applied to other aspects, 
such as image processing and dose optimization. Our goal 
is to develop a Taichi-based treatment planning system for 
proton therapy in future.

Table 3   Masked Gamma passing rates of TPMC for four testing 
phantoms with 110, 160, and 200 MeV proton beams

Energy Phantom Criteria

1 mm/1% 2 mm/2%

200 MeV Water 99.2 99.9
Water + lung 99.0 99.9
Water + bone 98.0 99.9
Heterogeneous 96.6 99.3

160 MeV Water 99.1 99.9
Water + lung 98.7 99.7
Water + bone 98.1 99.9
Heterogeneous 97.5 99.5

110 MeV Water 99.4 99.9
Water + lung 99.6 99.9
Water + bone 98.3 99.6
Heterogeneous 98.1 99.7



GPU‑based cross‑platform Monte Carlo proton dose calculation engine in the framework of Taichi﻿	

1 3

Page 9 of 11  77

5 � Conclusion

We developed a graphics processing unit (GPU)-based 
Monte Carlo proton dose calculation engine within the 

Fig. 6   (Color online) Dose 
calculation result in the case of 
the patient. The first two rows 
represent the dose results from 
TPMC and TOPAS, respec-
tively. The third row shows the 
relative dose difference between 
the two methods

Table 4   Comparison of the dose simulation time (in seconds) for 107 
incident protons with various beam energies, platforms and devices

The significance of bold is the engine we developed

Energy GPU (Nvidia Tesla V100) CPU (Intel 
Xeon 8260)

Taichi OpenCL CUDA TOPAS

200 MeV 9.00 8.73 6.34 58,890
160 MeV 4.96 6.92 4.96 38,650
110 MeV 3.34 5.23 2.57 19,560

Table 5   Comparison of the total number of lines of code and number 
of lines for the physics model in Taichi, OpenCL and CUDA

The significance of bold is the engine we developed

Taichi OpenCL CUDA

Total 780 ~ 9000 ~ 6000
Physics 720 ~ 1000 ~ 1000



	 W.-G. Li et al.

1 3

77  Page 10 of 11

Taichi framework. Protons are transported in the class II 
condensed history simulation scheme with various post-
step proton–nucleus interactions. The simulations were 
parallelized on GPUs for acceleration. The results of the 
testing models indicated that the accuracy satisfied the 
clinical requirements adequately. The simulation speed 
was approximately 7000 times faster than that of the full 
MC simulation using TOPAS, and the number of lines 
of code was approximately 10 times less than those of 
CUDA and OpenCL. Our study provides a fast, accurate, 
and easy-to-use proton dose calculation engine for algo-
rithm developers, students, and medical physicists. Further 
studies are needed to implement Taichi in other compo-
nents of treatment planning, such as image processing and 
dose optimization.

Author contributions  All authors contributed to the study conception 
and design. Material preparation, data collection and analysis were 
performed by Wei-Guang Li, Cheng Chang, Yao Qin, Zi-Lu Wang, 
Kai-Wen Li, Li-Sheng Geng and Hao Wu. The first draft of the manu-
script was written by Wei-Guang Li, and all authors commented on 
previous versions of the manuscript. All authors read and approved 
the final manuscript.

Data availability  The data that support the findings of this study are 
openly available in Science Data Bank at https://​doi.​org/​10.​57760/​scien​
cedb.​j00186.​00015 and https://​cstr.​cn/​31253.​11.​scien​cedb.​j00186.​
00015.

Conflict of interest  The authors declare that they have no competing 
interests.

References

	 1.	 F. Aliyah, S.G. Pinasti, A.A. Rahman, Proton therapy facilities: 
an overview of the development in recent year. IOP Conf. Ser. 
Earth Environ. Sci. 927, 012042 (2021). https://​doi.​org/​10.​1088/​
1755-​1315/​927/1/​012042

	 2.	 B. Qin, X. Liu, Q.S. Chen et al., Design and development of the 
beamline for a proton therapy system. Nucl. Sci. Tech. 32, 138 
(2021). https://​doi.​org/​10.​1007/​s41365-​021-​00975-y

	 3.	 W.C. Fang, X.X. Huang, J.H. Tan et al., Proton linac-based ther-
apy facility for ultra-high dose rate (FLASH) treatment. Nucl. Sci. 
Tech. 32, 34 (2021). https://​doi.​org/​10.​1007/​s41365-​021-​00872-4

	 4.	 J. Saini, E. Traneus, D. Maes et al., Advanced proton beam dosim-
etry part I: review and performance evaluation of dose calcula-
tion algorithms. Transl. Lung Cancer Res. 7(2), 171–179 (2018). 
https://​doi.​org/​10.​21037/​tlcr.​2018.​04.​05

	 5.	 S. Muraro, G. Battistoni, A.C. Kraan, Challenges in Monte Carlo 
simulations as clinical and research tool in particle therapy: a 
review. Front. Phys. 8, 567800 (2020). https://​doi.​org/​10.​3389/​
fphy.​2020.​567800

	 6.	 H. Paganetti, Relative biological effectiveness (RBE) values for 
proton beam therapy. Variations as a function of biological end-
point, dose, and linear energy transfer. Phys. Med. Biol. 59, 419 
(2014). https://​doi.​org/​10.​1088/​0031-​9155/​59/​22/​R419

	 7.	 A.K. Hu, R. Qiu, H. Liu et al., THUBrachy: fast Monte Carlo dose 
calculation tool accelerated by heterogeneous hardware for high-
dose-rate brachytherapy. Nucl. Sci. Tech. 32, 32 (2021). https://​
doi.​org/​10.​1007/​s41365-​021-​00866-2

	 8.	 F. Liu, N. Jansson, A. Podobas et al., Accelerating radiation ther-
apy dose calculation with Nvidia GPUs, in Paper presented at 
the 2021 IEEE International Parallel and Distributed Processing 
Symposium Workshops (Portland, OR, USA). https://​doi.​org/​10.​
1109/​IPDPS​W52791.​2021.​00076

	 9.	 J. Gajewski, M. Garbacz, C.W. Chang et al., Commissioning of 
GPU—accelerated Monte Carlo code FRED for clinical applica-
tions in proton therapy. Front. Phys. 8, 567300 (2021). https://​doi.​
org/​10.​3389/​fphy.​2020.​567300

	10.	 X. Jia, J. Schümann, H. Paganetti et al., GPU-based fast Monte 
Carlo dose calculation for proton therapy. Phys. Med. Biol. 57, 
7783 (2012). https://​doi.​org/​10.​1088/​0031-​9155/​57/​23/​7783

	11.	 M. Fippel, M. Soukup, A Monte Carlo dose calculation algorithm 
for proton therapy. Med. Phys. 31(8), 2263–2273 (2004). https://​
doi.​org/​10.​1118/1.​17696​31

	12.	 H. Wan Chan Tseung, J. Ma, C. Beltran, A fast GPU-based Monte 
Carlo simulation of proton transport with detailed modeling of 
nonelastic interactions. Med. Phys. 42(6), 2967–2978 (2015). 
https://​doi.​org/​10.​1118/1.​49210​46

	13.	 Z. Tian, F. Shi, M. Folkerts et al., A GPU OpenCL based cross-
platform Monte Carlo dose calculation engine (goMC). Phys. 
Med. Biol. 60, 7419 (2015). https://​doi.​org/​10.​1088/​0031-​9155/​
60/​19/​7419

	14.	 N. Qin, P. Botas, D. Giantsoudi et al., Recent developments and 
comprehensive evaluations of a GPU-based Monte Carlo package 
for proton therapy. Phys. Med. Biol. 61, 7347 (2016). https://​doi.​
org/​10.​1088/​0031-​9155/​61/​20/​7347

	15.	 Y. Hu, T.M. Li, L. Anderson et al., Taichi: a language for high-
performance computation on spatially sparse data structure. ACM 
Trans. Graph. 38, 201 (2019). https://​doi.​org/​10.​1145/​33550​89.​
33565​06

	16.	 Y. Hu, L. Anderson, T.M. Li et al., Difftaichi: differentiable pro-
gramming for physical simulation, in Paper Presented at the 2020 
International Conference on Learning Representations (Virtual 
Conference, Formerly Addis Ababa ETHIOPIA (2020).

	17.	 Y. Hu, J. Liu, X. Yang et al., Quantaichi: a compiler for quantized 
simulations. ACM Trans. Graph. 40, 182 (2021). https://​doi.​org/​
10.​1145/​34506​26.​34596​71

	18.	 C. Kontaxis, G.H. Bol, J.J.W. Lagendijk et al., DeepDose: towards 
a fast dose calculation engine for radiation therapy using deep 
learning. Phys. Med. Biol. 65, 075013 (2020). https://​doi.​org/​10.​
1088/​1361-​6560/​ab7630

	19.	 Y. Xing, D. Nguyen, W. Lu et al., A feasibility study on deep 
learning-based radiotherapy dose calculation. Med. Phys. 47(2), 
753–758 (2020). https://​doi.​org/​10.​1002/​mp.​13953

	20.	 R. Neph, Q. Lyu, Y. Huang et al., DeepMC: a deep learning 
method for efficient Monte Carlo beamlet dose calculation by 
predictive denoising in magnetic resonance-guided radiotherapy. 
Phys. Med. Biol. 66, 035022 (2021). https://​doi.​org/​10.​1088/​
1361-​6560/​abca01

	21.	 J. Liang, M.C. Lin, Machine learning for digital try-on: challenges 
and progress. Comput. Vis. Media 7, 159–167 (2021). https://​doi.​
org/​10.​1007/​s41095-​020-​0189-1

	22.	 I. Kawrakow, Accurate condensed history Monte Carlo simula-
tion of electron transport. I.EGSnrc, the new EGS4 version. Med. 
Phys. 27(3), 485–498 (2000). https://​doi.​org/​10.​1118/1.​598917

	23.	 W.D. Newhauser, R. Zhang, The physics of proton therapy. Phys. 
Med. Biol. 60, R155 (2015). https://​doi.​org/​10.​1088/​0031-​9155/​
60/8/​R155

	24.	 J.F. Ziegler, Comments on icru report no. 49: stopping powers 
and ranges for protons and alpha particles. Radiat. Res. 152(2), 
219–222 (1999). https://​doi.​org/​10.​2307/​35800​97

	25.	 D.R. Grimes, D.R. Warren, M. Partridge, An approximate ana-
lytical solution of the Bethe equation for charged particles in the 
radiotherapeutic energy range. Sci. Rep. 7, 9781 (2017). https://​
doi.​org/​10.​1038/​s41598-​017-​10554-0

https://doi.org/10.57760/sciencedb.j00186.00015
https://doi.org/10.57760/sciencedb.j00186.00015
https://cstr.cn/31253.11.sciencedb.j00186.00015
https://cstr.cn/31253.11.sciencedb.j00186.00015
https://doi.org/10.1088/1755-1315/927/1/012042
https://doi.org/10.1088/1755-1315/927/1/012042
https://doi.org/10.1007/s41365-021-00975-y
https://doi.org/10.1007/s41365-021-00872-4
https://doi.org/10.21037/tlcr.2018.04.05
https://doi.org/10.3389/fphy.2020.567800
https://doi.org/10.3389/fphy.2020.567800
https://doi.org/10.1088/0031-9155/59/22/R419
https://doi.org/10.1007/s41365-021-00866-2
https://doi.org/10.1007/s41365-021-00866-2
https://doi.org/10.1109/IPDPSW52791.2021.00076
https://doi.org/10.1109/IPDPSW52791.2021.00076
https://doi.org/10.3389/fphy.2020.567300
https://doi.org/10.3389/fphy.2020.567300
https://doi.org/10.1088/0031-9155/57/23/7783
https://doi.org/10.1118/1.1769631
https://doi.org/10.1118/1.1769631
https://doi.org/10.1118/1.4921046
https://doi.org/10.1088/0031-9155/60/19/7419
https://doi.org/10.1088/0031-9155/60/19/7419
https://doi.org/10.1088/0031-9155/61/20/7347
https://doi.org/10.1088/0031-9155/61/20/7347
https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1145/3450626.3459671
https://doi.org/10.1145/3450626.3459671
https://doi.org/10.1088/1361-6560/ab7630
https://doi.org/10.1088/1361-6560/ab7630
https://doi.org/10.1002/mp.13953
https://doi.org/10.1088/1361-6560/abca01
https://doi.org/10.1088/1361-6560/abca01
https://doi.org/10.1007/s41095-020-0189-1
https://doi.org/10.1007/s41095-020-0189-1
https://doi.org/10.1118/1.598917
https://doi.org/10.1088/0031-9155/60/8/R155
https://doi.org/10.1088/0031-9155/60/8/R155
https://doi.org/10.2307/3580097
https://doi.org/10.1038/s41598-017-10554-0
https://doi.org/10.1038/s41598-017-10554-0


GPU‑based cross‑platform Monte Carlo proton dose calculation engine in the framework of Taichi﻿	

1 3

Page 11 of 11  77

	26.	 J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments 
and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006). 
https://​doi.​org/​10.​1109/​TNS.​2006.​869826

	27.	 M. Testa, J. Schümann, H.M. Lu et al., Experimental validation 
of the TOPAS Monte Carlo system for passive scattering proton 
therapy. Med. Phys. 40(12), 121719 (2013). https://​doi.​org/​10.​
1118/1.​48287​81

	28.	 C. Wu, D. Nguyen, Y. Xing et al., Improving proton dose calcula-
tion accuracy by using deep learning. Mach. Learn. Sci. Technol. 
2(1), 015017 (2021). https://​doi.​org/​10.​1088/​2632-​2153/​abb6d5

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1109/TNS.2006.869826
https://doi.org/10.1118/1.4828781
https://doi.org/10.1118/1.4828781
https://doi.org/10.1088/2632-2153/abb6d5

	GPU-based cross-platform Monte Carlo proton dose calculation engine in the framework of Taichi
	Abstract
	1 Introduction
	2 Methods
	2.1 Physics model
	2.2 GPU acceleration
	2.3 Test model

	3 Results
	3.1 Dose validation
	3.1.1 Depth–dose curve
	3.1.2 Lateral dose verification
	3.1.3 Quantitative analysis
	3.1.4 CT image validation

	3.2 Acceleration verification
	3.3 Simplification of the code

	4 Discussion
	5 Conclusion
	References




